

User’s Manual and Release Notes

April 11, 2022

Intel MAX 10 FPGA System on Module

	
Copyright	2022	Alorium	Technology,	LLC	

	 2	

Version	 Date	 Author	 Changes	
0.7	 April	6,	2022	 Steve	Phillips	 Initial	Version	

1.0	 April	11,	2022	 Steve	Phillips	 First	official	release	

	 	 	 	

	 	 	 	

	
Copyright	2022	Alorium	Technology,	LLC	

	 3	

Table of Contents

1	 INTRODUCTION .. 5	

2	 PROGRAMMING SNO EDGE .. 6	

2.1	 Microcontroller	Programming	..	6	
2.1.1	 USB	Programming	..	6	
2.1.2	 FTDI	Programming	..	6	

2.2	 FPGA	Programming	...	7	
2.2.1	 Updating	the	FPGA	Image	...	7	
2.2.2	 Restoring	Factory	FPGA	Image	...	8	
2.2.3	 Creating	Custom	FPGA	Images	with	OpenXLR8	..	9	
2.2.4	 Bare-Metal	FPGA	Programming	...	9	

3	 GENERAL TECHNICAL SPECIFICATIONS .. 11	

3.1	 3.3V	I/O	...	11	

3.2	 ADC	..	11	

3.3	 Analog	Compare	...	12	

3.4	 Power	...	12	

3.5	 Pin	13	LED	..	12	

4	 XCELERATOR BLOCKS (XBS) ... 13	

4.1	 Floating	Point	..	13	

4.2	 Servo	Control	...	13	

4.3	 Quadrature	...	13	

5	 PIN MAPPING ... 15	

6	 EXTENDED INTERRUPTS .. 18	

6.1	 GPIO	Port	Pin	Change	Detection	...	18	

6.2	 Pin	Change	Interrupts	..	18	

6.3	 OpenXLR8	Interrupts	...	19	

6.4	 Extended	IRQs	...	20	

	
Copyright	2022	Alorium	Technology,	LLC	

	 4	

6.5	 Setup	and	Usage	..	21	

6.6	 Example	Interrupt	Sketch	...	21	

7	 REGISTER SUMMARY .. 24	

7.1	 Sno	Edge	and	XB	Register	Descriptions	..	28	
7.1.1	 Register	Access	Definitions	...	28	
7.1.2	 Ports	A,	E	and	G	...	29	
7.1.3	 Ports	JA,	JB,	JC,	and	JD	..	29	
7.1.4	 Ports	KA,	KB,	KC,	and	KD	..	31	
7.1.5	 Port	PL	..	32	
7.1.6	 XFCTRL,	XFSTAT,	XFR0,	XFR1,	XFR2,	XFR3–	Floating	Point	XB	Registers	...	32	
7.1.7	 CLKSPD	–	Clock	Speed	Register	...	32	
7.1.8	 XICR,	XIFR,	XMSK,	XACK	–	Extended	IRQ	..	33	
7.1.9	 OX8ICR,	OX8IFR,	OX8MSK	–	OpenXLR8	Interrupts	..	34	
7.1.10	 SPICR,	SPIFR,	SPIMSK	–	Sno	Pin	Change	Interrupts	...	34	
7.1.11	 XLR8ADCR	–	Sno	Edge		ADC	Control	Register	...	35	
7.1.12	 FCFGCID	–	Chip	ID	Register	...	35	
7.1.13	 FCFGDAT,	FCFGSTS,	FCFGCTL	–	FPGA	Reconfiguration	Registers	...	35	
7.1.14	 XLR8VERL,	XLR8VERH,	XLR8VERT	–	Version	Number	Registers	..	35	
7.1.15	 XLR8Quad	–	XLR8	Quadrature	...	36	
7.1.16	 XLR8PID	–	XLR8	PID	...	36	
7.1.17	 SVPWH,	SVPWL,	SVCR	–	Servo	XB	Registers	..	37	

7.2	 Using	the	Sno	Edge	Registers	in	Software	..	38	

8	 SCHEMATICS AND OTHER RESOURCES .. 41	

9	 CREDITS .. 42	

10	 APPENDIX A – ARDUINO IDE INSTALLATION AND RUNNING TEST PROGRAM 43	

10.1	 Installing	Arduino	IDE	..	43	
10.1.1	 Microsoft	Windows	...	43	
10.1.2	 Mac	OS	X	...	43	
10.1.3	 Linux	..	43	

10.2	 FTDI	Driver	Installation	..	43	

10.3	 Installing	Sno	Edge	Board	Package	and	Libraries	..	44	
10.3.1	 Add	Sno	Edge	Board	Support	..	44	
10.3.2	 Sno	Edge	Libraries	..	47	

10.4	 Running	an	Example	Sketch/Program	...	47	

	
Copyright	2022	Alorium	Technology,	LLC	

	 5	

1 Introduction

Sno	Edge	50	is	is	an	Intel	MAX	10	FPGA	System	on	Module	(SOM)	that	includes	an	8-bit	AVR	

compatible	microcontroller	integrated	on	the	FPGA	for	easy	programmability	and	optimized	

access	to	the	FPGA	fabric	for	custom	hardware	functionality.	

	

Based	on	Alorium	Technology’s	very	popular	embeddable	Snō	FPGA	module,	the	Sno	Edge	50	

enhances	the	powerful	features	and	functionality	of	Snō	with	significantly	increased	digital	I/O,	

additional	ADCs,	and	more	FPGA	logic	gates	for	custom	Xcelerator	Block	development.			

	

All	of	this	functionality	is	packaged	in	a	200-pin	SODIMM	form	factor	for	the	ultimate	in	low-

profile	physical	integration.	

	

	

	
Figure	1:	Sno	Edge	50	Board	

Note:	

	

Sno	Edge	50	is	the	first	release	in	a	planned	roadmap	of	“Sno	Edge”	boards	and	is	named	based	on	

the	fact	that	it	has	a	50K	LE	MAX	10	FPGA.	Additional	variations	of	the	design	may	be	produced	

based	on	customer	demand	and	FPGA	availability.	

	

For	the	remainder	of	this	document,	Sno	Edge	50	is	referred	to	as	simply	as	“Sno	Edge”,	and	this	

label	can	be	considered	synonomous	for	the	purposes	of	this	manual.

	
Copyright	2022	Alorium	Technology,	LLC	

	 6	

2 Programming Sno Edge

2.1 Microcontroller Programming

The	embedded	microcontroller	on	Sno	Edge	is	easily	programmable	with	the	Aruino	IDE.		Refer	to	

the	Appendix		in	Section	10	of	this	document	for	Arduino	IDE	installation	instructions	if	you	don’t	

already	have	it	installed	on	your	development	machine.	

	

Other	programming	tools	such	as	Atmel	Studio,	PlatformIO/VSCode,	and	others	may	also	work	for	

programming	Sno	Edge.		However,	Arduino	is	the	only	officially	supported	programming	

environment	for	Sno	Edge.	

2.1.1 USB Programming

Sno	Edge	is	designed	to	be	programmed	via	a	USB	connection.			

	

There	is	an	on-board	FTDI	USB-to-Serial	translator	chip	that	converts	USB	signals	from	the	edge	

connector	pins	to	serial	UART	commands	used	for	programming	the	microcontroller.	

	

Note:		There	is	NO	USB	connector	directly	on	Sno	Edge.		The	physical	USB	connection	will	be	made	

on	the	carrier	board	that	is	being	used	with	Sno	Edge.	

	

For	example,	this	image	shows	the	USB	connector	on	Alorium’s	Sno	Edge	test	breakout	board:	

	

	
Figure	2:	USB	Connections	

	

	

2.1.2 FTDI Programming

Sno	Edge	also	has	a	6-pin	FTDI	header	at	the	top	of	Sno	Edge	that	is	used	for	initial	

microcontroller	programming	and	test	during	the	manufacturing	process.					

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 7	

	
Figure	3:	FTDI	Vias	

	

The	FTDI	interface	can	be	used	for	general	serial	programming	of	microcontroller,	as	well;	

however,	it	does	require	using	A	USB-to-FTDI	adapter	of	some	kind.		One	of	our	favorites	is	the	

SparkFun	Beefy	3	Basic	FTDI	Breakout.	

	

2.2 FPGA Programming

The	FPGA	on	Sno	Edge	comes	pre-programmed	with	an	image	that	includes	the	microcontroller	as	

well	as	a	pre-configured	set	of	Xcelerator	Blocks	developed	by	Alorium	Technology.	

	

Alternate	images	can	be	uploaded	directly	through	the	Arduino	IDE	or	accessed	via	our	GitHub	

repo	and	flashed	to	the	FPGA	using	a	command-line	program	as	described	below.	

	

2.2.1 Updating the FPGA Image

Sno	Edge	ships	with	a	standard	FPGA	image	that	includes	the	8-bit	microcontroller	and	a	small	set	

of	built-in	Xcelerator	Blocks.			

	

This	image	can	be	updated	with	other	images	provided	by	Alorium	Technology	by	using	the	“Burn	

Bootloader”	command	in	the	Arduino	or	by	running	a	standalone	command-line	program.	

	

Video	Demonstration	Examples	

	

NOTE:	

The	following	videos	were	originally	created	for	our	XLR8	board	as	demonstrations	for	how	to	

upload	new	FPGA	images	from	the	Arduino	IDE	or	with	our	command	line	program.		The	process	

for	Sno	Edge	50	can	be	accomplished	by	selecting	Sno	Edge	50	as	the	board,	instead	of	XLR8.	

	

Demonstration	videos	using	Sno	Edge	will	be	available	soon	on	our	YouTube	channel,	and	this	

manual	will	be	updated	to	reflect	the	new	tutorials.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 8	

2.2.1.1 Flashing A New FPGA Image via Arduino IDE

	
Figure	4:	Arduino	IDE	Video	

	

2.2.1.2 Flashing A New FPGA Image Using the Command-Line

	
Figure	5:	Command	Line	Video	

	

2.2.2 Restoring Factory FPGA Image

The	FPGA	on	Sno	Edge	can	hold	two	different	FPGA	images.	One	of	those,	the	User	Image,	can	be	

reconfigured	with	new	images	to	take	advantage	of	increased	functionality	as	new	features	are	

	
Copyright	2022	Alorium	Technology,	LLC	

	 9	

introduced	and	released.		The	other	image,	the	Factory	Image,	is	never	changed,	and	is	typically	

unused	unless	the	primary	image	1	becomes	corrupted.		

	

If	necessary,	a	“factory	reset”	of	Sno	Edge	can	be	performed	by	bridging	the	two	sides	of	the	split	

CFG0	pad	while	applying	power	to	the	board.	It	only	takes	a	momentary	grounding	to	cause	this	to	

happen.		See	Figure	6	for	the	location	of	the	CFG0	pad.	

	

After	power-up,	the	Factory	Image	will	be	loaded.		However,	any	loss	of	power	to	the	board	will	

result	in	the	corrupted	image		being	reloaded.	Therefore,	the	user	will	want	to	flash	a	known-good	

image	into	the	User	Image	before	proceeding.	

2.2.2.1 Locating CFG0

	

	
Figure	6:	CFG0	Location	

	

	

2.2.3 Creating Custom FPGA Images with OpenXLR8

As	with	all	of	our	products,	the	FPGA	can	be	programmed	with	your	own	custom	FPGA	image	by	

using	our	OpenXLR8	FPGA	process.		OpenXLR8	is	the	methodology	that	allows	users	of	all	our	

XLR8	products	to	develop	their	own	custom		Xcelerator	Blocks	and	integrate	them	into	the	FPGA.	

	

You	can	learn	more	about	how	to	use	OpenXLR8	here:			

	

Introduction	to	OpenXLR8	<https://aloriumtech.com/openxlr8/>		

	

2.2.4 Bare-Metal FPGA Programming

For	advanced	FPGA	users,	Sno	Edge	does	have	a	JTAG	header	that	can	be	used	for	creating	bare-

metal	FPGA	designs	and	directly	flashing	a	new	image	to	the	FPGA.		

	

Use	of	the	JTAG	interface	will	require	that	user	has	the	appropriate	JTAG	programming	hardware	

such	as	the	JTAG	Blaster	programmer	from	Intel.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 10	

	
Figure	7:	JTAG	Vias	

		

IMPORTANT	NOTE!!	

	

If	the	JTAG	interface	is	used	to	load	the	MAX10	FPGA	with	a	custom	image,	it	is	possible	to	erase	

the	production	Sno	Edge	functionality,	deleting	the	factory	production	image	and	the	integrated	8-

bit	microcontroller	subsystem.	In	this	scenario,	loading	images	through	the	Arduino	IDE	would	no	

longer	be	possible.	

		

The	Sno	Edge	FPGA	has	been	designed	to	be	modified	and	extended	by	using	Alorium’s	OpenXLR8	

Methodology.		This	flow	provides	a	path	to	create	custom	XBs	in	the	FPGA	fabric	that	can	easily	

interface	to	the	on-chip	microcontroller	and	preserve	full	factory	functionality.	

		

Learn	More	about	OpenXLR8	here:		https://www.aloriumtech.com/openxlr8	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 11	

3 General Technical Specifications

3.1 3.3V I/O

Sno	Edge	is	a	3.3V	device,	and	users	are	cautioned	to	only	connect	to	other	3.3V	devices.		

	

The	Sno	Edge	does	not	come	equipped	with	pull-up	resistors	so	the	user	is	required	to	add	them	

physically	as	needed,	except	for	the	dedicated	SDA	and	SCL	pins	which	have	1K	ohm	pull-ups.	.		

3.2 ADC

Sno	Edge	supports	16	ADC	inputs	via	two	eight	input	ADC	modules.	The	ADCSRB	register	now	

supports	the	MUX5	bit	(bit	5)	which	is	used	to	select	which	ADC	input	is	read.		

	

The	exact	mapping	of	the	ADC	inputs	is	show	in	Figure	8.	

	

ADC	Input	 ADCSRB[5]	

MUX5	

ADMUX[2:0]	

MUX[2:0]	

FPGA	Input	 Edge	

Connector	

Arduino	Label	

0	 0	 0	 ADC1[1]	 26	 A0	

1	 0	 1	 ADC1[2]	 24	 A1	

2	 0	 2	 ADC1[3]	 31	 A2	

3	 0	 3	 ADC1[4]	 29	 A3	

4	 0	 4	 ADC1[5]	 25	 A4	

5	 0	 5	 ADC1[6]	 23	 A5	

6	 0	 6	 ADC1[7]	 19	 A6	

7	 0	 7	 ADC1[8]	 17	 A7	

8	 1	 0	 ADC2[1]	 16	 A8	

9	 1	 1	 ADC2[2]	 13	 A9	

10	 1	 2	 ADC2[3]	 20	 A10	

11	 1	 3	 ADC2[4]	 22	 A11	

12	 1	 4	 ADC2[5]	 7	 A12	

13	 1	 5	 ADC2[6]	 5	 A13	

14	 1	 6	 ADC2[7]	 11	 A14	

15	 1	 7	 ADC2[8]	 14	 A15	
Figure	8:	Dual	ADC	Input	Mapping	

	

An	Arduino	variant	has	been	defined	for	the	Sno	Edge	so	the	user	does	not	need	to	be	concerned	

with	the	mapping	of	ADC	inputs	to	ADCSRB/ADMUX	register	fields.	The	user	can	simply	reference	

the	Arduino	Label	in	their	sketch.	For	example:	analogRead(A12),	to	read	the	ADC	input	on	

Edge	Connector	pin	7.		

	

Sno	Edge	is	only	able	to	measure	against	an	internal	3.3V	reference.	The	ADC	inputs	themselves	

are	limited	to	a	max	input	voltage	of	2.5	volts.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 12	

The	temperature	sensor	are	not	implemented	(ADMUX=1000).		

Using	the	ADC	to	read	the	bandgap	(ADMUX=1110)	does	not	actually	do	a	measurement	but	

returns	a	calculated	value	equivalent	to	1.1/Aref.		

	

Using	the	ADC	to	read	ground	(ADMUX=1111)	does	not	actually	do	a	measurement	and	instead	

returns	a	fixed	value	of	0.	

3.3 Analog Compare

Sno	Edge	does	not	support	the	Analog	Compare	function	that	is	found	in	the	ATmega328p.	The	

ACME	bit	and	analog	compare	triggering	(ADTS=001)	of	the	ADCSRB	(0x7B)	register,	the	ACSR	

(0x30)	register,	and	the	DIDR1	(0x7F)	register	are	not	implemented.		

	

If	an	analog	compare	function	is	desired,	using	the	OpenXLR8	platform,	a	user	could	implement	an	

analog	compare	function	that	is	very	similar	to	the	ATMega328's,	although	the	pin	voltage	would	

need	to	be	limited	to	3.3V.	

3.4 Power

There	are	3	ways	to	power	the	Sno	Edge	module:	

• Connect	a	3.3V	FTDI	breakout	board	or	cable	to	the	FTDI	interface	

• Supply	5V	via	pin	2	of	the	SODIMM	connector	(this	is	intended	to	come	from	a	USB	

connector	on	the	system	board).		This	will	use	an	on-board	3.3V	regulator	to	supply	power	

to	the	FPGA	and	other	components	on	the	board,	and	is	limited	to	500mA	

• Supply	3.3V	via	the	dedicated	power	pins	on	the	SODIMM	connector	(this	is	the	most	

robust	way	to	power	the	Sno	Edge	board)	

3.5 Pin 13 LED

As	with	many	other	Arduino-compatible	boards,	digital	pin	13	is	used	for	both	the	on-board	LED	

as	well	as	the	SPI	clock,	SCK.	On	Sno	Edge,	SCK	and	the	LED	are	driven	from	separate	FPGA	pins	

which	are	logically	equivalent	but	physically	separate,	in	order	to	avoid	the	extra	loading	the	LED	

can	cause.	

	
Copyright	2022	Alorium	Technology,	LLC	

	 13	

4 Xcelerator Blocks (XBs)

Xcelerator	Blocks	are	custom	hardware	blocks	implemented	within	the	Sno	Edge	FPGA	chip	and	

are	tightly	integrated	with	the	ATmega328	clone	that	is	also	implemented	inside	the	FPGA	chip.		

	

These	custom	hardware	blocks	can	implement	almost	any	functionality	you	can	dream	up,	and	can	

then	be	loaded	into	the	Sno	Edge	with	the	Arduino	toolset.	Since	an	FPGA	can	be	reprogrammed	

many	times,	a	single	Sno	Edge	can	be	reconfigured	to	incorporate	different	XBs	depending	on	the	

project	requirements.	

	

Sno	Edge	ships	with	three	sample	XBs:	Floating	Point,	Quadrature,	and	Servo	Control.	The	

software	libraries	are	delivered	as	.zip	files	from	our	github	site	

(https://github.com/AloriumTechnology).	They	are	installed	like	other	Arduino	.zip	libraries	as	

described	here	(https://www.arduino.cc/en/Guide/Libraries).		

	

4.1 Floating Point

As	an	8	bit	microcontroller,	the	ATmega328p	struggles	with	floating	point	math.	The	Floating	

Point	XB	provides	functions	that	will	give	you	floating	point	results	in	about	¼	the	time	that	it	

takes	software	floating	point	to	get	the	same	answer.	Available	functions	include	add,	subtract,	

multiply,	and	divide.		

4.2 Servo Control

It	is	common	for	the	standard	Servo.h	library	to	cause	jitter	in	the	servo	control	due	to	timing	

uncertainties	caused	by	interrupt	processing.	The	Servo	Control	XB	completely	eliminates	this	

jitter	by	putting	a	dedicated	hardware	timer	behind	Port	K	pins.	The	XLR8Servo.h	library	is	a	

drop-in	replacement	for	the	standard	Servo.h	library,	so	taking	advantage	of	this	XB	is	as	simple	as	

changing	one	line	in	your	sketch	from	#include <Servo.h> to		
#include <XLR8Servo.h>

The	servos	are	connected	to	the	physical	pins	starting	with	Port	KA,	pin	0,	going	through	port	KD,	

pin	7,	with	each	servo	connected	to	the	one	sequential	pins	in	order.	So,	servo	0	is	tied	to	KA[0],	

sevo	1	is	tied	to	KA[1],	servo	31	is	tied	to	KD[7],	etc.	You		can	instantiate	an	array	like	this:	Servo
servo[32];	
	

4.3 Quadrature

The	Sno	Edge	builtin	Quadrature	XB	provides		up	to	16	Quadrature	encoders.	These	are	connected	

to	Port	J,	which	is	the	concatination	of	ports	{JD,JC,JB,JA}.	

	

As	quadrature	objects	are	instantiated,	they	are	created	sequentially.	I.e.,	the	first	quadrature	

object	will	control	quadrature	0	in	the	fabric,	the	second	will	control	quadrature	1,	etc.,	through	

quadrature	16.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 14	

The	quadratures	are	connected	to	the	physical	pins	starting	with	Port	JA,	pin	0,	going	through	port	

JD,	pin	7,	with	each	quadrature	connected	to	the	two	sequential	pins	in	order.	So,	quadrature	0	is	

tied	to	JA[1:0],	quadrature	15	is	tied	to	JD[7:6],	etc.	The	simplest	way	to	manage	multiple	

quadratures	in	an	application	is	to	create	an	array	of	quadrature	objects.	You		can	instantiate	an	

array	like	this:	

	

Quadrature	quadratures[16];	

	

The	XLR8Quadrature	library	is	included	with	the	line	

	

#include	<XLR8Quadrature.h>	

	

Once	you	instantiate	an	quadrature	object,	the	quadrature	is	enabled	by	default.	The	software	

library	then	allows	you	to	disable	&	re-enable	the	quadratures,	and	read	the	count	and	rate	values	

of	the	quadrature.	By	default,	the	quadrature	samples	every	200ms	to	get	the	rate,	but	can	be	set	

to	sample	every	20ms	instead.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 15	

5 Pin Mapping

With	a	handful	of	exceptions,	the	pins	are	arranged	into	18	ports,	each	of	which	can	be	up	to	8	bits	

wide.	They	can	be	organized	into	four	groups:	

	

1. First	there	are	the	standard	Arduino	Uno	ports:	D,	B,	and	C.	Note	that	ports	B	and	C	are	

only	6	bits	wide.	In	the	case	of	Port	C	this	creates	a	gap	in	the	“D”	pin	numbering	since	

there	is	no	C[7:6]	which	would	correspond	to	D	pins	[21:20].	

2. Then	there	are	the	standard	Sno	extended	ports	A,	E,	and	G.	All	boards	in	the	Sno	family	

implement	these	three	extended	ports.	

3. Following	the	Sno	extended	ports	are	the	J	and	K	ports.	There	are	four	J	ports	(JA,	JB,	JC,	

and	JD)	and	four	K	ports	(KA,	KB,	KC,	and	KD).	These	can	be	treated	in	software	either	as	

32	bit	ports	or	as	four	8	bit	ports.	The	Sno	Edge	variant	provides	support	for	both.	

4. Finally,	the	PL	port	provide	four	pins	that	can	also	be	used	as	two	differential	PLL	inputs		

	

Aside	from	the	port	pins,	there	are	various	non-port	pins	that	provide	specific	functionality:	

		

• Clock	

• Reset	

• ADC	

• ADC	Reference	

• I2C	

• Serial	

	

In	the	following	figures	a	Color	Key	is	used	to	indicate	how	the	various	types	of	pins	are	organized:		

	

	
Figure	9:	Pin	Map	Color	Key	

In	Figure	10	the	ports	are	enumerated	and	the	bit	ranges	are	specified.	Of	special	interest	is	the	

numbering	gap	in	the	D	Nums	column	at	[21:20],	as	discussed	above.	The	XB	Busses,	which	are	

used	in	the	OpenXLR8	module,	do	not	have	a	gap	at	[21:20]	and	so	are	offset	by	2	from	the	D	Nums	

for	pins	above	19.	

	

The	Int	Bit	column	indicates	which	bit	in	the	SPCIFR	register	will	get	set	when	there	is	a	pin	

change	interrupt	for	that	port.				

Color Key

Ground

Power

Special Functions

ADC1

ADC2

Port D - Non-Differential

Port B - Non-Differential

GPIO Port - Differential

GPIO Port - Differential

PLL Port - Differential

	
Copyright	2022	Alorium	Technology,	LLC	

	 16	

	

The	GPIO	column	indicates	whether	the	pins	in	that	port	are	differential	pairs	or	not.	A	“D”	

indicates	a	differential	pair	port.	By	default	all	pins	are	normal	non-differential	GPIO	pins	in	these	

ports,	but	it	is	possible	in	the	OpenXLR8	methodology	to	change	the	configuration	of	those	pins	to	

be	differential.	

	

	
Figure	10:	Port	Numbering	

	

In	Figure	10,	the	mapping	between	the	FPGA	pins	and	the	Sno	Edge	connector	pins	is	shown.	The	

table	is	split	two	halves	representing	the	odd	side	and	the	even	side	of	the	connector.	For	each	

connector	pin,	the	following	information	is	shown:	

	

Column	 Description	

Edge	Connector	Pin	 The	pin	number	of	the	edge	connector	

FPGA	D	Pin	 The	“D”	pins	are	numbered	from	0	up	to	109.	These	numbers	can	be	

used	directly	to	specify	pins	in	functions	such	as	digitalWrite()	

FPGA	Port	Bit	 The	pins	are	all	arranged	into	ports	of	up	to	8	bits.	The	Port	Bit	

indicats	which	pin	in	a	port		

FPGA	Pad	 The	FPGA	Pad	specifies	which	physical	pin	on	the	FPGA	the	

corresponding	signal	is	using.	

FPGA	Pin	Type	 The	Pin	Type	indicates	any	important	type	desciptor	for	FPGA	Pad,	

such	as		Diff	pair,	GND,	or	VCC	

Special	Function	 Special	Function	uiindicates	any	special	note	about	that	pin	
Figure	11:	Edge	Connector	Table	Information	

In	Figure	12,	each	differential	pair	is	indicated	by	a	box	around	the	two	pins.	For	instance,	edge	

pins	30	and	32	are	a	differential	pair.	

Port Name Port Bits D Nums XB Busses Int Bit GPIO

D 8 7: 0 [7:0] S

B 6 13: 8 [13:8] S

C 6 19: 14 [19:14] D

A 6 27: 22 [25:20] 0 D

E 6 33: 28 [31:26] 1 D

G 8 41: 34 [39:32] 2 D

JA 8 49: 42 [47:40] 3 D

JB 8 57: 50 [55:48] 3 D

JC 8 65: 58 [63:56] 3 D

JD 8 73: 66 [71:64] 3 D

KA 8 81: 74 [79:72] 4 D

KB 8 89: 82 [87:80] 4 D

KC 8 97: 90 [95:88] 4 D

KD 8 105: 98 [103:96] 4 D

PL 4 109: 106 [107:104] 5 D

	
Copyright	2022	Alorium	Technology,	LLC	

	 17	

	
Figure	12:	Pin	Mapping	

	
Copyright	2022	Alorium	Technology,	LLC	

	 18	

6 Extended Interrupts

The	Sno	Edge	extends	the	AVR	architecture	to	implement	additional	interrupts	for	extended	GPIO	

pin	change	interrupts	and	for	user-defined	interrupts	in	the	OpenXLR8	methodology.		

	

6.1 GPIO Port Pin Change Detection

The	Sno	Edge	extended	GPIO	ports	support	pin	change	detection	in	a	way	similar	to	the	standard	

ports.	Port	pins	are	monitored	and	if	a	pin	change	is	detected,	an	interrupt	can	be	generated.	

	

Each	GPIO	port	has	a	PCMSK	that	can	be	used	to	enable	pin	change	interrupts	on	a	per-pin	basis.	

The	Sno	Edge	extended	GPIO	PCMSKs	are:	

	

• PCMSKA	

• PCMSKE	

• PCMSKG	

• PCMSKPL	

• PCMSKJA	

• PCMSKJB	

• PCMSKJC	

• PCMSKJD	

• PCMSKJA	

• PCMSKJB	

• PCMSKJC	

• PCMSKJD	

	

The	PCMSK	register	contains	a	bit	for	each	pin	in	the	port.	A	PCMSK	bit	value	of	zero	will	prevent	a	

pin	change	on	the	corresponding	port	pin	from	causing	an	interrupt	signal	to	be	generated.	The	

PCMSK	does	not	support	bit	set	or	bit	clear	operations,	so	a	read-modify-write	operation	should	

be	used	to	change	individual	bits.	

6.2 Pin Change Interrupts

Pin	Change	notifications	from	the	ports	are	collected	and	controlled	by	three	registers:	

	

Register	 Description	

SPCIFR	 Sno	Pin	Change	Interrupt	Flag	Register	

SPCICR	 Sno	Pin	Change	Interrupt	Control	Register	

SPCIMSK	 Sno	Pin	Change	Interrupt	Mask	Register	
Figure	13:	Sno	Pin	Change	Interrupt	Registers	

The	bits	in	the	above	registers	correspond	to	the	ports	in	the	following	way.	Notice	that	the	four	Jx	

ports	and	the	four	Kx	ports	are	combined	into	single	bits:	

	

Bit	 Interrupt	Source	

0	 Port	A	

1	 Port	E	

2	 Port	G	

3	 Port	J										(JA	or	JB	or	JC	or	JD)	

4	 Port	K								(KA	or	KB	or	KC	or	KD)	

5	 Port	PL	
Figure	14:	Sno	Pin	Change	Interrupt	Fields	

	
Copyright	2022	Alorium	Technology,	LLC	

	 19	

A	bit	in	the	Flag	register	(SPCIFR)	will	be	set	when	a	pin	change	notification	is	received	if	the	

corresponding	bit	in	the	Mask	register	(SPCIMSK)	is	set.		

	

A	bit	in	the		Flag	register	is	cleared	via	software	by	writing	a	one	to	the	bit.	

	

A	bit	set	in	the	Flag	register	will	cause	an	IRQ	to	be	generated	if	the	corresponding	bit	in	the	

Control	register	(SPCICR)	is	set.	

	

Neither	the	Mask	register	nor	the	Control	register	support	bit	operations,	so	a	read-modify-write	

operation	should	be	used	to	change	individual	bits.	

	

6.3 OpenXLR8 Interrupts

Interrupts	from	XBs	instantiated	within	the	OpenXLR8	Module	are	collected	and	saved	in	the	

`xlr8_pcint`	module.	

	

Register	 Description	

OX8IFR	 Sno	Pin	Change	Interrupt	Flag	Register	

OX8ICR	 Sno	Pin	Change	Interrupt	Control	Register	

OX8MSK	 Sno	Pin	Change	Interrupt	Mask	Register	
Figure	15:	OpenXLR8	Interrupt	Registers	

The	bits	in	the	above	registers	are	defined	by	the	OpenXLR8	developer	and	are	specific	to	that	

particular	implementation.	

	

A	bit	in	the	Flag	register	(OX8IFR)	will	be	set	when	a	pin	change	notification	is	received	if	the	

corresponding	bit	in	the	Mask	register	(OX8MSK)	is	set.		

	

A	bit	in	the		Flag	register	is	cleared	via	software	by	writing	a	one	to	the	bit.	

	

A	bit	set	in	the	Flag	register	will	cause	an	IRQ	to	be	generated	if	the	corresponding	bit	in	the	

Control	register	(OX8ICR)	is	set.	

	

Neither	the	Mask	register	nor	the	Control	register	support	bit	operations,	so	a	read-modify-write	

operation	should	be	used	to	change	individual	bits.	

	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 20	

6.4 Extended IRQs

The	IRQs	from	the	GPIO	pin	change	interrupts	and	the	OpenXLR8	interrupts	are	

managed	by	the	following	registers	

	

Register	 Description	

XIFR	 eXtended	IRQ	Flag	Register	

XICR	 eXtended	IRQ	Control	Register	

XMSK	 eXtended	IRQ		Mask	Register	

XACK	 eXtended	IRQ	Acknowledge		Register	
Figure	16:	Extended	IRQ	Registers	

The	bits	in	the	above	registers	correspond	to	the	interrupt	sources	in	the	following	way:	

	

Bit	 Interrupt	Source	 IRQ	Num	 AVR	Name	 XLR8/Sno	Alias	

0	 SPCIFR	 23	 EE_READY_vect	 XGPIO_vect,			BIXB_vect	
1	 OX8IFR	 24	 ANALOG_COMP_vect	 OPENXLR8_vect	

7:2	 Unused	 	 	 	
Figure	17:	Extended	IRQ	Fields		

			

The	AVR	supports	a	specified	set	of	IRQ	vectors,	specified	by	integers.	The	Sno	Edge,	and	XLR8	

boards	in	general,	reassign	two	of	the	defined	IRQ	vectors	to	support	the	new	extended	GPIO	pin	

change	interrupts	and	the	OpenXLR8	interrupts.	Those	reassigned	vectors	are	indicated	above.	

	

A	bit	in	the	Flag	register	(XIFR)	will	be	set	when	an	IRQ	is	received	if	the	corresponding	bit	in	the	

Mask	register	(XMSK)	is	set	and	the	corresponding	bit	in	the	Acknowledge	(XACK)	register	is	not	

set.		

	

A	bit	in	the		Flag	register	is	cleared	either	by	the	corresponding	bit	in	the	Acknowledge	register	

being	set,	or	by	the	source	of	the	IRQ	being	cleared.	

	

A	bit	set	in	the	Flag	register	will	cause	an	IRQ	to	be	generated	if	the	corresponding	bit	in	the	

Control	register	(XICR)	is	set.	

	

When	an	IRQ	is	generated	to	the	AVR	core	it	will	respond	by	setting	a	bit	in	the	acknowledge	

register.	This	will	block	the	corresponding	bit	in	the	Flag	register	from	being	set,	preventing	

further	IRQs	of	that	type	from	being	sent	to	the	AVR	core.	The	bit	in	the		Acknowledge	must	be	

cleared	by	software	once	the	interrupt	has	been	serviced	and	control	is	returned	to	the	original	

program.	Bits	in	the	Acknowledge	register	can	be	cleared	by	writing	a	one	to	the	corresponding	bit	

location	in	the	Acknowledge	register	

	

Neither	the	Mask	register	nor	the	Control	register	support	bit	operations,	so	a	read-modify-write	

operation	should	be	used	to	change	individual	bits.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 21	

6.5 Setup and Usage

The	default	values	for	the	interrupt	related	registers	are	all	zeros.	This	disables	all	interrupts.	In	

order	to	enable	interrupts	for	a	pin	they	must	be	configured:	

	

1. Set	the	mask	bits	for	the	pin	and	port	that	is	to	be	enabled	by	writing	PCMSKxx	for	that	

port.	

2. Set	the	SPCICR	enable	bit	that	corresponds	to	the	port	that	is	being	enabled.	

3. Set	the	SPCIMSK	mask	bit	that	corresponds	to	the	port	that	is	being	enabled.	

4. Set	the	XICR	enable	bit	that	corresponds	to	the	port	that	is	being	enabled.	

5. Set	the	XMSK	mask	bit	that	corresponds	to	the	port	that	is	being	enabled.	

	

When	an	IRQ	is	received	by	the	AVR	core	it	will	trigger	an	Interrupt	Service	Routine	(ISR)	

associated	with	the	interrupt	to	be	called.		It	will	also	set	the	bit	in	XACK	corresponding	to	the	

interrupt	vector.	

	

After	the	interrupt	has	been	handled	by	the	ISR	the	interrupts	should	be	re-enabled	by:	

	

1. Clear	the	SPCIFR	bit	or	OX8IFR	bit	by	writing	a	one	to	it	

2. Clear	the	XACK	bit	by	writing	a	one	to	it	

	

Interrupt	Service	Routine	functions	can	be	specified	using	the	XLR8	IRQ	aliases	specified	in	Figure	

17.	Simply	specify	the	desired	XLR8	IRQ	alias	name	in	the	ISR()	function	call.	

	

ISR(XGPIO_vect) { // Extended GPIO Port Pin Change Interrupts
 // Enter ISR code
}

	
ISR(OPENXLR8_vect) { // OpenXLR8 Interrupts
 // Enter ISR code
}

	

		

6.6 Example Interrupt Sketch

The	following	example	sketch		sets	up	Port	G,	Pin	0,	for	a	pin	change	interrupt.	To	test	this	in	

hardware	simply	start	the	sketch	and	then	simply	ground	Port	G,	Pin	0	momentarily.	This	should	

cause	a	pin	change	interrupt	and	the	sketch	will	print	" loop(): Interrupt detected... "

each	time	the	pin	changes.	

	

//
//===
// Copyright(c) Alorium Technology Inc., 2022
// ALL RIGHTS RESERVED
//===
//
// File name: : snoedge_int_example.ino
// Author : support@aloriumtech.com

	
Copyright	2022	Alorium	Technology,	LLC	

	 22	

// Description : Demonstrate pin change interrupts on Sno Edge
// extended GPIO port
//
//

// Variables to use in the ISR routine. Use volatile to make sure
// value is maintained across ISR calls
volatile bool isr_found = false;

void setup() {

 Serial.begin(115200);
 Serial.println("========== Start snoedge_int_example.ino ==========");
 Serial.println(" Enter setup(): Configure pin change interrupt on Port G, Pin 0");

 // Enable Port G, pin 0 for pin change interrupts
 PCMSKG |= (1 << MSKG0);

 // Enable the SPCIFR bit for Port G to be enabled for pin change interrupts
 SPCIMSK |= (1 << SPCIPG); // Set the bit for Port G in the mask reg
 SPCICR |= (1 << SPCIPG); // Set the bit for Port G in the control reg

 // Enable the XIFR bit for pin change interrupts
 XMSK |= (1 << XIGPIO); // Set the bit for Pin Change IRQ in the mask reg
 XICR |= (1 << XIGPIO); // Set the bit for Pin Change IRQ in the control reg
 Serial.println(" Enter loop(): Check for interrupt and reset after response");
}

void loop() {
 // Check for ISR
 if (isr_found) {
 Serial.print(" loop(): Interrupt detected... ");

 // Code for interrupt response goes here
 // ...
 // After Interrupt response, clear interrupt flag and re-enable
 // IRQ by clearing the XACK bit
 SPCIFR = (1 << SPCIPG); // Write one to flag bit for Port G
 XACK = (1 << XIGPIO); // Write one to clear the ACK

 // Reset the isr_found flag so that we break out of the loop
 isr_found = false;
 Serial.println(" Interrupt handled");
 }

 // Wait a bit before checking the isr_found flag again
 delay(1);
}

ISR(XGPIO_vect) { // Extended GPIO Port Pin Change Interrupts
 // This ISR will be involked when a pin change interrupt
 // is triggered. Keep the interrupt service routine short
 // by just setting a flag and returning. The flag will be
 // checked in the main loop() function.
 isr_found = true;
}

	

Sample	output:		

	

	
========== Start snoedge_int_example.ino ==========

	
Copyright	2022	Alorium	Technology,	LLC	

	 23	

 Enter setup(): Configure pin change interrupt on Port G, Pin 0	
 Enter loop(): Check for interrupt and reset after response
 loop(): Interrupt detected... Interrupt handled"
 loop(): Interrupt detected... Interrupt handled"

	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 24	

7 Register Summary

The	registers	used	in	Sno	Edge	are	listed	below.	The	table	is	color	coded	to	indicate	whether	the	

registers	are	as	defined	for	the	ATmega328p,	or	whether	they	have	been	changed	in	some	way.	

The	color	key	can	be	found	at	the	bottom	of	the	table.	

	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xFF) XDINFO XBINFOAD

Error!

Reference

source not

found.

(0xFE) Reserved – – – – – – – –

(0xFD) SVPWH – – – – Servo Pulse Width High Register 7.1.17

(0xFC) SVPWL Servo Pulse Width Low Register 7.1.17

(0xFB) SVCR SVEN SVDIS SVUP SVCHAN 7.1.17

(0xFA) Reserved – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) PID_OP_L Low Byte output 7.1.16

(0xF5) PID_OP_H High Byte output 7.1.16

(0xF4) PID_PV_L Process variable low byte 7.1.16

(0xF3) PID_PV_H Process variable high byte 7.1.16

(0xF2) PID_SP_L Set point low byte 7.1.16

(0xF1) PID_SP_H Set point high byte 7.1.16

(0xF0) PID_KP_L KP coefficient low byte 7.1.16

(0xEF) PID_KP_H KD coefficient high byte 7.1.16

(0xEE) PID_KI_L KI coefficient low byte 7.1.16

(0xED) PID_KI_H KI coefficient high byte 7.1.16

(0xEC) PID_KD_L KD coefficient low byte 7.1.16

(0xEB) PID_KD_H KD coefficient high byte 7.1.16

(0xEA) PIDCR PEDEN PIDDIS PIDUPD PIDCHAN 7.1.16

(0xE9) QERAT3 Upper 8 bits of quadrature rate data 7.1.15

(0xE8) QERAT2 Upper-middle 8 bits of quadrature rate data 7.1.15

(0xE7) QERAT1 Lower-middle 8 bits of quadrature rate data 7.1.15

(0xE6) QERAT0 Lower 8 bits of quadrature rate data 7.1.15

(0xE5) QECNT3 Upper 8 bits of quadrature count data 7.1.15

(0xE4) QECNT2 Upper-middle 8 bits of quadrature count data 7.1.15

(0xE3) QECNT1 Lower-middle 8 bits of quadrature count data 7.1.15

(0xE2) QECNT0 Lower 8 bits of quadrature count data 7.1.15

(0xE1) Reserved – – – – – – – –

(0xE0) QECR QEEN QEDIS QECLR QERATE QECHAN 7.1.15

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – – TWAMR1

(0xDC) Reserved – – – – – – – – TWCR1

(0xDB) Reserved – – – – – – – – TWDR1

(0xDA) Reserved – – – – – – – – TWAR1

(0xD9) Reserved – – – – – – – – TWSR!

(0xD8) Reserved – – – – – – – – TWBR1

(0xD7) Reserved – – – – – – – –

(0xD6) XLR8VERT XLR8 Version Number Flags 7.1.14

(0xD5) XLR8VERH XLR8 Version Number Register High Byte 7.1.14

	
Copyright	2022	Alorium	Technology,	LLC	

	 25	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xD4) XLR8VERL XLR8 Version Number Register Low Byte 7.1.14

(0xD3) Reserved – – – – – – – –

(0xD2) FCFGDAT FPGA Reconfiguration Data Register 7.1.13

(0xD1) FCFGSTS FCFGDN 0 FCFGFM FCFGRDY – – – – 7.1.13

(0xD0) FCFGCTL – FCFGSEC – FCFGCMD FCFGEN 7.1.13

(0xCF) FCFGCID Chip ID register 7.1.13

(0xCE) Reserved – – – – – – – – UDR1

(0xCD) Reserved – – – – – – – – UBBR1H

(0xCC) Reserved – – – – – – – – UBBR1L

(0xCB) Reserved – – – – – – – – UCSR1D

(0xCA) Reserved – – – – – – – – UCSR1C

(0xC9) Reserved – – – – – – – – UCSR1B

(0xC8) Reserved – – – – – – – – UCSR1A

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O Data Register

(0xC5) UBRR0H – – – – USART Baud Rate Register High

(0xC4) UBRR0L USART Baud Rate Register Low

(0xC3) Reserved – – – – – – – – UCSR0D

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0
UCSZ01/

UDORD0

UCSZ00/

UCPHA0 UCPOL0

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 –

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

(0xBB) TWDR 2-wire Serial Interface Data Register

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register

(0xB7) Reserved – – – – – – –

(0xB6) Reserved – – – – – – – ASSR

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B

(0xB3) OCR2A Timer/Counter2 Output Compare Register A

(0xB2) TCNT2 Timer/Counter2 (8-bit)

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20

(0xAF) PCMSKKD PCMSKKD7 PCMSKKD6 PCMSKKD5 PCMSKKD4 PCMSKKD3 PCMSKKD2 PCMSKKD1 PCMSKKD0 7.1.4

(0xAE) PORTKD PORTKD7 PORTKD6 PORTKD5 PORTKD4 PORTKD3 PORTKD2 PORTKD1 PORTKD0 7.1.4

(0xAD) DDRKD DDRKD7 DDRKD6 DDRKD5 DDRKD4 DDRKD3 DDRKD2 DDRKD1 DDRKD0 7.1.4

(0xAC) PINKD PINKD7 PINKD6 PINKD5 PINKD4 PINKD3 PINKD2 PINKD1 PINKD0 7.1.4

(0xAB) PCMSKKC PCMSKKC7 PCMSKKC6 PCMSKKC5 PCMSKKC4 PCMSKKC3 PCMSKKC2 PCMSKKC1 PCMSKKC0 7.1.4

(0xAA) PORTKC PORTKC7 PORTKC6 PORTKC5 PORTKC4 PORTKC3 PORTKC2 PORTKC1 PORTKC0 7.1.4

(0xA9) DDRKC DDRKC7 DDRKC6 DDRKC5 DDRKC4 DDRKC3 DDRKC2 DDRKC1 DDRKC0 7.1.4

(0xA8) PINKC PINKC7 PINKC6 PINKC5 PINKC4 PINKC3 PINKC2 PINKC1 PINKC0 7.1.4

(0xA7) PCMSKKB PCMSKKB7 PCMSKKB6 PCMSKKB5 PCMSKKB4 PCMSKKB3 PCMSKKB2 PCMSKKB1 PCMSKKB0 7.1.4

(0xA6) PORTKB PORTKB7 PORTKB6 PORTKB5 PORTKB4 PORTKB3 PORTKB2 PORTKB1 PORTKB0 7.1.4

(0xA5) DDRKB DDRKB7 DDRKB6 DDRKB5 DDRKB4 DDRKB3 DDRKB2 DDRKB1 DDRKB0 7.1.4

(0xA4) PINKB PINKB7 PINKB6 PINKB5 PINKB4 PINKB3 PINKB2 PINKB1 PINKB0 7.1.4

(0xA3) PCMSKKA PCMSKKA7 PCMSKKA6 PCMSKKA5 PCMSKKA4 PCMSKKA3 PCMSKKA2 PCMSKKA1 PCMSKKA0 7.1.4

(0xA2) PORTKA PORTKA7 PORTKA6 PORTKA5 PORTKA4 PORTKA3 PORTKA2 PORTKA1 PORTKA0 7.1.4

(0xA1) DDRKA DDRKA7 DDRKA6 DDRKA5 DDRKA4 DDRKA3 DDRKA2 DDRKA1 DDRKA0 7.1.4

(0xA0) PINKA PINKA7 PINKA6 PINKA5 PINKA4 PINKA3 PINKA2 PINKA1 PINKA0 7.1.4

	
Copyright	2022	Alorium	Technology,	LLC	

	 26	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0x9F) PCMSKJD PCMSKJD7 PCMSKJD6 PCMSKJD5 PCMSKJD4 PCMSKJD3 PCMSKJD2 PCMSKJD1 PCMSKJD0 7.1.3

(0x9E) PORTJD PORTJD7 PORTJD6 PORTJD5 PORTJD4 PORTJD3 PORTJD2 PORTJD1 PORTJD0 7.1.3

(0x9D) DDRJD DDRJD7 DDRJD6 DDRJD5 DDRJD4 DDRJD3 DDRJD2 DDRJD1 DDRJD0 7.1.3

(0x9C) PINJD PINKJD7 PINKJD6 PINKJD5 PINKJD4 PINKJD3 PINKJD2 PINKJD1 PINKJD0 7.1.3

(0x9B) PCMSKJC PCMSKJC7 PCMSKJC6 PCMSKJC5 PCMSKJC4 PCMSKJC3 PCMSKJC2 PCMSKJC1 PCMSKJC0 7.1.3

(0x9A) PORTJC PORTJC7 PORTJC6 PORTJC5 PORTJC4 PORTJC3 PORTJC2 PORTJC1 PORTJC0 7.1.3

(0x99) DDRJC DDRJC7 DDRJC6 DDRJC5 DDRJC4 DDRJC3 DDRJC2 DDRJC1 DDRJC0 7.1.3

(0x98) PINJC PINKJC7 PINKJC6 PINKJC5 PINKJC4 PINKJC3 PINKJC2 PINKJC1 PINKJC0 7.1.3

(0x97) PCMSKJB PCMSKJB7 PCMSKJB6 PCMSKJB5 PCMSKJB4 PCMSKJB3 PCMSKJB2 PCMSKJB1 PCMSKJB0 7.1.3

(0x96) PORTJB PORTJB7 PORTJB6 PORTJB5 PORTJB4 PORTJB3 PORTJB2 PORTJB1 PORTJB0 7.1.3

(0x95) DDRJB DDRJB7 DDRJB6 DDRJB5 DDRJB4 DDRJB3 DDRJB2 DDRJB1 DDRJB0 7.1.3

(0x94) PINJB PINJB7 PINJB6 PINJB5 PINJB4 PINJB3 PINJB2 PINJB1 PINJB0 7.1.3

(0x93) PCMSKJA PCMSKJA7 PCMSKJA6 PCMSKJA5 PCMSKJA4 PCMSKJA3 PCMSKJA2 PCMSKJA1 PCMSKJA0 7.1.3

(0x92) PORTJA PORTJA7 PORTJA6 PORTJA5 PORTJA4 PORTJA3 PORTJA2 PORTJA1 PORTJA0 7.1.3

(0x91) DDRJA DDRJA7 DDRJA6 DDRJA5 DDRJA4 DDRJA3 DDRJA2 DDRJA1 DDRJA0 7.1.3

(0x90) PINJA PINJA7 PINJA6 PINJA5 PINJA4 PINJA3 PINJA2 PINJA1 PINJA0 7.1.3

(0x8F) PCMSKPL – – – – PCMSKPL3 PCMSKPL2 PCMSKPL1 PCMSKPL0 7.1.5

(0x8E) PORTPL – – – – PORTPL3 PORTPL2 PORTPL1 PORTPL0 7.1.5

(0x8D) DDRPL – – – – DDRPL3 DDRPL2 DDRPL1 DDRPL0 7.1.5

(0x8C) PINPL – – – – PINPL3 PINPL2 PINPL1 PINPL0 7.1.5

(0x8B) OCR1BH Timer/Counter1 – Output Compare Register B High Byte

(0x8A) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte

(0x89) OCR1AH Timer/Counter1 – Output Compare Register A High Byte

(0x88) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte

(0x87) ICR1H Timer/Counter1 – Input Capture Register High Byte

(0x86) ICR1L Timer/Counter1 – Input Capture Register Low Byte

(0x85) TCNT1H Timer/Counter1 – Counter Register High Byte

(0x84) TCNT1L Timer/Counter1 – Counter Register Low Byte

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – –

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10

(0x7F) Reserved – – – – – – – – DIDR1

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D

(0x7D) XLR8ADCR AD12EN – – – – – – – 7.1.11

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0

(0x7B) ADCSRB – – MUX5 – – ADTS2 ADTS1 ADTS0 ACME

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

(0x79) ADCH ADC Data Register High byte

(0x78) ADCL ADC Data Register Low byte

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) SPCIMSK – – SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA 7.1.10

(0x72) SPCIFR – – SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA 7.1.10

(0x71) SPICR – – SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA 7.1.10

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0

(0x6A) OX8MSK OX8I7 OX8I6 OX8I5 OX8I4 OX8I3 OX8I2 OX8I1 OX8I0 7.1.9

	
Copyright	2022	Alorium	Technology,	LLC	

	 27	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) OX8IFR OX8I7 OX8I6 OX8I5 OX8I4 OX8I3 OX8I2 OX8I1 OX8I0 7.1.9

(0x66) OX8ICR OX8I7 OX8I6 OX8I5 OX8I4 OX8I3 OX8I2 OX8I1 OX8I0 7.1.9

(0x65) XACK - - - - - - XIOX8 XIGPIO 7.1.8

(0x64) PRR – – – PRINTOSC – – – –

(0x63) XMSK - - - - - - XIOX8 XIGPIO 7.1.8

(0x62) XIFR - - - - - - XIOX8 XIGPIO 7.1.8

(0x61) XICR - - - - - - XIOX8 XIGPIO 7.1.8

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0

0x3F(0x5F) SREG I T H S V N Z C

0x3E(0x5E) SPH – – – – SP11 SP10 SP9 SP8

0x3D(0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

0x3C(0x5C) Reserved – – – – – – – –

0x3B(0x5B) XFR3 XLR8 Function (floating point) 32 bit Result High Byte 7.1.6

0x3A(0x5A) XFR2 XLR8 Function (floating point) 32 bit Result Byte 7.1.6

0x39(0x59) XFR1 XLR8 Function (floating point) 32 bit Result Byte 7.1.6

0x38(0x58) XFR0 XLR8 Function (floating point) 32 bit Result Low Byte 7.1.6

0x37(0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN

0x36(0x56) Reserved – – – – – – – –

0x35(0x55) Reserved – – – – – – – –

0x34(0x54) MCUSR – – – – WDRF – EXTRF PORF

0x33(0x53) PCMSKG PCMSKG7 PCMSKG6 PCMSKG5 PCMSKG4 PCMSKG3 PCMSKG2 PCMSKG1 PCMSKG0 7.1.2

0x32(0x52) PCMSKE PCMSKE7 PCMSKE6 PCMSKE5 PCMSKE4 PCMSKE3 PCMSKE2 PCMSKE1 PCMSKE0 7.1.2

0x31(0x51) PCMSKA PCMSKA7 PCMSKA6 PCMSKA5 PCMSKA4 PCMSKA3 PCMSKA2 PCMSKA1 PCMSKA0 7.1.2

0x30(0x50) Reserved – – – – – – – – ACSR

0x2F(0x4F) Reserved – – – – – – – – ACSRB

0x2E(0x4E) SPDR SPI Data Register

0x2D(0x4D) SPSR SPIF WCOL – – – – – SPI2X

0x2C(0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

0x2B(0x4B) GPIOR2 General Purpose I/O Register 2

0x2A(0x4A) GPIOR1 General Purpose I/O Register 1

0x29(0x49) CLKSPD Clock speed programming used by XLR8 bootloader 7.1.7

0x28(0x48) OCR0B Timer/Counter0 Output Compare Register B

0x27(0x47) OCR0A Timer/Counter0 Output Compare Register A

0x26(0x46) TCNT0 Timer/Counter0 (8-bit)

0x25(0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24(0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23(0x43) GTCCR TSM – – – – – PSRASY PSRSYNC

0x22(0x42) EEARH EEPROM Address Register High Byte

0x21(0x41) EEARL EEPROM Address Register Low Byte

0x20(0x40) EEDR EEPROM Data Register

0x1F(0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE

0x1E(0x3E) GPIOR0 General Purpose I/O Register 0

0x1D(0x3D) EIMSK – – – – – – INT1 INT0

0x1C(0x3C) EIFR – – – – – – INTF1 INTF0

0x1B(0x3B) PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A(0x3A) Reserved – – – – – – – –

0x19(0x39) Reserved – – – – – – – – TIFR4

0x18(0x38) Reserved – – – – – – – – TIFR3

0x17(0x37) TIFR2 – – – – – OCF2B OCF2A TOV2

0x16(0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1

0x15(0x35) TIFR0 – – – – – OCF0B OCF0A TOV0

0x14(0x34) PORTG PORTG7 PORTG6 PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 7.1.2

	
Copyright	2022	Alorium	Technology,	LLC	

	 28	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

0x13(0x33) DDRG DDG7 DDG6 DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 7.1.2

0x12(0x32) PING PING7 PING6 PING5 PING4 PING3 PING2 PING1 PING0 7.1.2

0x11(0x31) XFSTAT XFDONE XFERR – – – – – – 7.1.6

0x10(0x30) XFCTRL – XFSTART – – – XFCMD 7.1.6

0x0F(0x2F) Reserved – – – – – – – –

0x0E(0x2E) PORTE – – PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 7.1.2

0x0D(0x2D) DDRE – – DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 7.1.2

0x0C(0x2C) PINE – – PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 7.1.2

0x0B(0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

0x0A(0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

0x09(0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

0x08(0x28) PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

0x07(0x27) DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

0x06(0x26) PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

0x05(0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

0x04(0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

0x03(0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

0x02(0x22) PORTA – – PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 7.1.2

0x01(0x21) DDRA – – DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 7.1.2

0x0(0x20) PINA – – PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 7.1.2

 = unchanged from ATmega328p

 = Reserved registers that are best not used for XLR8 blocks because ATmega328PB uses them

 = ATmega328p registers not implemented in XLR8

 = Some differences in XLR8 compared to ATmega328p

 = new registers for XLR8 Blocks

 = Built-in XB registers. Not reserved in OpenXLR8 and can be used for OpenXLR8 registers

 = Sno Edge specific registers

Figure	18:	Sno	Edge	Register	Summary	

	

7.1 Sno Edge and XB Register Descriptions

7.1.1 Register Access Definitions

	

In	Figure	19:	Register	Access	Definitions,	the	abbreviations	used	in	the	following	CSR	definitions	

are	defined.	

	

	

	

Abbreviation	 Meaning	

RW	 Read	and	Write	Access	

R	 Read	Only	

W	 Write	Only	

RW1C	 Read	and	Write,	Write	1	to	Clear	

RW1CS	 Read	and	Write,	Write	1	to	Clear,	Sticky	

RWS	 Read	and	Write,	Sticky	

	
Copyright	2022	Alorium	Technology,	LLC	

	 29	

Figure	19:	Register	Access	Definitions	

Sticky	bits	are	not	initialized	or	modified	by	hot	reset	or	function	level	reset.	

7.1.2 Ports A, E and G

	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

0x31(0x51) PCMSKA PCMSKA7 PCMSKA6 PCMSKA5 PCMSKA4 PCMSKA3 PCMSKA2 PCMSKA1 PCMSKA0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A 0 0 0 0 0 0

0x02(0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A 0 0 0 0 0 0

0x01(0x21) DDRA DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A 0 0 0 0 0 0

0x0(0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	
0x32(0x52) PCMSKE PCMSKE7 PCMSKE6 PCMSKE5 PCMSKE4 PCMSKE3 PCMSKE2 PCMSKE1 PCMSKE0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A 0 0 0 0 0 0

0x0E(0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A 0 0 0 0 0 0

0x0D(0x2D) DDRE DDRE7 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A 0 0 0 0 0 0

0x0C(0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0

Read/Write N/A N/A RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	

	
0x33(0x53) PCMSKG PCMSKG7 PCMSKG6 PCMSKG5 PCMSKG4 PCMSKG3 PCMSKG PCMSKG PCMSKG0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x14(0x34) PORTG PORTG7 PORTG6 PORTG5 PORTG4 PORTG3 PORTG PORTG PORTG0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x13(0x33) DDRG DDRG7 DDRG6 DDRG5 DDRG4 DDRG3 DDRG DDRG DDRG0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x12(0x32) PING PING7 PING6 PING5 PING4 PING3 PING PING PING0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	

7.1.3 Ports JA, JB, JC, and JD

	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

0x93 PCMSKJA PCMSKJA7 PCMSKJA6 PCMSKJA5 PCMSKJA4 PCMSKJA3 PCMSKJA2 PCMSKJA1 PCMSKJA0

Read/Write RW RW RW RW RW RW RW RW

	
Copyright	2022	Alorium	Technology,	LLC	

	 30	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

Initial Value 0 0 0 0 0 0 0 0

0x92 PORTJA PORTJA7 PORTJA6 PORTJA5 PORTJA4 PORTJA3 PORTJA2 PORTJA1 PORTJA0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x81 DDRJA DDRJA7 DDRJA6 DDRJA5 DDRJA4 DDRJA3 DDRJA2 DDRJA1 DDRJA0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x90 PINJA PINJA7 PINJA6 PINJA5 PINJA4 PINJA3 PINJA2 PINJA1 PINJA0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	
0x97 PCMSKJB PCMSKJB7 PCMSKJB6 PCMSKJB5 PCMSKJB4 PCMSKJB3 PCMSKJB2 PCMSKJB1 PCMSKJB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x96 PORTJB PORTJB7 PORTJB6 PORTJB5 PORTJB4 PORTJB3 PORTJB2 PORTJB1 PORTJB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x95 DDRJB DDRJB7 DDRJB6 DDRJB5 DDRJB4 DDRJB3 DDRJB2 DDRJB1 DDRJB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x94 PINJB PINJB7 PINJB6 PINJB5 PINJB4 PINJB3 PINJB2 PINJB1 PINJB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	
0x9B PCMSKJC PCMSKJC7 PCMSKJC6 PCMSKJC5 PCMSKJC4 PCMSKJC3 PCMSKJC2 PCMSKJC1 PCMSKJC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9A PORTJC PORTJC7 PORTJC6 PORTJC5 PORTJC4 PORTJC3 PORTJC2 PORTJC1 PORTJC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x99 DDRJC DDRJC7 DDRJC6 DDRJC5 DDRJC4 DDRJC3 DDRJC2 DDRJC1 DDRJC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x98 PINJC PINJC7 PINJC6 PINJC5 PINJC4 PINJC3 PINJC2 PINJC1 PINJC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	
0x9F PCMSKJD PCMSKJD7 PCMSKJD PCMSKJD PCMSKJD4 PCMSKJD3 PCMSKJD2 PCMSKJD1 PCMSKJD0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9E PORTJD PORTJD7 PORTJD PORTJD PORTJD4 PORTJD3 PORTJD2 PORTJD1 PORTJD0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9D DDRJD DDRJD7 DDRJD DDRJD DDRJD4 DDRJD3 DDRJD2 DDRJD1 DDRJD0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9C PINJD PINJD7 PINJD PINJD PINJD4 PINJD3 PINJD2 PINJD1 PINJD0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 31	

7.1.4 Ports KA, KB, KC, and KD

	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

0x93 PCMSKKA PCMSKKA7 PCMSKKA6 PCMSKKA5 PCMSKKA4 PCMSKKA3 PCMSKKA2 PCMSKKA1 PCMSKKA0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x92 PORTKA PORTKA7 PORTKA6 PORTKA5 PORTKA4 PORTKA3 PORTKA2 PORTKA1 PORTKA0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x81 DDRKA DDRKA7 DDRKA6 DDRKA5 DDRKA4 DDRKA3 DDRKA2 DDRKA1 DDRKA0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x90 PINKA PINKA7 PINKA6 PINKA5 PINKA4 PINKA3 PINKA2 PINKA1 PINKA0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	
0x97 PCMSKKB PCMSKKB7 PCMSKKB6 PCMSKKB5 PCMSKKB4 PCMSKKB3 PCMSKKB2 PCMSKKB1 PCMSKKB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x96 PORTKB PORTKB7 PORTKB6 PORTKB5 PORTKB4 PORTKB3 PORTKB2 PORTKB1 PORTKB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x95 DDRKB DDRKB7 DDRKB6 DDRKB5 DDRKB4 DDRKB3 DDRKB2 DDRKB1 DDRKB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x94 PINKB PINKB7 PINKB6 PINKB5 PINKB4 PINKB3 PINKB2 PINKB1 PINKB0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	
0x9B PCMSKKC PCMSKKC7 PCMSKKC6 PCMSKKC5 PCMSKKC4 PCMSKKC3 PCMSKKC2 PCMSKKC1 PCMSKKC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9A PORTKC PORTKC7 PORTKC6 PORTKC5 PORTKC4 PORTKC3 PORTKC2 PORTKC1 PORTKC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x99 DDRKC DDRKC7 DDRKC6 DDRKC5 DDRKC4 DDRKC3 DDRKC2 DDRKC1 DDRKC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x98 PINKC PINKC7 PINKC6 PINKC5 PINKC4 PINKC3 PINKC2 PINKC1 PINKC0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	
0x9F PCMSKKD PCMSKKD7 PCMSKKD6 PCMSKKD5 PCMSKKD4 PCMSKKD3 PCMSKKD2 PCMSKKD1 PCMSKKD0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9E PORTKD PORTKD7 PORTKD6 PORTKD5 PORTKD4 PORTKD3 PORTKD2 PORTKD1 PORTKD0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9D DDRKD DDRKD7 DDRKD6 DDRKD5 DDRKD4 DDRKD3 DDRKD2 DDRKD1 DDRKD0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x9C PINKD PINKD7 PINKD6 PINKD5 PINKD4 PINKD3 PINKD2 PINKD1 PINKD0

Read/Write RW RW RW RW RW RW RW RW

	
Copyright	2022	Alorium	Technology,	LLC	

	 32	

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	

7.1.5 Port PL

	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

0x8F PCMSKPL PCMSKPL7 PCMSKPL6 PCMSKPL5 PCMSKPL4 PCMSKPL3 PCMSKPL2 PCMSKPL1 PCMSKPL0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x8E PORTPL PORTPL7 PORTPL6 PORTPL5 PORTPL4 PORTPL3 PORTPL2 PORTPL1 PORTPL0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x8D DDRPL DDRPL7 DDRPL6 DDRPL5 DDRPL4 DDRPL3 DDRPL2 DDRPL1 DDRPL0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

0x8C PINPL PINPL7 PINPL6 PINPL5 PINPL4 PINPL3 PINPL2 PINPL1 PINPL0

Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

	

7.1.6 XFCTRL, XFSTAT, XFR0, XFR1, XFR2, XFR3– Floating Point XB Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

0x3B(0x5B) XFR3 XLR8 Function (floating point) 32 bit Result High Byte

0x3A(0x5A) XFR2 XLR8 Function (floating point) 32 bit Result Byte

0x39(0x59) XFR1 XLR8 Function (floating point) 32 bit Result Byte

0x38(0x58) XFR0 XLR8 Function (floating point) 32 bit Result Low Byte

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0x11(0x31) XFSTAT XFDONE XFERR – – – – – –

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0x10(0x30) XFCTRL – XFSTART – – – XFCMD

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

A	floating-point	calculation	is	started	by	writing	the	XFSTART	bit	in	the	XFCTRL	register,	along	

with	the	desired	operation	in	the	XFCMD	field	(1=add,	2=multiply,	3=divide).	Operands	come	

directly	from	the	AVR’s	general-purpose	register	file	(using	our	library	ensures	they	will	be	in	the	

right	place).	When	the	operation	is	done,	the	result	appears	in	the	XFR0/1/2/3	registers	and	the	

XFDONE	status	bit	is	set.	If	an	unsupported	XFCMD	is	used,	the	XFERR	bit	is	also	sets,	allowing	

software	to	revert	to	using	a	software-based	calculation.	The	XFSTAT	register	auto-clears	when	it	

is	read,	or	when	the	next	operation	is	started	via	writing	the	XFSTART	bit.	

The	easiest	way	to	use	these	registers	is	with	the	XLR8Float	library	

(https://github.com/AloriumTechnology/XLR8Float).	

	

7.1.7 CLKSPD – Clock Speed Register

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

0x29(0x49) CLKSPD Clock speed programming used by XLR8 bootloader

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

0x29(0x49) CLKSPD – – – – – – – OSCOUT

	
Copyright	2022	Alorium	Technology,	LLC	

	 33	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

Read/Write W W W W W W W W

Initial Value N/A N/A N/A N/A N/A N/A N/A 0

(0x64) PRR - – – – PRINTOSC – – –

Read/Write R R R R RW R R R

Initial Value 0 0 0 0 0 0 0 0

The	clock	speed	register	holds	a	constant	value	that	represents	the	value	to	be	programmed	into	

the	UBRR0L	register	to	run	the	UART	at	a	baud	rate	of	115200.	It	is	used	by	the	modified	

bootloader	to	allow	it	to	run	correctly	regardless	of	whether	Sno	Edge	is	running	16MHZ,	32MHz,	

or	some	other	speed.	

Sno	Edge	includes	an	on-chip	oscillator	that	currently	isn’t	being	used,	but	a	divide-by-1024	

version	of	it	can	be	output	to	digital	pin	8	by	writing	bit	0	of	the	CLKSPD	register	high.	This	is	a	

write-only	operation,	it	does	not	change	the	value	that	is	read	from	the	CLKSPD	register.	The	

internal	oscillator	can	be	turned	off	entirely	by	setting	the	PRINTOSC	bit	of	the	PRR	register.	The	

other	bits	of	this	register	are	currently	unused.	

	

7.1.8 XICR, XIFR, XMSK, XACK – Extended IRQ

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0x65) XACK - XIOX8 XIGPIO

Read/Write R R R R R R RW1C RW1C

Initial Value 0 0 0 0 0 0 0 0

(0x63) XMSK - XIOX8 XIGPIO

Read/Write R R R R R R RW RW

Initial Value 0 0 0 0 0 0 0 0

(0x62) XIFR - XIOX8 XIGPIO

Read/Write R R R R R R RW1C RW1C

Initial Value 0 0 0 0 0 0 0 0

(0x61) XICR - XIOX8 XIGPIO

Read/Write R R R R R R RW RW

Initial Value 0 0 0 0 0 0 0 0

A	bit	in	the	Flag	register	(XIFR)	will	be	set	when	an	IRQ	is	received	if	the	corresponding	bit	in	the	

Mask	register	(XMSK)	is	set	and	the	corresponding	bit	in	the	Acknowledge	(XACK)	register	is	not	

set.		

	

A	bit	in	the		Flag	register	is	cleared	either	by	the	corresponding	bit	in	the	Acknowledge	register	

being	set,	or	by	the	source	of	the	IRQ	being	cleared.	

	

A	bit	set	in	the	Flag	register	will	cause	an	IRQ	to	be	generated	if	the	corresponding	bit	in	the	

Control	register	(XICR)	is	set.	

	

When	an	IRQ	is	generated	to	the	AVR	core	it	will	respond	by	setting	a	bit	in	the	acknowledge	

register.	This	will	block	the	corresponding	bit	in	the	Flag	register	from	being	set,	preventing	

further	IRQs	of	that	type	from	being	sent	to	the	AVR	core.	The	bit	in	the		Acknowledge	must	be	

cleared	by	software	once	the	interrupt	has	been	serviced	and	control	is	returned	to	the	original	

program.	Bits	in	the	Acknowledge	register	can	be	cleared	by	writing	a	one	to	the	corresponding	bit	

location	in	the	Acknowledge	register	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 34	

7.1.9 OX8ICR, OX8IFR, OX8MSK – OpenXLR8 Interrupts

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0x6A) OX8MSK OX8I7 OX8I6 OX8I5 OX8I4 OX8I3 OX8I2 OX8I1 OX8I0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0x67) OX8IFR OX8I7 OX8I6 OX8I5 OX8I4 OX8I3 OX8I2 OX8I1 OX8I0

Read/Write RW1C RW1C RW1C RW1C RW1C RW1C RW1C RW1C

Initial Value 0 0 0 0 0 0 0 0

(0x66) OX8ICR OX8I7 OX8I6 OX8I5 OX8I4 OX8I3 OX8I2 OX8I1 OX8I0

Read/Write RW RW RW RW RW RW RW1C RW1C

Initial Value 0 0 0 0 0 0 0 0

	

A	bit	in	the	Flag	register	(OX8IFR)	will	be	set	when	a	pin	change	notification	is	received	if	the	

corresponding	bit	in	the	Mask	register	(OX8MSK)	is	set.		

	

A	bit	in	the		Flag	register	is	cleared	via	software	by	writing	a	one	to	the	bit.	

	

A	bit	set	in	the	Flag	register	will	cause	an	IRQ	to	be	generated	if	the	corresponding	bit	in	the	

Control	register	(OX8ICR)	is	set.	

	

7.1.10 SPICR, SPIFR, SPIMSK – Sno Pin Change Interrupts

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0x73) SPIMSK - - SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA

Read/Write R R RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0x72) SPIFR - - SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA

Read/Write R R RW1C RW1C RW1C RW1C RW1C RW1C

Initial Value 0 0 0 0 0 0 0 0

(0x71) SPICR - - SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA

Read/Write R R RW RW RW RW RW1C RW1C

Initial Value 0 0 0 0 0 0 0 0

	

The	bits	in	the	above	registers	correspond	to	the	ports	in	the	following	way.	Notice	that	in	the	

figure	above	and	in	Figure	14:	Sno	Pin	Change	Interrupt	Fields,	the	four	Jx	ports	and	the	four	Kx	

ports	are	combined	into	single	bits.	

	

A	bit	in	the	Flag	register	(SPCIFR)	will	be	set	when	a	pin	change	notification	is	received	if	the	

corresponding	bit	in	the	Mask	register	(SPCIMSK)	is	set.		

	

A	bit	in	the		Flag	register	is	cleared	via	software	by	writing	a	one	to	the	bit.	

	

A	bit	set	in	the	Flag	register	will	cause	an	IRQ	to	be	generated	if	the	corresponding	bit	in	the	

Control	register	(SPCICR)	is	set.	

	

Neither	the	Mask	register	nor	the	Control	register	support	bit	operations,	so	a	read-modify-write	

operation	should	be	used	to	change	individual	bits.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 35	

7.1.11 XLR8ADCR – Sno Edge ADC Control Register

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0x7D) XLR8ADCR AD12EN – – – – – – –

Read/Write RW R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The	AD12EN	bit	enables	the	ADC	to	run	in	12	bit	mode.	The	results	reported	in	the	ADCL	and	

ADCH	registers	when	running	with	ADLAR=0	can	range	from	0-4095,	and	when	running	with	

ADLAR=1,	bits	5:4	of	ADCL	will	include	the	least	significant	bits	of	the	12	bit	ADC	result.	When	

running	in	10	bit	mode,	the	result	is	truncated	(not	rounded)	from	the	12	bit	result.	

	

7.1.12 FCFGCID – Chip ID Register

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xCF) FCFGCID Chip ID register

Read/Write R R R R R R R R write-reset

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

The	chip	ID	register	is	a	read-only	register	that	provides	chip	ID	information.	Multiple	bytes	of	

chip	ID	information	are	available	and	each	read	presents	the	next	byte.	Writing	the	register	(with	

any	value)	resets	the	read	pointer	back	to	the	beginning	(and	does	not	store	the	write	data	in	any	

way).	

	

7.1.13 FCFGDAT, FCFGSTS, FCFGCTL – FPGA Reconfiguration Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xD2) FCFGDAT FPGA Reconfiguration Data Register

Read/Write W W W W W W W W

Initial Value 0 0 0 0 0 0 0 0

(0xD1) FCFGSTS FCFGDN FCFGOK FCFGFAIL FCFGRDY – – – –

Read/Write RW1C RW1C RW1C R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xD0) FCFGCTL – FCFGSEC – FCFGCMD FCFGEN

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

These	registers	are	used	during	reconfiguration	of	the	FPGA	and	are	not	intended	for	customer	

use.	FCFGEN	auto-clears	after	a	reconfiguration	is	complete.	The	data	register	is	a	write-only	

register.	

	

7.1.14 XLR8VERL, XLR8VERH, XLR8VERT – Version Number Registers

	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xD6) XLR8VERT XLR8 Version Number Flags

(0xD5) XLR8VERH XLR8 Version Number Register High Byte

(0xD4) XLR8VERL XLR8 Version Number Register Low Byte

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

The	version	number	register	provides	the	FPGA	design	revision,	while	the	version	flags	register	

indicates	if	the	build	had	a	mixed	or	modified	version.	The	registers	have	a	constant	value	for	a	

	
Copyright	2022	Alorium	Technology,	LLC	

	 36	

particular	design,	but	the	value	changes	for	each	version.	The	easiest	way	to	use	these	registers	is	

with	the	XLR8Info	library	(https://github.com/AloriumTechnology/XLR8Info).	

	

7.1.15 XLR8Quad – XLR8 Quadrature

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xE9) QERAT3 Upper 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE8)
Q

ERAT2
Upper-middle 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE7) QERAT1 Lower-middle 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE6) QERAT0 Lower 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE5) QECNT3 Upper 8 bits of quadrature count data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE4) QECNT2 Upper-middle 8 bits of quadrature count data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE3) QECNT1 Lower-middle 8 bits of quadrature count data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE2) QECNT0 Lower 8 bits of quadrature count data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xE0) QECR QEEN QEDIS QECLR QERATE QECHAN

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

To	start	a	channel	typically	the	channel	is	reset	first,	then	the	control	register	with	the	desired	

channel	indicated	and	both	the	enable	and	update	bits	set.	
	

7.1.16 XLR8PID – XLR8 PID

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xF6) PID_OP_L Low Byte output

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xF5) PID_OP_H High Byte output

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xF4) PID_PV_L Process variable low byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xF3) PID_PV_H Process variable high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xF2) PID_SP_L Set point low byte

	
Copyright	2022	Alorium	Technology,	LLC	

	 37	

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xF1) PID_SP_H Set point high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xF0) PID_KP_L KP coefficient low byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xEF) PID_KP_H KP coefficient high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xEE) PID_KI_L KI coefficient low byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xED) PID_KI_H KI coefficient high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xEC) PID_KD_L KD coefficient low byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xEB) PID_KD_H KD coefficient high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xEA) PIDCR PEDEN PIDDIS PIDUPD PIDCHAN

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

To	start	a	channel	typically	the	channel	is	reset	first,	then	the	control	register	with	the	desired	

channel	indicated	and	both	the	enable	and	update	bits	set.		

	

7.1.17 SVPWH, SVPWL, SVCR – Servo XB Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xFD) SVPWH – – – – Servo Pulse Width High Register

Read/Write R R R R RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xFC) SVPWL Servo Pulse Width Low Register

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

(0xFB) SVCR SVEN SVDIS SVUP SVCHAN

Read/Write RW W W RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The	servo	data	registers	SVPWH	and	SVPWL	represent	the	desired	servo	pulse	width	in	

microseconds.	The	value	is	programmed	to	the	channel	selected	by	SVCHAN	when	the	SVCR	

register	is	written	with	the	update	(SVUP)	bit	set.	The	channel	can	be	enabled	to	begin	at	the	same	

time	by	also	setting	the	enable	(SVEN)	bit.	A	channel	is	disabled	by	writing	SVCR	with	the	desired	

channel	in	the	SVCHAN	field,	the	SVEN	bit	clear	and	the	SVDIS	set.	The	pulse	width	of	a	channel	

can	be	changed	without	changing	its	enabled/disabled	status	by	leaving	the	SVEN	and	SVDIS	bits	

clear	when	writing	the	SVCR	register.	SVDIS	and	SVUP	are	strobes	and	will	always	read	zero.	

Reading	SVEN	will	give	the	current	enabled/disabled	status	of	the	channel	read	in	the	SVCHAN	

field.	The	value	of	SVCHAN	corresponds	to	the	Arduino	pin	to	use	(i.e.	0=RX,	1=TX,	2=D2,	…,	

	
Copyright	2022	Alorium	Technology,	LLC	

	 38	

14=A0,	etc.).	Multiple	pins	can	be	driven	simultaneously,	each	with	a	different	pulse	width…with	a	

small	limitation.	The	32	possible	values	of	SVCHAN	directly	alias	to	the	16	available	timers	(e.g.	

channels	1	and	17	could	both	be	enabled,	but	they	would	always	have	the	same	pulse	width	of	

whichever	one	was	programmed	most	recently).	The	easiest	way	to	use	these	registers	is	with	the	

XLR8Servo	library	(https://github.com/AloriumTechnology/XLR8Servo).	

	

7.2 Using the Sno Edge Registers in Software

The	Sno	Edge	registers	can	be	accessed	from	Arduino	sketches	in	much	the	same	way	as	standard	

Arduino	registers.	The	Sno	Edge	has	been	defined	as	a	“variant”	in	the	Arduino	IDE		so	its	registers	

are	available	to	the	Arduino	compiler.	Simply	use	the	register	names	and	register	field	names	as	

defined	in	Figure	18.	No	#include	statements	required	to	pull	in	the	register	definitions.	Just	select	

the	Sno	Edge	board	in	the	Arduino	IDE	under	Tools->Board.	

	

The	register	names	are	defined	using	the	_SFR_MEM8(),	such	that	using	the	name	causes	the	

register	to	be	read	or	written,	depending	on	the	context.		

	

The	field	names	are	defined	as	a	number	between	0	and	7,	to	indicate	which	bit	in	the	register	the	

field	starts	at.	For	multiple	bit	fields	this	will	indicate	the	low	order	bit	of	the	field.	This	makes	it	

simple	to	use	left	shift	operators	to	specify	bit	positions.	

	

The	values	of	registers	can	be	read	by	specifying	their	names	on	the	right	side	of	an	equal	sign.		

	

	
// Read value of the XICR register into the “var1” variable
	var1 = XICR;

	

	

To	write	registers	use	the	name	of	the	register	on	the	left	side	of	the	equal	sign.	

	

	
// Write the value of the “var2” variable to the XICR register
XICR = var2;

	

	

To	use	a	field	name	to	specify	a	bit	location,	use	the	left	shift	operator.	

	

	
// Shift a 1 to the bit position of the XIOX8 field in the XICR register
// and write it to the XICR register. All other bits in the register will
// be set to 0.
XICR = (1 << XIOX8);

 	

	

To	preserve	the	other	bits	in	the	register	from	changes	while	setting/clearing	a	specific	bit,	use	the	

compound	assignment	operators	|=	or	&=.	

	
Copyright	2022	Alorium	Technology,	LLC	

	 39	

	

	
// Set the bit at the XIOX8 location in the XICR register while preserving
// the state of all other bits.
XICR |= (1 << XIOX8);

	

	

	
// Clear the bit at the XIOX8 location in the XICR register while preserving
// the state of all other bits.
XICR &= ~(1 << XIOX8);

	

	

To	set	multiple	bits	in	a	register,	multiple	left	shift	operations	can	be	bit-wise	OR’d	together.	

	

	
// Set both the XIOX8 and the XIGPIO bits in the XICR register.
XICR = (1 << XIOX8) | (1 << XIGPIO);

	

	

Multibit	fields	can	be	left	shifted	the	same	as	single	bit	fields	since	the	field	name	is	set	to	the	

lowest	order	bit	in	the	field.	Care	must	be	taken	that	field	values	are	within	the	max	value	of	the	

field	or	run	the	risk	of	fields	overlapping	during	the	shift	operations.	

	

	
// Shift the values for the fields of the FCFGCTL register to the correct
// offsets in the register and write to the FCFGCTL register. Though these
// are multi-bit fields, the field definitions are set to shift the values
// to the correct location.
FCFGCTL = (var3 << FCFGSEC) | (var4 << FCFGCMD) | (var5 << FCFGGEN);

	

	

Another	way	to	make	accessing	the	fields	of	the	registers	is	to	create	struct	types	to	define	them	

and	then	access	the	subfields.	Using	the	FCFGCTL	register	as	an	example:	

	

	
// Define a struct type for the FCFGCTL register
typedef struct {
 unsigned int fcfgen : 1; // [0] - Enable
 unsigned int fcfgcmd : 2; // [2:1] - Command
 unsigned int rsrv3 : 1; // [3] - unused
 unsigned int fcfgsec : 3; // [6:4] = Sec
 unsigned int rsrv7 : 1; // [7] - unused
} fcfgctl_t;

fcfgctl_t fcfgctl; // Create fcfgctl as a struct of type fcfgctl_t

// Read register fields
fcfgctl = FCFGCTL; // Read the FCFGCTL reg into the struct
i = fcfgctl.fcfgsec; // set i to the value of the fcfgsec field

	
Copyright	2022	Alorium	Technology,	LLC	

	 40	

// Write register fields
fcfgctl.fcfgcmd = 0x2; // Set the value of a field
FCFGCTL = fcfgctl; // Write the struct to the register

	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 41	

8 Schematics and Other Resources

	

Schematics,	Pin	Map,	and	Product	Brief	Schematics,	product	brief,	and	a	standalone	pin	map	

document	are	available	on	the	resources	page	for	Sno	Edge	here:	

	

• Product	Brief	

• Pin	Map	

• Schematics	

	
Copyright	2022	Alorium	Technology,	LLC	

	 42	

9 Credits

Some	code	is	used	and	modified	from	the	AVR	core	written	by	Ruslan	Lepetenok	

(lepetenokr@yahoo.com)	that	is	available	at	http://opencores.org/project,avr_core.		

	

Ruslan’s	AVR	core	does	not	contain	copyright	or	license	notices,	but	we	certainly	wish	to	

recognize	its	contribution	to	this	project.			

	

The	I2C	module	builds	upon	the	I2C	core	written	by	Richard	Herveille	(richard@asics.ws)	that	is	

available	at	http://opencores.org/project,i2c.		The	I2C	core	was	released	under	BSD	license	with	

the	following	copyright	statement:	
Copyright	(C)	2001	Richard	Herveille																								

																			richard@asics.ws																									
																																																												

This	source	file	may	be	used	and	distributed	without								

restriction	provided	that	this	copyright	statement	is	not			

removed	from	the	file	and	that	any	derivative	work	contains	

the	original	copyright	notice	and	the	associated	disclaimer	

																																																												

THIS	SOFTWARE	IS	PROVIDED	``AS	IS''	AND	WITHOUT	ANY					
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED			

TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS			

FOR	A	PARTICULAR	PURPOSE.	IN	NO	EVENT	SHALL	THE	AUTHOR						

OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,									

INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES				

(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE			

GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR								
BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF		

LIABILITY,	WHETHER	IN		CONTRACT,	STRICT	LIABILITY,	OR	TORT		

(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT		

OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE									

POSSIBILITY	OF	SUCH	DAMAGE.																																	

	
	 	

	
Copyright	2022	Alorium	Technology,	LLC	

	 43	

10 Appendix A – Arduino IDE Installation and Running Test Program

10.1 Installing Arduino IDE

The	first	step	in	setting	up	your	computer	to	connect	to	and	program	the	Sno	Edge	is	to	install	the	

standard	Arduino	IDE	software.	Follow	the	instructions	below	to	install	the	Arduino	IDE	on	your	

computer.	

10.1.1 Microsoft Windows

1. Click	here	for	the	official	Arduino	IDE	installation	guide	for	Microsoft	Windows.	

2. Follow	the	instructions	for	installing	the	IDE.	

3. Once	the	IDE	is	installed,	return	here	to	finish	installation	of	the	Alorium	Technology	board	

specific	packages	and	libraries.	

	

10.1.2 Mac OS X

1. Click	here	for	the	official	Arduino	IDE	installation	guide	for	Mac	OS	X.	

2. Follow	the	instructions	for	installing	the	IDE.	

3. Once	the	IDE	is	installed,	return	here	to	finish	installation	of	the	Alorium	Technology	board	

specific	packages	and	libraries.	

10.1.3 Linux

If	you	are	running	Linux,	the	setup	steps	are	a	bit	different.	Therefore,	we	have	created	one	

tutorial	that	incorporates	all	of	the	steps	Linux	requires	to	setup	Arduino	IDE.		

	

This	document	was	originally	created		when	we	released	our	XLR8	board,	and	it	still	carries	the	

XLR8	name	in	the	title.		However,	the	steps	remain	the	same	for	using	Arduino	with	Sno	Edge,	as	

well.		

	

Click	the	link	below	to	see	our	Linux	Setup	Tutorial:	

	

• Linux	Setup	Tutorial	

10.2 FTDI Driver Installation

Sno	Edge	can	be	programmed	with	the	Arduino	IDE	across	an	FTDI	interface	located	at	the	top	

edge	of	the	board.	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 44	

A	USB-to-FTDI	adapter	of	some	kind	will	be	required	to	connect	your	computer	to	Snō	for	

programming	with	Arduino.		There	are	a	variety	of	cables	and	solutions	available	on	the	

market.		One	of	our	favorites	is	the	SparkFun	Beefy	3	Basic	FTDI	Breakout.	

	

In	order	to	communicate	with	the	FTDI	breakout	board,	drivers	for	the	FTDI	chip	may	need	to	be	

installed.	A	great	set	of	instructions	for	installing	the	driver	can	be	found	here:	

• SparkFun	FTDI	Installation	Guide	

The	SparkFun	guide	will	tell	you	if	you	need	to	install	the	driver.	You	may	need	to	reboot	your	

computer	after	installation.	

	

A	note	about	FTDI	drivers	and	Mac	OS:	

	

If	you	are	running	macOS,	you	may	run	into	issues	with	the	usb	serial	port	disappearing	and	not	

reconnecting.			There	are	known	issues	between	the	factory	installed	macOS	FTDI	drivers	and	

drivers	available	for	installation	from	FTDI	directly.		And,	unfortunately,	the	jury	still	appears	to	

be	out	on	which	version	of	macOS	will	work	consistently	without	ever	seeing	the	lost	serial	port	

problem.	

	

The	following	video	on	our	YouTube	channel	provides	the	steps	for	a	potential	fix	to	this	Mac	

related	issue	that	has	worked	for	several	of	us	at	Alorium	Technology	since	the	summer	of	2017.	

It’s	no	iron-clad	guarantee,	but	it	seems	to	have	solved	the	problem	so	far.	

	

How	to	Fix	FTDI	Driver	Issue	on	Mac	and	macOS	

10.3 Installing Sno Edge Board Package and Libraries

To	take	advantage	of	the	XBs	that	come	with	Sno	Edge,	you’ll	need	to	take	the	following	additional	

steps.	

	

Note:		Sno	Edge	is	part	of	our	XLR8	family	of	boards,	and	they	are	all	supported	with	the	

top-level	XLR8	boards	package	and	XLR8	Arduino	libraries.		So,	you	will	be	downloading	

and	installing	files	that	have	the	XLR8	name.	

10.3.1 Add Sno Edge Board Support

	

Open	the	Arduino	IDE	and	follow	these	steps	to	add	board	support	in	the	Arduino	IDE.	

	

1. For	Windows	and	Linux:	Go	to	File	>	Preferences,	in	your	Arduino	IDE	menu	bar.	

2. For	Mac:	Go	to	Arduino	>	Preferences,	in	your	Arduino	IDE	menu	bar.	

3. Locate	the	‘Additional	Boards	Manager	URLs’	input	field.	

4. Copy	and	paste	this	URL	into	the	“Additional	Boards	Manager	URLs”	input	field	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 45	

https://raw.githubusercontent.com/AloriumTechnology/Arduino_Boards/master/packag

e_aloriumtech_index.json	

	

	
	

Note:	Multiple	URLs	can	be	added	to	this	field	by	separating	each	URL	with	a	comma.	

	
Copyright	2022	Alorium	Technology,	LLC	

	 46	

Install Alorium’s XLR8 board package

1. Go to Tools > Board > Boards Manager.

2. Type “alorium,” in the search field and you will see an option to install board files for Alorium

XLR8 AVR compatible boards.

3. Select the “Alorium XLR8 Family (8-bit AVR Compat.) Boards” package and then click

“Install.”

	
	
Select the Sno Edge Board

1. Go to Tools > Board. You should see a new section titled “Alorium XLR8 Family (8-bit AVR

Compat.) Boards” now exists.

2. Select “Sno Edge 50” board.

	

	

	
Copyright	2022	Alorium	Technology,	LLC	

	 47	

After selecting Sno Edge 50, you will find a new menu item at Tools > FPGA Image, where you will see

the list of released Sno Edge images that are packaged with the Arduino IDE.	

	

	

10.3.2 Sno Edge Libraries

All	libraries	required	to	use	Sno	Edge	are	packaged	with	the	Alorium	Technology	XLR8	Arduino	

board	package.	

	

As	new	functionality	or	Xcelerator	Blocks	(XBs)	are	added	for	the	FPGA,	new	libraries	may	be	

released.		Detailed	instructions	for	installing	required	libraries	will	be	added	at	that	time.	

10.4 Running an Example Sketch/Program

To	be	sure	that	everything	is	installed	and	working	correctly,	we	have	provided	an	example	

Arduino	sketch	called	“GetXLR8Version”	that	you	can	load	from	the	Arduino	IDE	Examples	menu.	

	

1. Be	sure	that	your	Sno	Edge	board	is	connected	to	your	computer	either	with	the	FTDI	

interface	or	to	a	USB	cable	on	your	Sno	Edge	carrier	board.	

2. Go	to	Tools	>	Port	and	verify	that	Arduino	IDE	is	connected	to	the	Sno	Edge	serial	port.		

Note	that	your	will	likely	have	a	different	identifier	than	what’s	shown	below.	

	

	
	

	 	

	
Copyright	2022	Alorium	Technology,	LLC	

	 48	

3. Go	to	File	>	Examples	>	XLR8Info	and	select	GetXLR8Version	

	

	
	

4. In	the	GetXLR8Version	sketch	window,	click	on	the	Upload	button	

	

	
	

	

5. Check	the	Serial	Monitor	window	for	the	output,	which	should	look	like	the	output	

below.		Note	that	you	will	need	to	set	the	baud	rate	for	the	Serial	Monitor	to	115200	

for	this	sketch	to	display	output	correctly.	

	
==

Board Type: Sno Edge 50

FPGA Image: 16 MHz r3253

==

XLR8 Hardware Version = 3253

 Modified working copy

XLR8 CID = 0xC020960C

--

Design Configuration = 0x8000C8A

 Image = 1

 Clock = 32MHz

 PLL Speed = 16MHz

 FPGA Size = M50

--

No Builtin XB Enabled

--

OpenXLR8 Info Regs = 3

 Info Reg 1 = 0x11

 Info Reg 2 = 0x12

 Info Reg 3 = 0x13

--

--

Int Osc = 55.08 MHz

--

If	you	get	this	output	from	GetXLR8Version,	that	means	everything	is	installed	correctly.		

Congratulations!	

