
500 mA Adjustable Output, Positive Voltage Regulator

The LM317M is an adjustable three–terminal positive voltage regulator capable of supplying in excess of 500 mA over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow–out proof.

The LM317M serves a wide variety of applications including local, on—card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317M can be used as a precision current regulator.

Features

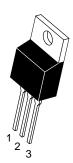
- Output Current in Excess of 500 mA
- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe–Area Compensation
- Floating Operation for High Voltage Applications
- Eliminates Stocking Many Fixed Voltages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

 * = C_{in} is required if regulator is located an appreciable distance from power supply filter. ** = C_{Ω} is not needed for stability, however, it does improve transient response.

$$V_{out} = 1.25 \ V \left(1 + \frac{R_2}{R_1} \right) + I_{Adj} R_2$$

Since I_{Adj} is controlled to less than 100 μ A, the error associated with this term is negligible in most applications.

Figure 1. Simplified Application



ON Semiconductor®

www.onsemi.com

Heatsink surface connected to Pin 2

TO-220AB T SUFFIX CASE 221AB

SOT-223 ST SUFFIX CASE 318E

DPAK DT SUFFIX CASE 369C

Heatsink Surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

PIN ASSIGNMENT				
1	Adjust			
2	V _{out}			
3	V _{in}			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 11 of this data sheet.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
ut-Output Voltage Differential V		40	Vdc
Power Dissipation (Package Limitation) (Note 1)			
Plastic Package, T Suffix, Case 221A			
$T_A = 25^{\circ}C$	P_{D}	Internally Limited	
Thermal Resistance, Junction-to-Air	$\theta_{\sf JA}$	70	°C/W
Thermal Resistance, Junction-to-Case	$\theta_{\sf JC}$	5.0	°C/W
Plastic Package, DT Suffix, Case 369C			
$T_A = 25^{\circ}C$	P _D	Internally Limited	
Thermal Resistance, Junction-to-Air	θ_{JA}	92	°C/W
Thermal Resistance, Junction-to-Case	θJC	5.0	°C/W
Plastic Package, ST Suffix, Case 318E			
$T_A = 25^{\circ}C$	P _D	Internally Limited	
Thermal Resistance, Junction-to-Air	θ_{JA}	245	°C/W
Thermal Resistance, Junction-to-Case	θ _{JC}	15	°C/W
Maximum Junction Temperature	T _{JMAX}	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS ($V_I - V_O = 5.0 \text{ V}$; $I_O = 0.1 \text{ A}$, $T_J = T_{low}$ to T_{high} (Note 2), unless otherwise noted.)

			LM317M/LM317MB/NCV317MB			
Characteristics	Figure	Symbol	Min	Тур	Max	Unit
Line Regulation (Note 3) ($T_A = 25^{\circ}C$, 3.0 V \leq V _I $-$ V _O \leq 40 V)	3	Reg _{line}	_	0.01	0.04	%/V
Load Regulation (Note 3) $T_A = 25^{\circ}C, 10 \text{ mA} \le I_O \le 0.5 \text{ A}$ $V_O \le 5.0 \text{ V}$	4	Reg _{load}	_	5.0	25	mV
V _O ≥ 5.0 V			_	0.1	0.5	% Vo
Adjustment Pin Current	5	I_{Adj}	-	50	100	μΑ
Adjustment Pin Current Change $2.5~V \le V_I - V_O \le 40~V,~10~mA \le I_L \le 0.5~A,~P_D \le P_{max}$	3, 4	ΔI_{Adj}	-	0.2	5.0	μΑ
Reference Voltage 3.0 V \leq V _I $-$ V _O \leq 40 V, 10 mA \leq I _L \leq 0.5 A, P _D \leq P _{max}	5	V _{ref}	1.20	1.25	1.30	V
Line Regulation 3.0 V \leq V _I -V _O \leq 40 V (Note 3)	3	Reg _{line}	-	0.02	0.07	%/V
Load Regulation 10 mA \leq I $_{O}$ \leq 0.5 A (Note 3) V_{O} \leq 5.0 V V_{O} \geq 5.0 V	4	Reg _{load}		20 0.3	70 1.5	mV % V _O
Temperature Stability $(T_{low} \le T_J \le T_{high})$	5	T _S	-	0.7	_	% Vo
Minimum Load Current to Maintain Regulation (V _I – V _O = 40 V)	5	I _{Lmin}	-	3.5	10	mA
Maximum Output Current $V_I - V_O \le 15 \text{ V}, P_D \le P_{max}$ $V_I - V_O = 40 \text{ V}, P_D \le P_{max}, T_A = 25^{\circ}\text{C}$	5	I _{max}	0.5 0.15	0.9 0.25	- -	A
RMS Noise, % of V_O ($T_A = 25^{\circ}C$, 10 Hz $\leq f \leq$ 10 kHz)	-	N	-	0.003	-	% V _O
Ripple Rejection, V_O = 10 V, f = 120 Hz (Note 4) Without C_{Adj} C_{Adj} = 10 μ F	6	RR	- 66	65 80	- -	dB
Thermal Shutdown (Note 5)	_	_	_	180	-	°C
Long–Term Stability, $T_J = T_{high}$ (Note 6) $T_A = 25^{\circ}C$ for End–point Measurements	5	S	-	0.3	1.0	%/1.0 kHrs.

^{1.} Figure 25 provides thermal resistance versus PC board pad size.

T_{low} to T_{high} = 0° to +125°C for LM317M
 T_{low} to T_{high} = -40° to +125°C for LM317MB, NCV317MB.
 Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

^{4.} C_{Adj}, when used, is connected between the adjustment pin and ground.

^{5.} Thermal characteristics are not subject to production test.

^{6.} Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot-to-lot.

ELECTRICAL CHARACTERISTICS ($V_I - V_O = 5.0 \text{ V}$; $I_O = 0.1 \text{ A}$, $T_J = T_{low}$ to T_{high} (Note 7), unless otherwise noted.)

			LM317MA/LM317MAB/NCV317MAB			
Characteristics	Figure	Symbol	Min	Тур	Max	Unit
Line Regulation (Note 8) ($T_A = 25^{\circ}C$, 3.0 $V \le V_I - V_O \le 40 \text{ V}$)	3	Reg _{line}	_	0.01	0.04	%/V
Load Regulation (Note 8) $T_A = 25^{\circ}C, 10 \text{ mA} \le I_O \le 0.5 \text{ A}$ $V_O \le 5.0 \text{ V}$ $V_O \ge 5.0 \text{ V}$	4	Reg _{load}	- -	5.0 0.1	25 0.5	mV % V _O
Adjustment Pin Current	5	I _{Adj}	_	50	100	μΑ
Adjustment Pin Current Change $2.5 \text{ V} \leq \text{V}_I - \text{V}_O \leq 40 \text{ V}, \ 10 \text{ mA} \leq \text{I}_L \leq 0.5 \text{ A}, \ P_D \leq P_{max}$	3, 4	ΔI_{Adj}	-	0.2	5.0	μΑ
Reference Voltage 3.0 V \leq V _I $-$ V _O \leq 40 V, 10 mA \leq I _L \leq 0.5 A, P _D \leq P _{max}	5	V _{ref}	1.225	1.250	1.275	V
Line Regulation (Note 8) 3.0 $V \le V_I - V_O \le 40 \text{ V}$	3	Reg _{line}	-	0.02	0.07	%/V
Load Regulation (Note 8) 10 mA \leq I $_{O} \leq$ 0.5 A $V_{O} \leq$ 5.0 V $V_{O} \geq$ 5.0 V	4	Reg _{load}	- -	20 0.3	70 1.5	mV % V _O
Temperature Stability $(T_{low} \le T_J \le T_{high})$	5	T _S	-	0.7	_	% Vo
Minimum Load Current to Maintain Regulation (V _I – V _O = 40 V)	5	I _{Lmin}	_	3.5	10	mA
Maximum Output Current $V_I - V_O \le 15 \text{ V}, P_D \le P_{max}$ $V_I - V_O = 40 \text{ V}, P_D \le P_{max}, T_A = 25^{\circ}\text{C}$	5	I _{max}	0.5 0.15	0.9 0.25	- -	А
RMS Noise, % of V_O ($T_A = 25^{\circ}C$, 10 Hz \leq f \leq 10 kHz)	_	N	_	_	_	% Vo
Ripple Rejection, V_O = 10 V, f = 120 Hz (Note 9) Without C_{Adj} C_{Adj} = 10 μ F	6	RR	- 66	65 80	- -	dB
Thermal Shutdown (Note 10)	_	-	-	180	_	°C
Long–Term Stability, $T_J = T_{high}$ (Note 11) $T_A = 25^{\circ}C$ for End–point Measurements	5	S	-	0.3	1.0	%/1.0 kHrs.

T_{low} to T_{high} = 0° to +125°C for LM317MA
 T_{low} to T_{high} = -40° to +125°C for LM317MAB, NCV317MAB.
 Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
 C_{Adj}, when used, is connected between the adjustment pin and ground.
 Thermal characteristics are not subject to production test.

^{11.} Since Long–Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot–to–lot.

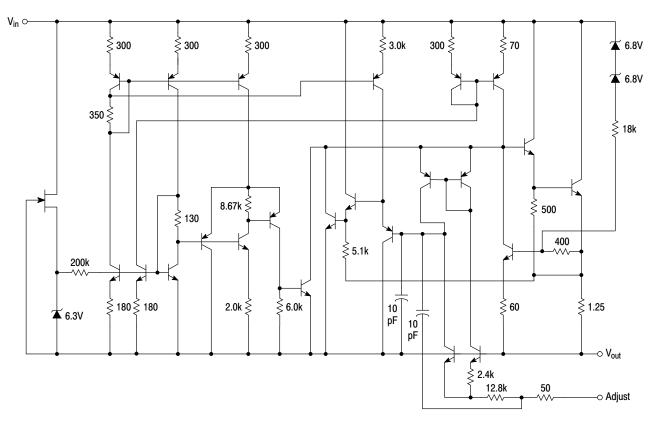


Figure 2. Representative Schematic Diagram

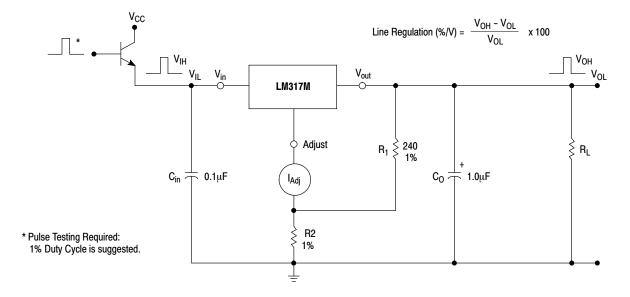
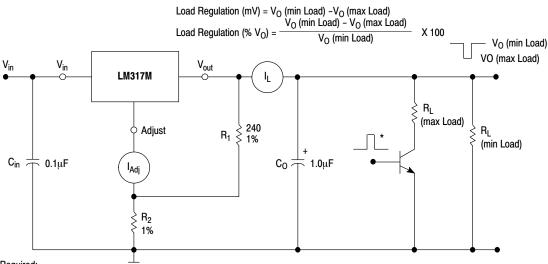



Figure 3. Line Regulation and $\Delta I_{\mbox{\sc Adj}}\mbox{/Line}$ Test Circuit

* Pulse Testing Required: 1% Duty Cycle is suggested.

Figure 4. Load Regulation and ΔI_{Adj} /Load Test Circuit

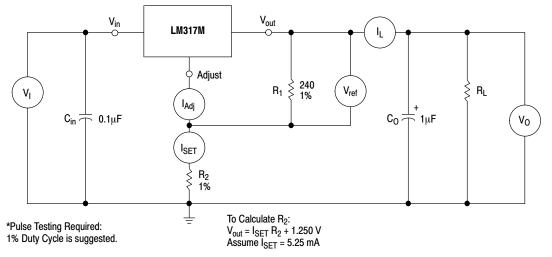


Figure 5. Standard Test Circuit

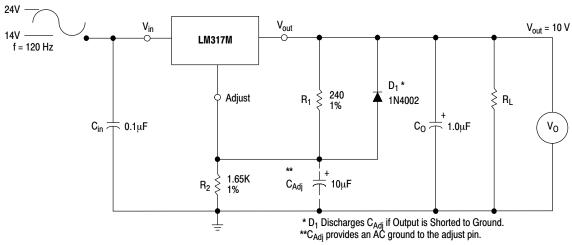


Figure 6. Ripple Rejection Test Circuit

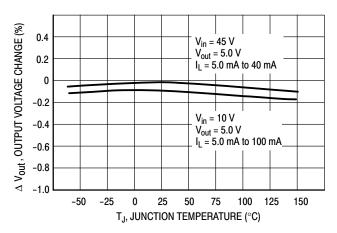


Figure 7. Load Regulation

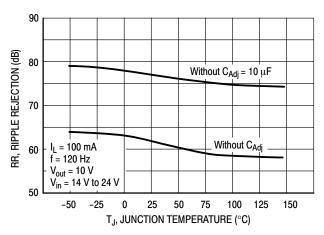


Figure 8. Ripple Rejection

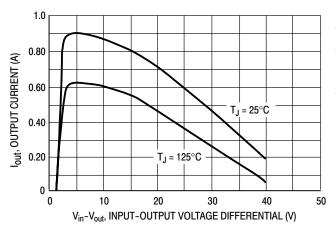


Figure 9. Current Limit

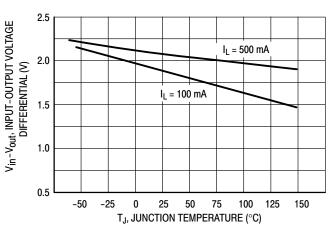
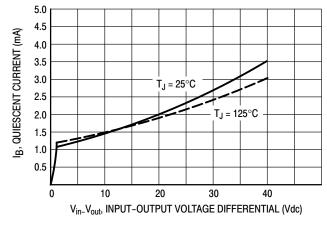



Figure 10. Dropout Voltage

Figure 11. Minimum Operating Current

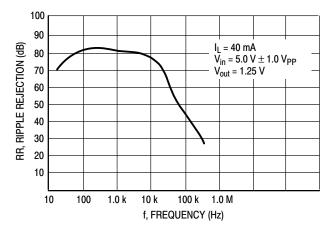


Figure 12. Ripple Rejection versus Frequency

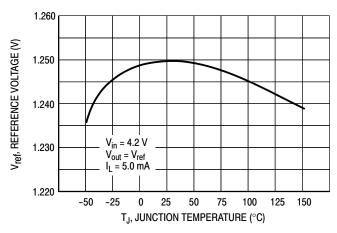


Figure 13. Temperature Stability

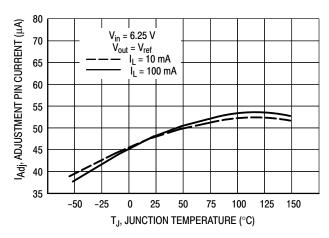


Figure 14. Adjustment Pin Current

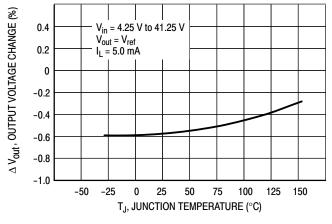


Figure 15. Line Regulation

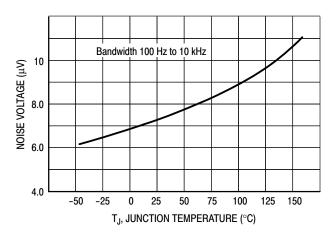


Figure 16. Output Noise

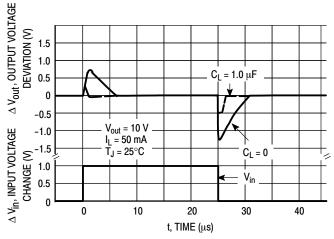


Figure 17. Line Transient Response

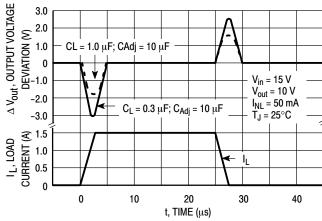


Figure 18. Load Transient Response

APPLICATIONS INFORMATION

Basic Circuit Operation

The LM317M is a three–terminal floating regulator. In operation, the LM317M develops and maintains a nominal 1.25 V reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R_1 (see Figure 19), and this constant current flows through R_2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R_2}{R_1} \right) + I_{Adj} R_2$$

Since the current from the terminal (I_{Adj}) represents an error term in the equation, the LM317M was designed to control I_{Adj} to less than 100 μA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317M is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

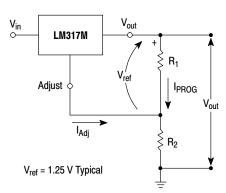


Figure 19. Basic Circuit Configuration

Load Regulation

The LM317M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R_1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R_2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

External Capacitors

A 0.1 μF disc or 1.0 μF tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{Adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the LM317M is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_O) in the form of a 1.0 μF tantalum or 25 μF aluminum electrolytic capacitor on the output swamps this effect and insures stability.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 20 shows the LM317M with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_O > 25 \, \mu F$, $C_{Adj} > 5.0 \, \mu F$). Diode D_1 prevents C_O from discharging thru the IC during an input short circuit. Diode D_2 protects against capacitor C_{Adj} discharging through the IC during an output short circuit. The combination of diodes D_1 and D_2 prevents C_{Adj} from discharging through the IC during an input short circuit.

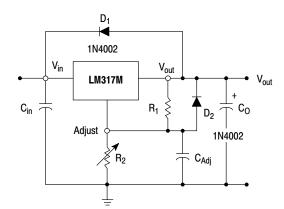


Figure 20. Voltage Regulator with Protection Diodes

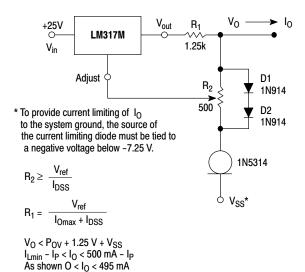
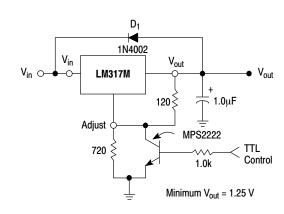



Figure 21. Adjustable Current Limiter

D₁ protects the device during an input short circuit.

Figure 22. 5 V Electronic Shutdown Regulator

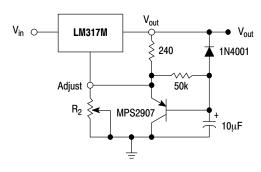


Figure 23. Slow Turn-On Regulator

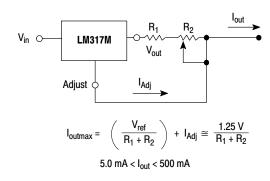


Figure 24. Current Regulator

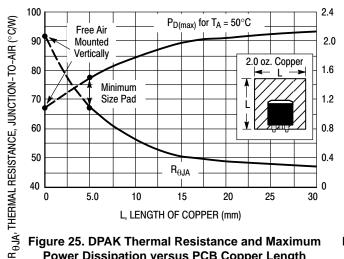


Figure 25. DPAK Thermal Resistance and Maximum **Power Dissipation versus PCB Copper Length**

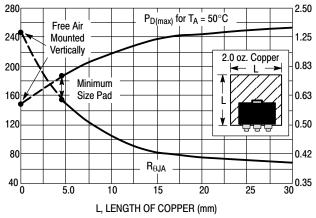
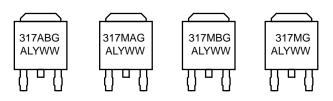
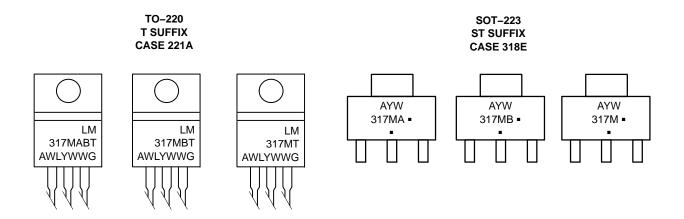


Figure 26. SOT-223 Thermal Resistance and Maximum **Power Dissipation versus PCB Copper Length**

ORDERING INFORMATION


Device	Output Voltage Tolerance	Operating Temperature Range	Package	Shipping [†]
LM317MABDTG			DPAK (Pb-Free)	75 Units / Rail
LM317MABDTRKG			DPAK	2500 / Tape & Reel
NCV317MABDTRKG*		$T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	(Pb-Free)	
NCV317MABSTT3G*	2%	., ., ., ., ., ., ., ., ., ., ., ., ., .	SOT-223 (Pb-Free)	4000 / Tape & Reel
LM317MABTG			TO-220 (Pb-Free)	50 Units / Rail
LM317MADTRKG		T _J = 0°C to 125°C	DPAK (Pb-Free)	2500 / Tape & Reel
LM317MBDTG			DPAK	75 Units / Rail
NCV317MBDTG*			(Pb-Free)	
LM317MBDTRKG			DPAK	2500 / Tape & Reel
NCV317MBDTRKG*		T 4000 to 40500	(Pb-Free)	
LM317MBSTT3G	-	$T_J = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	SOT-223	4000 / Tape & Reel
NCV317MBSTT3G*	-		(Pb-Free)	
LM317MBTG			TO-220	50 Units / Rail
NCV317MBTG*	4%		(Pb-Free)	
LM317MDTG			DPAK (Pb-Free)	75 Units / Rail
LM317MDTRKG		T 000 / 4070C	DPAK (Pb-Free)	2500 / Tape & Reel
LM317MSTT3G		$T_J = 0$ °C to 125°C	SOT-223 (Pb-Free)	4000 / Tape & Reel
LM317MTG			TO-220 (Pb-Free)	50 Units / Rail


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

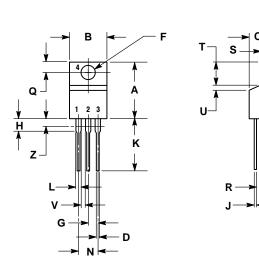
*NCV devices: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS

DPAK DT SUFFIX CASE 369C

A = Assembly Location

L, WL = Wafer Lot
Y = Year
WW, W = Work Week
G or ■ = Pb-Free Package


(Note: Microdot may be in either location)

PACKAGE DIMENSIONS

TO-220, SINGLE GAUGE

CASE 221AB ISSUE A

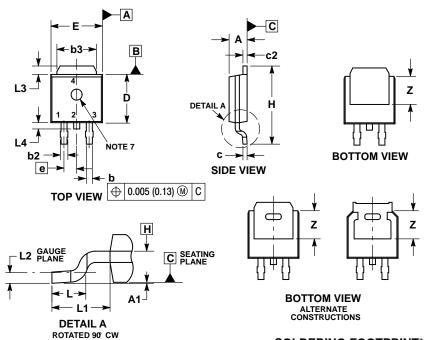
-T- SEATING PLANE

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCHES.

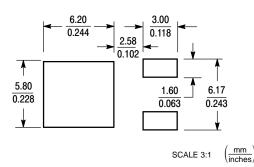

 3. DIMENSION 2 DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARTIES ARE ALLOWED.

 4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS S = 0.045 0.055 INCHES (1.143 1.397 MM)

	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.570	0.620	14.48	15.75		
В	0.380	0.405	9.66	10.28		
С	0.160	0.190	4.07	4.82		
D	0.025	0.035	0.64	0.88		
F	0.142	0.147	3.61	3.73		
G	0.095	0.105	2.42	2.66		
Н	0.110	0.155	2.80	3.93		
J	0.018	0.025	0.46	0.64		
K	0.500	0.562	12.70	14.27		
L	0.045	0.060	1.15	1.52		
N	0.190	0.210	4.83	5.33		
Q	0.100	0.120	2.54	3.04		
R	0.080	0.110	2.04	2.79		
S	0.020	0.024	0.508	0.61		
T	0.235	0.255	5.97	6.47		
U	0.000	0.050	0.00	1.27		
٧	0.045		1.15			
Z		0.080		2.04		

PACKAGE DIMENSIONS

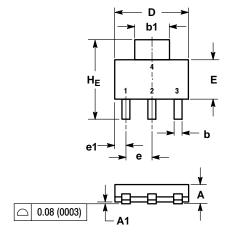
DPAK DT SUFFIX CASE 369C ISSUE F


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME

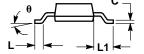
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 53, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 7. OPTIONAL MOLD FEATURE.

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.086	0.094	2.18	2.38		
A1	0.000	0.005	0.00	0.13		
b	0.025	0.035	0.63	0.89		
b2	0.028	0.045	0.72	1.14		
b3	0.180	0.215	4.57	5.46		
С	0.018	0.024	0.46	0.61		
c2	0.018	0.024	0.46	0.61		
D	0.235	0.245	5.97	6.22		
E	0.250	0.265	6.35	6.73		
е	0.090	BSC	2.29	2.29 BSC		
Н	0.370	0.410	9.40	10.41		
L	0.055	0.070	1.40	1.78		
L1	0.114	REF	2.90 REF			
L2	0.020 BSC		0.51 BSC			
L3	0.035	0.050	0.89	1.27		
L4		0.040		1.01		
Z	0.155		3.93			


SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


SOT-223 (TO-261) ST SUFFIX CASE 318E-04 ISSUE N


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.

	М	ILLIMETE	RS			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	-	10°

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81–3–5817–1050