Sno Edge 50°

Intel MAX 10 FPGA System on Module

User's Manual and Release Notes

April 11, 2022

Version	Date	Author	Changes
0.7	April 6, 2022	Steve Phillips	Initial Version
1.0	April 11, 2022	Steve Phillips	First official release

Table of Contents

1	INTRODUCTION	.5
2	PROGRAMMING SNO EDGE	.6
2	Microcontroller Programming 1.1 USB Programming 1.2 FTDI Programming	6
2 2	FPGA Programming	7 8 9
3	GENERAL TECHNICAL SPECIFICATIONS	11
3.1	3.3V I/O	11
3.2	ADC	11
3.3	Analog Compare	12
3.4	Power	12
3.5	Pin 13 LED	12
4	XCELERATOR BLOCKS (XBS)	
4.1	Floating Point	13
4.2	Servo Control	
4.3	Quadrature	
5	PIN MAPPING	15
6	EXTENDED INTERRUPTS	18
6.1	GPIO Port Pin Change Detection	18
6.2	Pin Change Interrupts	18
6.3	OpenXLR8 Interrupts	19
6.4	Extended IRQs	20

6.5	Setup and Usage	21
6.6	Example Interrupt Sketch	21
7 F	REGISTER SUMMARY	24
7.1	Sno Edge and XB Register Descriptions	
7.1.	1 Register Access Definitions	
7.1.	2 Ports A, E and G	
7.1.		
7.1.		
7.1.		
7.1.		
7.1.	1 0	
7.1.		
7.1.		
7.1.		
7.1.	0 0	
7.1.	1 0	
7.1.	, , , , , , , , , , , , , , , , , , , ,	
7.1. 7.1.	, , , , , , , , , , , , , , , , , , , ,	
7.1.	• •	
7.1.		
/.1.	$17 \qquad 5VFWH, 5VFWL, 5VCK - 5e1VO XD Registels$	
7.2	Using the Sno Edge Registers in Software	
8 9	SCHEMATICS AND OTHER RESOURCES	41
9 (CREDITS	
10 A	APPENDIX A – ARDUINO IDE INSTALLATION AND RUNNING TEST PROGRAM	43
10.1	Installing Arduino IDE	
	1.1 Microsoft Windows	
10.1		
10.3		
10.2	FTDI Driver Installation	43
10.3	Installing Sno Edge Board Package and Libraries	
10.3		
10.3	3.2 Sno Edge Libraries	
10.4	Running an Example Sketch/Program	47

1 Introduction

Sno Edge 50 is is an Intel MAX 10 FPGA System on Module (SOM) that includes an 8-bit AVR compatible microcontroller integrated on the FPGA for easy programmability and optimized access to the FPGA fabric for custom hardware functionality.

Based on Alorium Technology's very popular embeddable Snō FPGA module, the Sno Edge 50 enhances the powerful features and functionality of Snō with significantly increased digital I/O, additional ADCs, and more FPGA logic gates for custom Xcelerator Block development.

All of this functionality is packaged in a 200-pin SODIMM form factor for the ultimate in low-profile physical integration.

Note:

Sno Edge 50 is the first release in a planned roadmap of "Sno Edge" boards and is named based on the fact that it has a 50K LE MAX 10 FPGA. Additional variations of the design may be produced based on customer demand and FPGA availability.

For the remainder of this document, Sno Edge 50 is referred to as simply as "Sno Edge", and this label can be considered synonomous for the purposes of this manual.

2 Programming Sno Edge

2.1 Microcontroller Programming

The embedded microcontroller on Sno Edge is easily programmable with the Aruino IDE. Refer to the Appendix in Section 10 of this document for Arduino IDE installation instructions if you don't already have it installed on your development machine.

Other programming tools such as Atmel Studio, PlatformIO/VSCode, and others may also work for programming Sno Edge. However, Arduino is the only officially supported programming environment for Sno Edge.

2.1.1 USB Programming

Sno Edge is designed to be programmed via a USB connection.

There is an on-board FTDI USB-to-Serial translator chip that converts USB signals from the edge connector pins to serial UART commands used for programming the microcontroller.

Note: There is NO USB connector directly on Sno Edge. The physical USB connection will be made on the carrier board that is being used with Sno Edge.

For example, this image shows the USB connector on Alorium's Sno Edge test breakout board:

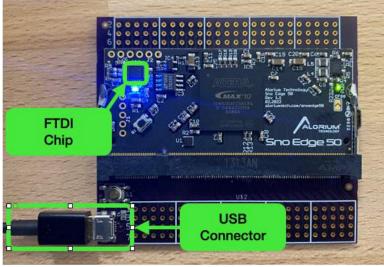


Figure 2: USB Connections

2.1.2 FTDI Programming

Sno Edge also has a 6-pin FTDI header at the top of Sno Edge that is used for initial microcontroller programming and test during the manufacturing process.

Figure 3: FTDI Vias

The FTDI interface can be used for general serial programming of microcontroller, as well; however, it does require using A USB-to-FTDI adapter of some kind. One of our favorites is the <u>SparkFun Beefy 3 Basic FTDI Breakout</u>.

2.2 FPGA Programming

The FPGA on Sno Edge comes pre-programmed with an image that includes the microcontroller as well as a pre-configured set of Xcelerator Blocks developed by Alorium Technology.

Alternate images can be uploaded directly through the Arduino IDE or accessed via our GitHub repo and flashed to the FPGA using a command-line program as described below.

2.2.1 Updating the FPGA Image

Sno Edge ships with a standard FPGA image that includes the 8-bit microcontroller and a small set of built-in Xcelerator Blocks.

This image can be updated with other images provided by Alorium Technology by using the "Burn Bootloader" command in the Arduino or by running a standalone command-line program.

Video Demonstration Examples

NOTE:

The following videos were originally created for our XLR8 board as demonstrations for how to upload new FPGA images from the Arduino IDE or with our command line program. The process for Sno Edge 50 can be accomplished by selecting Sno Edge 50 as the board, instead of XLR8.

Demonstration videos using Sno Edge will be available soon on our YouTube channel, and this manual will be updated to reflect the new tutorials.

2.2.1.1 Flashing A New FPGA Image via Arduino IDE

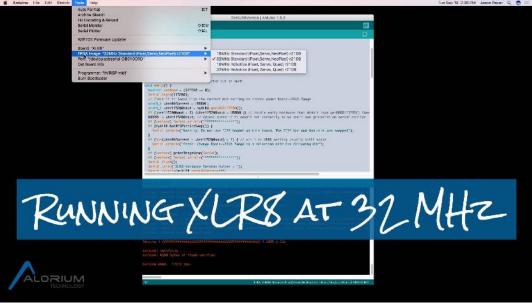


Figure 4: Arduino IDE Video

2.2.1.2 Flashing A New FPGA Image Using the Command-Line

ScreenFlow File Edit Mark Insert Font Actions Arrange View Window Help	
<pre>reserve: 1 junu 1447 14338 60 10 203 148 213 248 148 248 248 248 248 248 248 248 248 248 2</pre>	
 2): portydevice.asterial=0002008 Prayas dea: solid (): (): (): (): (): (): (): (): (): ():	1-00011000
Roard Type: 3188 PPGA Image: 36 Witz -78008	
How to Upload FPGA Images Using the state of	Command Line
With a Four Quadrature FPGA Image	
	1 7 1 77 1

Figure 5: Command Line Video

2.2.2 Restoring Factory FPGA Image

The FPGA on Sno Edge can hold two different FPGA images. One of those, the User Image, can be reconfigured with new images to take advantage of increased functionality as new features are

introduced and released. The other image, the Factory Image, is never changed, and is typically unused unless the primary image 1 becomes corrupted.

If necessary, a "factory reset" of Sno Edge can be performed by bridging the two sides of the split CFG0 pad while applying power to the board. It only takes a momentary grounding to cause this to happen. See Figure 6 for the location of the CFG0 pad.

After power-up, the Factory Image will be loaded. However, any loss of power to the board will result in the corrupted image being reloaded. Therefore, the user will want to flash a known-good image into the User Image before proceeding.

2.2.2.1 Locating CFG0

2.2.3 Creating Custom FPGA Images with OpenXLR8

As with all of our products, the FPGA can be programmed with your own custom FPGA image by using our OpenXLR8 FPGA process. OpenXLR8 is the methodology that allows users of all our XLR8 products to develop their own custom <u>Xcelerator Blocks</u> and integrate them into the FPGA.

You can learn more about how to use OpenXLR8 here:

Introduction to OpenXLR8 <https://aloriumtech.com/openxlr8/>

2.2.4 Bare-Metal FPGA Programming

For advanced FPGA users, Sno Edge does have a JTAG header that can be used for creating baremetal FPGA designs and directly flashing a new image to the FPGA.

Use of the JTAG interface will require that user has the appropriate JTAG programming hardware such as the JTAG Blaster programmer from Intel.



Figure 7: JTAG Vias

IMPORTANT NOTE!!

If the JTAG interface is used to load the MAX10 FPGA with a custom image, it is possible to erase the production Sno Edge functionality, deleting the factory production image and the integrated 8-bit microcontroller subsystem. In this scenario, loading images through the Arduino IDE would no longer be possible.

The Sno Edge FPGA has been designed to be modified and extended by using Alorium's OpenXLR8 Methodology. This flow provides a path to create custom XBs in the FPGA fabric that can easily interface to the on-chip microcontroller and preserve full factory functionality.

Learn More about OpenXLR8 here: https://www.aloriumtech.com/openxlr8

3 General Technical Specifications

3.1 3.3V I/O

Sno Edge is a 3.3V device, and users are cautioned to only connect to other 3.3V devices.

The Sno Edge does not come equipped with pull-up resistors so the user is required to add them physically as needed, except for the dedicated SDA and SCL pins which have 1K ohm pull-ups.

3.2 ADC

Sno Edge supports 16 ADC inputs via two eight input ADC modules. The ADCSRB register now supports the MUX5 bit (bit 5) which is used to select which ADC input is read.

The exact mapping of the ADC inputs is show in Figure 8.

ADC Input	ADCSRB[5]	ADMUX[2:0]	FPGA Input	Edge	Arduino Label
	MUX5	MUX[2:0]		Connector	
0	0	0	ADC1[1]	26	A0
1	0	1	ADC1[2]	24	A1
2	0	2	ADC1[3]	31	A2
3	0	3	ADC1[4]	29	A3
4	0	4	ADC1[5]	25	A4
5	0	5	ADC1[6]	23	A5
6	0	6	ADC1[7]	19	A6
7	0	7	ADC1[8]	17	A7
8	1	0	ADC2[1]	16	A8
9	1	1	ADC2[2]	13	A9
10	1	2	ADC2[3]	20	A10
11	1	3	ADC2[4]	22	A11
12	1	4	ADC2[5]	7	A12
13	1	5	ADC2[6]	5	A13
14	1	6	ADC2[7]	11	A14
15	1	7	ADC2[8]	14	A15

Figure 8: Dual ADC Input Mapping

An Arduino variant has been defined for the Sno Edge so the user does not need to be concerned with the mapping of ADC inputs to ADCSRB/ADMUX register fields. The user can simply reference the Arduino Label in their sketch. For example: analogRead(A12), to read the ADC input on Edge Connector pin 7.

Sno Edge is only able to measure against an internal 3.3V reference. The ADC inputs themselves are limited to a max input voltage of 2.5 volts.

The temperature sensor are not implemented (ADMUX=1000). Using the ADC to read the bandgap (ADMUX=1110) does not actually do a measurement but returns a calculated value equivalent to 1.1/Aref.

Using the ADC to read ground (ADMUX=1111) does not actually do a measurement and instead returns a fixed value of 0.

3.3 Analog Compare

Sno Edge does not support the Analog Compare function that is found in the ATmega328p. The ACME bit and analog compare triggering (ADTS=001) of the ADCSRB (0x7B) register, the ACSR (0x30) register, and the DIDR1 (0x7F) register are not implemented.

If an analog compare function is desired, using the OpenXLR8 platform, a user could implement an analog compare function that is very similar to the ATMega328's, although the pin voltage would need to be limited to 3.3V.

3.4 Power

There are 3 ways to power the Sno Edge module:

- Connect a 3.3V FTDI breakout board or cable to the FTDI interface
- Supply 5V via pin 2 of the SODIMM connector (this is intended to come from a USB connector on the system board). This will use an on-board 3.3V regulator to supply power to the FPGA and other components on the board, and is limited to 500mA
- Supply 3.3V via the dedicated power pins on the SODIMM connector (this is the most robust way to power the Sno Edge board)

3.5 Pin 13 LED

As with many other Arduino-compatible boards, digital pin 13 is used for both the on-board LED as well as the SPI clock, SCK. On Sno Edge, SCK and the LED are driven from separate FPGA pins which are logically equivalent but physically separate, in order to avoid the extra loading the LED can cause.

4 Xcelerator Blocks (XBs)

Xcelerator Blocks are custom hardware blocks implemented within the Sno Edge FPGA chip and are tightly integrated with the ATmega328 clone that is also implemented inside the FPGA chip.

These custom hardware blocks can implement almost any functionality you can dream up, and can then be loaded into the Sno Edge with the Arduino toolset. Since an FPGA can be reprogrammed many times, a single Sno Edge can be reconfigured to incorporate different XBs depending on the project requirements.

Sno Edge ships with three sample XBs: Floating Point, Quadrature, and Servo Control. The software libraries are delivered as .zip files from our github site (<u>https://github.com/AloriumTechnology</u>). They are installed like other Arduino .zip libraries as described here (<u>https://www.arduino.cc/en/Guide/Libraries</u>).

4.1 Floating Point

As an 8 bit microcontroller, the ATmega328p struggles with floating point math. The Floating Point XB provides functions that will give you floating point results in about ¼ the time that it takes software floating point to get the same answer. Available functions include add, subtract, multiply, and divide.

4.2 Servo Control

It is common for the standard Servo.h library to cause jitter in the servo control due to timing uncertainties caused by interrupt processing. The Servo Control XB completely eliminates this jitter by putting a dedicated hardware timer behind Port K pins. The XLR8Servo.h library is a drop-in replacement for the standard Servo.h library, so taking advantage of this XB is as simple as changing one line in your sketch from #include <Servo.h> to #include <XLR8Servo.h>

The servos are connected to the physical pins starting with Port KA, pin 0, going through port KD, pin 7, with each servo connected to the one sequential pins in order. So, servo 0 is tied to KA[0], sevo 1 is tied to KA[1], servo 31 is tied to KD[7], etc. You can instantiate an array like this: Servo servo[32];

4.3 Quadrature

The Sno Edge builtin Quadrature XB provides up to 16 Quadrature encoders. These are connected to Port J, which is the concatination of ports {JD,JC,JB,JA}.

As quadrature objects are instantiated, they are created sequentially. I.e., the first quadrature object will control quadrature 0 in the fabric, the second will control quadrature 1, etc., through quadrature 16.

The quadratures are connected to the physical pins starting with Port JA, pin 0, going through port JD, pin 7, with each quadrature connected to the two sequential pins in order. So, quadrature 0 is tied to JA[1:0], quadrature 15 is tied to JD[7:6], etc. The simplest way to manage multiple quadratures in an application is to create an array of quadrature objects. You can instantiate an array like this:

Quadrature quadratures[16];

The XLR8Quadrature library is included with the line

#include <XLR8Quadrature.h>

Once you instantiate an quadrature object, the quadrature is enabled by default. The software library then allows you to disable & re-enable the quadratures, and read the count and rate values of the quadrature. By default, the quadrature samples every 200ms to get the rate, but can be set to sample every 20ms instead.

5 Pin Mapping

With a handful of exceptions, the pins are arranged into 18 ports, each of which can be up to 8 bits wide. They can be organized into four groups:

- 1. First there are the standard Arduino Uno ports: D, B, and C. Note that ports B and C are only 6 bits wide. In the case of Port C this creates a gap in the "D" pin numbering since there is no C[7:6] which would correspond to D pins [21:20].
- 2. Then there are the standard Sno extended ports A, E, and G. All boards in the Sno family implement these three extended ports.
- 3. Following the Sno extended ports are the J and K ports. There are four J ports (JA, JB, JC, and JD) and four K ports (KA, KB, KC, and KD). These can be treated in software either as 32 bit ports or as four 8 bit ports. The Sno Edge variant provides support for both.
- 4. Finally, the PL port provide four pins that can also be used as two differential PLL inputs

Aside from the port pins, there are various non-port pins that provide specific functionality:

- Clock
- Reset
- ADC

- ADC Reference
- I2C
- Serial

In the following figures a Color Key is used to indicate how the various types of pins are organized:

Color Key
Ground
Power
Special Functions
ADC1
ADC2
Port D - Non-Differential
Port B - Non-Differential
GPIO Port - Differential
GPIO Port - Differential
PLL Port - Differential

Figure 9: Pin Map Color Key

In Figure 10 the ports are enumerated and the bit ranges are specified. Of special interest is the numbering gap in the D Nums column at [21:20], as discussed above. The XB Busses, which are used in the OpenXLR8 module, do not have a gap at [21:20] and so are offset by 2 from the D Nums for pins above 19.

The Int Bit column indicates which bit in the SPCIFR register will get set when there is a pin change interrupt for that port.

The GPIO column indicates whether the pins in that port are differential pairs or not. A "D" indicates a differential pair port. By default all pins are normal non-differential GPIO pins in these ports, but it is possible in the OpenXLR8 methodology to change the configuration of those pins to be differential.

Port Name	Port Bits	D Nun	ıs	XB Busses	Int Bit	GPIO
D	8	7:	0	[7:0]		S
В	6	13:	8	[13:8]		S
С	6	19:	14	[19:14]		D
А	6	27:	22	[25:20]	0	D
E	6	33:	28	[31:26]	1	D
G	8	41:	34	[39:32]	2	D
JA	8	49:	42	[47:40]	3	D
JB	8	57:	50	[55:48]	3	D
JC	8	65:	58	[63:56]	3	D
JD	8	73:	66	[71:64]	3	D
KA	8	81:	74	[79:72]	4	D
KB	8	89:	82	[87:80]	4	D
KC	8	97:	90	[95:88]	4	D
KD	8	105:	98	[103:96]	4	D
PL	4	109:	106	[107:104]	5	D

Figure 10: Port Numbering

In Figure 10, the mapping between the FPGA pins and the Sno Edge connector pins is shown. The table is split two halves representing the odd side and the even side of the connector. For each connector pin, the following information is shown:

Column	Description
Edge Connector Pin	The pin number of the edge connector
FPGA D Pin	The "D" pins are numbered from 0 up to 109. These numbers can be used directly to specify pins in functions such as digitalWrite()
FPGA Port Bit	The pins are all arranged into ports of up to 8 bits. The Port Bit
	indicats which pin in a port
FPGA Pad	The FPGA Pad specifies which physical pin on the FPGA the
	corresponding signal is using.
FPGA Pin Type	The Pin Type indicates any important type desciptor for FPGA Pad,
	such as Diff pair, GND, or VCC
Special Function	Special Function uiindicates any special note about that pin
5 I	such as Diff pair, GND, or VCC

Figure 11: Edge Connector Table Information

In Figure 12, each differential pair is indicated by a box around the two pins. For instance, edge pins 30 and 32 are a differential pair.

Special	FPGA		FPGA	FPGA	Edge	Edge	FPGA	FPGA	FPGA	FPGA	Specia
Function ADC_REF	Pin Type ADC_REF	PAD E4 /	Port Bit ADC_REF	D Bit na	Pin 1	Pin 2	D Bit	Port Bit	PAD	Pin Type 5.0V	Function
	GND				3	4				USB-	Serial
ADC2in6 ADC2in5	L6P L6N		ADC2[6] ADC2[5]	na na	5	6 8				USB+ GND	Serial
	GND				9	10	na	RESET_N	B10	RESETN	RESET_N
ADC2in7 ADC2in2	L8N L8P		ADC2[7] ADC2[2]	na na	11	12	na	ADC2[8]	C3	GND L2P	ADC2in8
	GND				15	16	na	ADC2[1]		L2N	ADC2in1
ADC1in8 ADC1in7	L7P L7N		ADC1[8] ADC1[7]	na na	17	18 20	na	ADC2[3]	E3	GND L4N	ADC2in:
	GND				21	22	na	ADC2[4]	F2	L4P	ADC2in4
ADC1in6 ADC1in5	LSP LSN		ADC1[6] ADC1[5]	na na	23	24 26	na na	ADC1[2] ADC1[1]	F4 F5	L1P L1N	ADC1in2 ADC1in1
	GND				27	28				GND	
ADC1in4 ADC1in3	L3P L3N		ADC1[4] ADC1[3]	na na	29	30 32	14 15	C[0] C[1]	J2 J3	L22P L22N	
- Dellins	GND				33	34				GND	
	L20P L20N	H6 35	C[2] C[3]	16 17	35	36 38	18 19	C[4] C[5]	K2 L1	L29P L29N	
	GND		e[3]	11	39	40	1.5	(J)		GND	
	Connecto GND	r Gap			41	42			Cor	GND GND	
	L36N	J6	A[0]	22	43	44	24	A[2]	К5	L41N	
	L36P GND	K6	A[1]	23	45	46	25	A[3]	L6	L41P GND	
	L37P	L2	A[4]	26	49	50	na	Clock	L3	FPGA_CLK_F	CL
	L37N GND	M2	A[5]	27	51 53	52 54	na	Clock_n	M3	FPGA_CLK_N	CLI
	B2P	R1	E[0]	28	55	56	30	E[2]	P1	L38P	
	B2N GND	P2	E[1]	29	57 59	58 60	31	E[3]	N2	L38N GND	
	B6P	T2	E[4]	32	61	62	34	G[0]	R2	B4P	
	B6N GND	T3	E[5]	33	63	64	35	G[1]	R3	B4N GND	
PLL	L59N	N3	PL[0]	106	65 67	66 68	36	G[2]	R4	B5N	
PLL	L59P	N4	PL[1]	107	69	70	37	G[3]	P5	B5P	
	GND B1N	P4	G[4]	38	71	72	40	G[6]	T4	GND B14P	
	B1P	N5	G[5]	39	75	76	41	G[7]	Т5	B14N	
no diff pair	GND B13P	R5	D[0]	8	77	78 80	1	D[1]	R6	GND B13N	no diff pair
	3.3V				81	82				3.3V	
	B16P B16N	P6 R7	J[0] J[1]	42 43	83	84 86	44 45	J[2] J[3]	R8 T8	B17P B17N	
	3.3V				87	88				3.3V	
no diff pair	B15P B3N	L8 M6	D[2] J[4]	2 46	89 91	90 92	3	D[3] J[6]	M7 M8	B15N B20N	no diff pair
	B3P	L7	J[4]	40	93	94	40	3[7]	M9	B20P	
no diff pain	3.3V B18P	P8	D[4]	4	95 97	96 98	5	D[5]	P9	3.3V B18N	no diff pair
no diff pair	B16P B36P	L9	J[8]	50	99	100	52	J[10]	R9	B19P	no diff pair
	B36N 3.3V	M10	J[9]	51	101	102	53	J[11]	Т9	B19N 3.3V	
	B22P	R10	J[12]	54	105	104	56	J[14]	P10	B34N	
CD 1	B22N	T11	J[13]	55	107	108 110	57	J[15]	P11	B34P B57P	
SDA	B57N 3.3V	M11	SDA	na	109	110	na	SCL	L10	3.3V	SCI
	B35N	R11	J[16]	58	113	114	60	J[18]	P12	B37P	
	B35P 3.3V	R12	J[17]	59	115	116 118	61	J[19]	P13	B37N 3.3V	
	R2P	T14	D[6]	6	119	120	7	D[7]	T15	R2N	no diff pair
	GND R1N	R14	J[20]	62	121	122	64	3[22]	N14	GND R27P	
	R1P	P14	J[21]	63	125	126	65	J[23]	P15	R27N	
	GND R29N	P16	J[24]	66	127 129	128 130	8	B[0]	L12	GND R25N	no diff pair
	R29P	N16	J[25]	67	131	132				GND	no uzrr puzr
	GND R33P	M16	J[28]	70	133 135	134 136	68 69	J[26]	M14 M15	R28N R28P	
	R33P R33N	M16 L16	J[28] J[29]	70	135	136		J[27]		GND	
	GND				139	140	72	J[30]	K14	R32P	
	R30P R30N	K11 K12	κ[0] κ[1]	74 75	141 143	142	73	J[31]	L15	R32N GND	
	GND				145	146	76	K[2]	J11	R38P	
no diff pair	R39N GND	K15	B[1]	9	147 149	148 150	77	K[3]	J12	R38N GND	
	R40P	J15	K[4]	78	151	152	80	K[6]	H15	R41P	
	R40N GND	J16	K[5]	79	153 155	154 156	81	K[7]	H16	R41N GND	
	R44P	H11	K[8]	82	157	158	84	K[10]	G11	R50P	
	R44N GND	H12	K[9]	83	159 161	160 162	85	K[11]	G12	R50N GND	
pair w/170	R46N	G15	B[2]	10	161	162	86	K[12]	G16	R47P	
	GND				165	166	87	K[13]	F16	R47N	
	R51P R51N	F14 E14	K[14] K[15]	88 89	167 169	168 170	11	B[3]	G14	GND R46P	pair w/163
	GND				171	172				GND	
	R52P R52N	E15 E16	K[16] K[17]	90 91	173 175	174 176	108 109	PL[2] PL[3]	D14 C14	R69P R69N	PLI
	GND				177	178				GND	
	R42P R42N	D16 C16	K[18] K[19]	92 93	179 181	180 182	94 95	K[20] K[21]	D15 C15	R70P R70N	
	R42N GND	C10	K[19]	33	181	182	20	N[21]	C15	GND	
no diff pair	T17N	F12	B[4]	12	185	186	96	K[22]	C13	T2P	
	GND T30P	B13	K[24]	98	187 189	188 190	97	K[23]	C12	T2N GND	
	T30N	A13	K[24]	99	191	192	100	K[26]	D12	T1P	
	GND T28P	F10	K[28]	102	193 195	194 196	101	K[27]	E11	T1N GND	
	T28P T28N	F10 E10	K[28] K[29]	102	195	196	104	K[30]	B12	GND T41P	
no diff pair	T43P	A11	B[5]	13	199	200	105	K[31]	B11	T41N	

Copyright 2022 Alorium Technology, LLC

6 Extended Interrupts

The Sno Edge extends the AVR architecture to implement additional interrupts for extended GPIO pin change interrupts and for user-defined interrupts in the OpenXLR8 methodology.

6.1 GPIO Port Pin Change Detection

The Sno Edge extended GPIO ports support pin change detection in a way similar to the standard ports. Port pins are monitored and if a pin change is detected, an interrupt can be generated.

Each GPIO port has a PCMSK that can be used to enable pin change interrupts on a per-pin basis. The Sno Edge extended GPIO PCMSKs are:

PCMSKA

PCMSKJA

• PCMSKJA PCMSKJB

PCMSKE • PCMSKG

- PCMSKJB • PCMSKIC
- PCMSKID

PCMSKPL •

PCMSKID

• PCMSKIC

The PCMSK register contains a bit for each pin in the port. A PCMSK bit value of zero will prevent a pin change on the corresponding port pin from causing an interrupt signal to be generated. The PCMSK does not support bit set or bit clear operations, so a read-modify-write operation should be used to change individual bits.

6.2 Pin Change Interrupts

Pin Change notifications from the ports are collected and controlled by three registers:

Register	Description
SPCIFR	Sno Pin Change Interrupt Flag Register
SPCICR	Sno Pin Change Interrupt Control Register
SPCIMSK	Sno Pin Change Interrupt Mask Register
	Figure 13: Sno Pin Change Interrunt Registers

Figure 13: Sno Pin Change Interrupt Registers

The bits in the above registers correspond to the ports in the following way. Notice that the four Ix ports and the four Kx ports are combined into single bits:

Bit	Interrupt Source
0	Port A
1	Port E
2	Port G
3	Port J (JA or JB or JC or JD)
4	Port K (KA or KB or KC or KD)
5	Port PL

Figure 14: Sno Pin Change Interrupt Fields

A bit in the Flag register (SPCIFR) will be set when a pin change notification is received if the corresponding bit in the Mask register (SPCIMSK) is set.

A bit in the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the Control register (SPCICR) is set.

Neither the Mask register nor the Control register support bit operations, so a read-modify-write operation should be used to change individual bits.

6.3 OpenXLR8 Interrupts

Interrupts from XBs instantiated within the OpenXLR8 Module are collected and saved in the `xlr8_pcint` module.

Register	Description	
OX8IFR	Sno Pin Change Interrupt Flag Register	
OX8ICR	Sno Pin Change Interrupt Control Register	
OX8MSK	Sno Pin Change Interrupt Mask Register	
Figure 15: OpenXLR8 Interrupt Registers		

The bits in the above registers are defined by the OpenXLR8 developer and are specific to that particular implementation.

A bit in the Flag register (OX8IFR) will be set when a pin change notification is received if the corresponding bit in the Mask register (OX8MSK) is set.

A bit in the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the Control register (OX8ICR) is set.

Neither the Mask register nor the Control register support bit operations, so a read-modify-write operation should be used to change individual bits.

6.4 Extended IRQs

The IRQs from the GPIO pin change interrupts and the OpenXLR8 interrupts are managed by the following registers

Description	
eXtended IRQ Flag Register	
eXtended IRQ Control Register	
eXtended IRQ Mask Register	
eXtended IRQ Acknowledge Register	
_	eXtended IRQ Flag Register eXtended IRQ Control Register eXtended IRQ Mask Register

Figure 16: Extended IRQ Registers

The bits in the above registers correspond to the interrupt sources in the following way:

Bit	Interrupt Source	IRQ Num	AVR Name	XLR8/Sno Alias
0	SPCIFR	23	EE_READY_vect	XGPIO_vect, BIXB_vect
1	OX8IFR	24	ANALOG_COMP_vect	OPENXLR8_vect
7:2	Unused			

Figure 17: Extended IRQ Fields

The AVR supports a specified set of IRQ vectors, specified by integers. The Sno Edge, and XLR8 boards in general, reassign two of the defined IRQ vectors to support the new extended GPIO pin change interrupts and the OpenXLR8 interrupts. Those reassigned vectors are indicated above.

A bit in the Flag register (XIFR) will be set when an IRQ is received if the corresponding bit in the Mask register (XMSK) is set and the corresponding bit in the Acknowledge (XACK) register is not set.

A bit in the Flag register is cleared either by the corresponding bit in the Acknowledge register being set, or by the source of the IRQ being cleared.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the Control register (XICR) is set.

When an IRQ is generated to the AVR core it will respond by setting a bit in the acknowledge register. This will block the corresponding bit in the Flag register from being set, preventing further IRQs of that type from being sent to the AVR core. The bit in the Acknowledge must be cleared by software once the interrupt has been serviced and control is returned to the original program. Bits in the Acknowledge register can be cleared by writing a one to the corresponding bit location in the Acknowledge register

Neither the Mask register nor the Control register support bit operations, so a read-modify-write operation should be used to change individual bits.

6.5 Setup and Usage

The default values for the interrupt related registers are all zeros. This disables all interrupts. In order to enable interrupts for a pin they must be configured:

- 1. Set the mask bits for the pin and port that is to be enabled by writing PCMSKxx for that port.
- 2. Set the SPCICR enable bit that corresponds to the port that is being enabled.
- 3. Set the SPCIMSK mask bit that corresponds to the port that is being enabled.
- 4. Set the XICR enable bit that corresponds to the port that is being enabled.
- 5. Set the XMSK mask bit that corresponds to the port that is being enabled.

When an IRQ is received by the AVR core it will trigger an Interrupt Service Routine (ISR) associated with the interrupt to be called. It will also set the bit in XACK corresponding to the interrupt vector.

After the interrupt has been handled by the ISR the interrupts should be re-enabled by:

- 1. Clear the SPCIFR bit or OX8IFR bit by writing a one to it
- 2. Clear the XACK bit by writing a one to it

Interrupt Service Routine functions can be specified using the XLR8 IRQ aliases specified in Figure 17. Simply specify the desired XLR8 IRQ alias name in the ISR() function call.

```
ISR(XGPIO_vect) { // Extended GPIO Port Pin Change Interrupts
    // Enter ISR code
}
ISR(OPENXLR8_vect) { // OpenXLR8 Interrupts
    // Enter ISR code
}
```

6.6 Example Interrupt Sketch

The following example sketch sets up Port G, Pin 0, for a pin change interrupt. To test this in hardware simply start the sketch and then simply ground Port G, Pin 0 momentarily. This should cause a pin change interrupt and the sketch will print " loop(): Interrupt detected... " each time the pin changes.

```
// Description : Demonstrate pin change interrupts on Sno Edge
11
                 extended GPIO port
11
// Variables to use in the ISR routine. Use volatile to make sure
// value is maintained across ISR calls
volatile bool isr found = false;
void setup() {
  Serial.begin(115200);
 Serial.println("======= Start snoedge int example.ino ========"");
 Serial.println(" Enter setup(): Configure pin change interrupt on Port G, Pin 0");
  // Enable Port G, pin 0 for pin change interrupts
 PCMSKG |= (1 \ll MSKG0);
  // Enable the SPCIFR bit for Port G to be enabled for pin change interrupts
 SPCIMSK |= (1 << SPCIPG); // Set the bit for Port G in the mask req
 SPCICR = (1 << SPCIPG); // Set the bit for Port G in the control reg
  // Enable the XIFR bit for pin change interrupts
          |= (1 << XIGPIO); // Set the bit for Pin Change IRQ in the mask reg
|= (1 << XIGPIO); // Set the bit for Pin Change IRQ in the control reg</pre>
 XMSK
 XICR
 Serial.println(" Enter loop(): Check for interrupt and reset after response");
}
void loop() {
  // Check for ISR
  if (isr_found) {
   Serial.print(" loop():
                                  Interrupt detected... ");
   // Code for interrupt response goes here
   11
   // After Interrupt response, clear interrupt flag and re-enable
    // IRQ by clearing the XACK bit
    SPCIFR = (1 << SPCIPG); // Write one to flag bit for Port G
   XACK = (1 << XIGPIO); // Write one to clear the ACK
    // Reset the isr found flag so that we break out of the loop
   isr found = false;
   Serial.println(" Interrupt handled");
  }
  // Wait a bit before checking the isr found flag again
 delay(1);
}
ISR(XGPIO_vect) { // Extended GPIO Port Pin Change Interrupts
  // This ISR will be involked when a pin change interrupt
  // is triggered. Keep the interrupt service routine short
  // by just setting a flag and returning. The flag will be
 // checked in the main loop() function.
  isr found = true;
}
```

Sample output:

======= Start snoedge_int_example.ino =========

Enter setup():	Configure	pin change interrupt on Port G, Pin 0	
Enter loop():	Check for	interrupt and reset after response	
loop():	Interrupt	detected Interrupt handled"	
loop():	Interrupt	detected Interrupt handled"	

7 Register Summary

The registers used in Sno Edge are listed below. The table is color coded to indicate whether the registers are as defined for the ATmega328p, or whether they have been changed in some way. The color key can be found at the bottom of the table.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes		
(0xFF)	XDINFO				XBIN	FOAD				Error! Reference source not found.		
(OxFE)	Reserved	-	-	-	-	-	-	-	-			
(0xFD)	SVPWH	-	-	-	-		vo Pulse Wid	lth High Reg	ister	7.1.17 7.1.17		
(0xFC)	SVPWL		Servo Pulse Width Low Register									
(OxFB)	SVCR	SVEN	SVEN SVDIS SVUP SVCHAN									
(0xFA)	Reserved Reserved		_	-	-	-	_	-	-			
(0xF9) (0xF8)	Reserved		_	_	-	_	_	_	-			
(0xF8) (0xF7)	Reserved						_					
(0xF6)	PID OP L				Low Byt	e output				7.1.16		
(0xF5)	PID OP H					e output				7.1.16		
(0xF4)	PID PV L				Process varia		2			7.1.16		
(0xF3)	PID_PV_H				Process varia					7.1.16		
(0xF2)	PID_SP_L				Set point		-			7.1.16		
(0xF1)	PID_SP_H				Set point					7.1.16		
(0xF0)	PID_KP_L				KP coefficie					7.1.16		
(OxEF)	PID_KP_H				KD coefficie	nt high byte				7.1.16		
(OxEE)	PID_KI_L				KI coefficie	nt low byte				7.1.16		
(0xED)	PID_KI_H				KI coefficie	nt high byte				7.1.16		
(0xEC)	PID_KD_L				KD coefficie	ent low byte				7.1.16		
(OxEB)	PID_KD_H				KD coefficie	nt high byte				7.1.16		
(OxEA)	PIDCR	PEDEN	PIDDIS	PIDUPD			PIDCHAN			7.1.16		
(0xE9)	QERAT3				r 8 bits of qu					7.1.15		
(0xE8)	QERAT2				iddle 8 bits o					7.1.15		
(0xE7)	QERAT1				ddle 8 bits o					7.1.15		
(0xE6)	QERAT0				r 8 bits of qu					7.1.15		
(0xE5)	QECNT3				8 bits of qua					7.1.15		
(0xE4)	QECNT2				ddle 8 bits of					7.1.15		
(0xE3)	QECNT1				dle 8 bits of					7.1.15		
(0xE2)	QECNT0			Lower	8 bits of qua	drature cou	nt data			7.1.15		
(0xE1) (0xE0)	Reserved QECR	– QEEN	QEDIS	 QECLR	QERATE	_	- 050	HAN	-	7.1.15		
(0xE0) (0xDF)	Reserved	QEEN		QECLK	QERATE				_	7.1.15		
(0xDF) (0xDE)	Reserved	_	_	_	_	_	_	_	_			
(0xDL)	Reserved	_	_	_	_	_	_	_	_	TWAMR1		
(0xDC)	Reserved	_	_	_	_	_	_	_	_	TWCR1		
(0xDC) (0xDB)	Reserved	_	_	_	_	_	_	_	_	TWDR1		
(0xDA)	Reserved	_	_	_	-	-	_	-	_	TWAR1		
(0xD9)	Reserved	_										
(0xD8)	Reserved	_										
(0xD7)	Reserved	-										
(0xD6)	XLR8VERT		XLR8 Version Number Flags									
(0xD5)	XLR8VERH			XLR8 Ve	ersion Numbe	er Register H	ligh Byte			7.1.14		

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0xD4)	XLR8VERL			XLR8 Ve	ersion Numb	er Register L	ow Byte			7.1.14
(0xD3)	Reserved	_	_	_	_	_	_	_	_	
(0xD2)	FCFGDAT			FPGA	Reconfigura	tion Data Re	pgister			7.1.13
(0xD1)	FCFGSTS	FCFGDN	0	FCFGFM	FCFGRDY	_	-	-	_	7.1.13
(0xD0)	FCFGCTL	-	•	FCFGSEC	1 cl olib l	_	FCFG		FCFGEN	7.1.13
(0xCF)	FCFGCID				Chin ID	register			TELELI	7.1.13
(0xCE)	Reserved		_	_			_	_	_	UDR1
(0xCD)	Reserved	_								UBBR1H
(0xCD) (0xCC)	Reserved				_					UBBR1L
(0xCC) (0xCB)		_			_	_	_	_	_	
	Reserved	_	-		_	_	_	_	_	UCSR1D
(0xCA)	Reserved	-	-	-	_	-	_	-	_	UCSR1C
(0xC9)	Reserved	-	-	_	_	-	_	-	-	UCSR1B
(0xC8)	Reserved	-	-	-	-	-	-	-	-	UCSR1A
(0xC7)	Reserved	-	-	-	—	-	-	-	-	
(0xC6)	UDRO				USART I/O D	-				
(0xC5)	UBRROH	-	-	-	-		ART Baud Ra	te Register H	ligh	
(0xC4)	UBRROL				ART Baud Ra	te Register L				
(0xC3)	Reserved	-	-	-	-	-	-	-	-	UCSROD
(0xC2)	UCSROC	UMSEL01	UMSEL00	UPM01	UPM00	USBSO	UCSZ01/ UDORD0	UCSZ00/ UCPHA0	UCPOLO	
(0xC1)	UCSROB	RXCIE0	TXCIE0	UDRIEO	RXENO	TXEN0	UCSZ02	RXB80	TXB80	
(0xC0)	UCSROA	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(OxBE)	Reserved	-	-	-	-	-	-	-	_	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	-	
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	
(OxBB)	TWDR			2-wire	e Serial Inter	face Data Re	egister			
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	
(0xB8)	TWBR			2-wire	Serial Interfa	ce Bit Rate I	Register			
(0xB7)	Reserved	_	_	-	_	_	-	_		
(0xB6)	Reserved	_	_	_	-	_	_	_		ASSR
(0xB5)	Reserved	-	_	-	_	-	_	-	_	
(0xB4)	OCR2B			Timer/Co	unter2 Outp	ut Compare	Register B			
(0xB3)	OCR2A				unter2 Outp					
(0xB2)	TCNT2			,	Timer/Cour					
(0xB1)	TCCR2B	FOC2A	FOC2B	_	_	WGM22	CS22	CS21	CS20	
(0xB0)	TCCR2A	COM2A1		COM2B1	COM2B0		_	WGM21	WGM20	
(0xAF)	PCMSKKD	PCMSKKD7	PCMSKKD6	PCMSKKD5	PCMSKKD4	PCMSKKD3	PCMSKKD2	PCMSKKD1	PCMSKKD0	7.1.4
(OxAE)	PORTKD	PORTKD7	PORTKD6	PORTKD5	PORTKD4	PORTKD3	PORTKD2	PORTKD1	PORTKDO	7.1.4
(0xAD)	DDRKD	DDRKD7	DDRKD6	DDRKD5	DDRKD4	DDRKD3	DDRKD2	DDRKD1	DDRKDO	7.1.4
(0xAC)	PINKD	PINKD7	PINKD6	PINKD5	PINKD4	PINKD3	PINKD2	PINKD1	PINKDO	7.1.4
(0xAB)	PCMSKKC	PCMSKKC7	PCMSKKC6	PCMSKKC5	PCMSKKC4	PCMSKKC3	PCMSKKC2	PCMSKKC1	PCMSKKC0	7.1.4
(0xAA)	PORTKC	PORTKC7	PORTKC6	PORTKC5	PORTKC4	PORTKC3	PORTKC2	PORTKC1	PORTKCO	7.1.4
(0xA9)	DDRKC	DDRKC7	DDRKC6	DDRKC5	DDRKC4	DDRKC3	DDRKC2	DDRKC1	DDRKCO	7.1.4
(0xA8)	PINKC	PINKC7	PINKC6	PINKC5	PINKC4	PINKC3	PINKC2	PINKC1	PINKCO	7.1.4
(0xA7)	PCMSKKB	PCMSKKB7	PCMSKKB6	PCMSKKB5	PCMSKKB4	PCMSKKB3	PCMSKKB2	PCMSKKB1	PCMSKKB0	7.1.4
(0xA6)	PORTKB	PORTKB7	PORTKB6	PORTKB5	PORTKB4	PORTKB3	PORTKB2	PORTKB1	PORTKBO	7.1.4
(0xA5)	DDRKB	DDRKB7	DDRKB6	DDRKB5	DDRKB4	DDRKB3	DDRKB2	DDRKB1	DDRKBO	7.1.4
(0xA4)	PINKB	PINKB7	PINKB6	PINKB5	PINKB4	PINKB3	PINKB2	PINKB1	PINKBO	7.1.4
(0xA3)	PCMSKKA	PCMSKKA7	PCMSKKA6	PCMSKKA5	PCMSKKA4	PCMSKKA3	PCMSKKA2	PCMSKKA1	PCMSKKA0	7.1.4
(0xA2)	PORTKA	PORTKA7	PORTKA6	PORTKA5	PORTKA4	PORTKA3	PORTKA2	PORTKA1	PORTKAO	7.1.4
(0xA1)	DDRKA	DDRKA7	DDRKA6	DDRKA5	DDRKA4	DDRKA3	DDRKA2	DDRKA1	DDRKAO	7.1.4
(0xA0)	PINKA	PINKA7	PINKA6	PINKA5	PINKA4	PINKA3	PINKA2	PINKA1	PINKAO	7.1.4
(0/0/0)		11110/47	T INICAU		1111//44	TINKA3	TINICAL	TANKAT	1111740	7.1.7

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0x9F)	PCMSKJD	PCMSKJD7	PCMSKJD6	PCMSKJD5	PCMSKJD4	PCMSKJD3	PCMSKJD2	PCMSKJD1	PCMSKJD0	7.1.3
(0x9E)	PORTJD	PORTJD7	PORTJD6	PORTJD5	PORTJD4	PORTJD3	PORTJD2	PORTJD1	PORTJD0	7.1.3
(0x9D)	DDRJD	DDRJD7	DDRJD6	DDRJD5	DDRJD4	DDRJD3	DDRJD2	DDRJD1	DDRJD0	7.1.3
(0x9C)	PINJD	PINKJD7	PINKJD6	PINKJD5	PINKJD4	PINKJD3	PINKJD2	PINKJD1	PINKJD0	7.1.3
(0x9B)	PCMSKJC	PCMSKJC7	PCMSKJC6	PCMSKJC5	PCMSKJC4	PCMSKJC3	PCMSKJC2	PCMSKJC1	PCMSKJCO	7.1.3
(0x9A)	PORTJC	PORTJC7	PORTJC6	PORTJC5	PORTJC4	PORTJC3	PORTJC2	PORTJC1	PORTJCO	7.1.3
(0x99)	DDRJC	DDRJC7	DDRJC6	DDRJC5	DDRJC4	DDRJC3	DDRJC2	DDRJC1	DDRJCO	7.1.3
(0x98)	PINJC	PINKJC7	PINKJC6	PINKJC5	PINKJC4	PINKJC3	PINKJC2	PINKJC1	PINKJCO	7.1.3
(0x97)	PCMSKJB	PCMSKJB7	PCMSKJB6	PCMSKJB5	PCMSKJB4	PCMSKJB3	PCMSKJB2	PCMSKJB1	PCMSKJB0	7.1.3
(0x96)	PORTJB	PORTJB7	PORTJB6	PORTJB5	PORTJB4	PORTJB3	PORTJB2	PORTJB1	PORTJB0	7.1.3
(0x95)	DDRJB	DDRJB7	DDRJB6	DDRJB5	DDRJB4	DDRJB3	DDRJB2	DDRJB1	DDRJBO	7.1.3
(0x94)	PINJB	PINJB7	PINJB6	PINJB5	PINJB4	PINJB3	PINJB2	PINJB1	PINJBO	7.1.3
(0x93)	PCMSKJA	PCMSKJA7	PCMSKJA6	PCMSKJA5	PCMSKJA4	PCMSKJA3	PCMSKJA2	PCMSKJA1	PCMSKJA0	7.1.3
(0x92)	PORTJA	PORTJA7	PORTJA6	PORTJA5	PORTJA4	PORTJA3	PORTJA2	PORTJA1	PORTJA0	7.1.3
(0x91)	DDRJA	DDRJA7	DDRJA6	DDRJA5	DDRJA4	DDRJA3	DDRJA2	DDRJA1	DDRJA0	7.1.3
(0x90)	PINJA	PINJA7	PINJA6	PINJA5	PINJA4	PINJA3	PINJA2	PINJA1	PINJAO	7.1.3
(0x8F)	PCMSKPL	_	_	-	_	PCMSKPL3	PCMSKPL2	PCMSKPL1	PCMSKPL0	7.1.5
(0x8E)	PORTPL	_	_	-	_	PORTPL3	PORTPL2	PORTPL1	PORTPLO	7.1.5
(0x8D)	DDRPL	_	_	-	_	DDRPL3	DDRPL2	DDRPL1	DDRPLO	7.1.5
(0x8C)	PINPL	_	_	-	-	PINPL3	PINPL2	PINPL1	PINPLO	7.1.5
(0x8B)	OCR1BH		Tim	er/Counter1	– Output Co	ompare Regi	ster B High E	Byte		
(0x8A)	OCR1BL					ompare Regi	-	•		
(0x89)	OCR1AH		Tim	er/Counter1	. – Output Co	ompare Regi	ster A High E	Byte		
(0x88)	OCR1AL		Tim	ner/Counter1	L – Output C	ompare Regi	ster A Low B	Byte		
(0x87)	ICR1H					apture Regis				
(0x86)	ICR1L					Capture Regi				
(0x85)	TCNT1H					nter Register				
(0x84)	TCNT1L			Timer/Cou	Inter1 – Cou	nter Registe	r Low Byte			
(0x83)	Reserved	-	-	-	-	-	_	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	_	-	-	-	
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	
(0x7F)	Reserved	_	-	-	_	-	-	-	-	DIDR1
(0x7E)	DIDRO	-	-	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	
(0x7D)	XLR8ADCR	AD12EN	-	-	-	-	-	-	-	7.1.11
(0x7C)	ADMUX	REFS1	REFSO	ADLAR	-	MUX3	MUX2	MUX1	MUX0	
(0x7B)	ADCSRB	-	Ι	MUX5	-	-	ADTS2	ADTS1	ADTS0	ACME
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	
(0x79)	ADCH			A	DC Data Regi	ister High by	te			
(0x78)	ADCL			A	DC Data Reg	ister Low by	te			
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	_	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	SPCIMSK	-	-	SPCIPL	SPCIPK	SPCIPJ	SPCIPG	SPCIPE	SPCIPA	7.1.10
(0x72)	SPCIFR	-	-	SPCIPL	SPCIPK	SPCIPJ	SPCIPG	SPCIPE	SPCIPA	7.1.10
(0x71)	SPICR	-	-	SPCIPL	SPCIPK	SPCIPJ	SPCIPG	SPCIPE	SPCIPA	7.1.10
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	
(0x6C)	PCMSK1	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	
(0x6A)	OX8MSK	OX817	OX8I6	OX8I5	OX8I4	OX8I3	OX8I2	OX8I1	OX810	7.1.9

Copyright 2022 Alorium Technology, LLC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Notes
(0x69)	EICRA	—	-	—	—	ISC11	ISC10	ISC01	ISC00	
(0x68)	PCICR	_	_	_	_	-	PCIE2	PCIE1	PCIE0	
(0x67)	OX8IFR	OX817	OX8I6	OX8I5	OX8I4	OX8I3	OX8I2	OX8I1	OX8I0	7.1.9
(0x66)	OX8ICR	OX817	OX8I6	OX8I5	OX8I4	OX8I3	OX8I2	OX8I1	OX8I0	7.1.9
(0x65)	XACK	-	-	-	-	-	-	XIOX8	XIGPIO	7.1.8
(0x64)	PRR	_	_	_	PRINTOSC	_	_	_	-	
(0x63)	XMSK	-	-	-	-	-	-	XIOX8	XIGPIO	7.1.8
(0x62)	XIFR	-	-	-	-	-	-	XIOX8	XIGPIO	7.1.8
(0x61)	XICR	-	-	-	-	-	-	XIOX8	XIGPIO	7.1.8
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	
0x3F(0x5F)	SREG	I	Т	Н	S	V	N	Z	С	
0x3E(0x5E)	SPH	_	_	-	_	SP11	SP10	SP9	SP8	
0x3D(0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SPO	
0x3C(0x5C)	Reserved	_	_	_	_	_	_	_	-	
0x3B(0x5B)	XFR3		XL	R8 Function	(floating po	int) 32 bit Re	esult High By	te	1	7.1.6
0x3A(0x5A)	XFR2					point) 32 bit				7.1.6
0x39(0x59)	XFR1					point) 32 bit				7.1.6
0x38(0x58)	XFRO		X				esult Low By	te		7.1.6
0x37(0x57)	SPMCSR	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	
0x36(0x56)	Reserved	_	_	_	_	_	_	_	_	
0x35(0x55)	Reserved	_	-	_	_	_	_	_	_	
0x34(0x54)	MCUSR	-	_	-	_	WDRF	-	EXTRF	PORF	
0x33(0x53)	PCMSKG	PCMSKG7	PCMSKG6	PCMSKG5	PCMSKG4	PCMSKG3	PCMSKG2	PCMSKG1	PCMSKG0	7.1.2
0x32(0x52)	PCMSKE	PCMSKE7	PCMSKE6	PCMSKE5	PCMSKE4	PCMSKE3	PCMSKE2	PCMSKE1	PCMSKE0	7.1.2
0x31(0x51)	PCMSKA	PCMSKA7	PCMSKA6	PCMSKA5	PCMSKA4	PCMSKA3	PCMSKA2	PCMSKA1	PCMSKA0	7.1.2
0x30(0x50)	Reserved	_	_	_	_	_	_	_	_	ACSR
0x2F(0x4F)	Reserved	_	_	_	_	-	-	_	-	ACSRB
0x2E(0x4E)	SPDR				SPI Data	Register				
0x2D(0x4D)	SPSR	SPIF	WCOL	_	_	_	_	_	SPI2X	
0x2C(0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPRO	
0x2B(0x4B)	GPIOR2			Gei	neral Purpos	e I/O Registe	er 2			
0x2A(0x4A)	GPIOR1			Gei	neral Purpos	e I/O Registe	er 1			
0x29(0x49)	CLKSPD		C				R8 bootloade	er		7.1.7
0x28(0x48)	OCR0B					ut Compare				
0x27(0x47)	OCR0A			Timer/Co	unter0 Outpi	ut Compare	Register A			
0x26(0x46)	TCNT0				Timer/Cour					
0x25(0x45)	TCCR0B	FOC0A	FOCOB	_	_	WGM02	CS02	CS01	CS00	
0x24(0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
0x23(0x43)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	
0x22(0x42)	EEARH			EEPRO	OM Address	Register Hig	h Byte			
0x21(0x41)	EEARL					Register Lov				
0x20(0x40)	EEDR				EEPROM Da	ata Register				
0x1F(0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	
Ox1E(Ox3E)	GPIOR0					e I/O Registe				
0x1D(0x3D)	EIMSK	_	_	-	-	_	-	INT1	INT0	
0x1C(0x3C)	EIFR	-	-	-	-	-	-	INTF1	INTF0	
0x1B(0x3B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0	
0x1A(0x2A)	Reserved	-	-	-	-	-	-	-	-	
0x1A(0x3A)		_	-	-	-	_	-	_	_	TIFR4
0x1A(0x3A) 0x19(0x39)	Reserved						_	_	_	TIFR3
	Reserved Reserved	_	_	-	—	-				
0x19(0x39) 0x18(0x38)			-	-	-	-	OCF2B	OCF2A	TOV2	-
0x19(0x39) 0x18(0x38) 0x17(0x37)	Reserved	-			- - -		OCF2B OCF1B		TOV2 TOV1	
0x19(0x39) 0x18(0x38)	Reserved TIFR2	-	-	-		-		OCF2A		

Copyright 2022 Alorium Technology, LLC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes		
0x13(0x33)	DDRG	DDG7	DDG6	DDG5	DDG4	DDG3	DDG2	DDG1	DDG0	7.1.2		
0x12(0x32)	PING	PING7	PING6	PING5	PING4	PING3	PING2	PING1	PING0	7.1.2		
0x11(0x31)	XFSTAT	XFDONE	XFERR	-	-	-	-	-	-	7.1.6		
0x10(0x30)	XFCTRL	-	XFSTART	-	-	-		XFCMD		7.1.6		
0x0F(0x2F)	Reserved	-	-	-	-	-	-	-	-			
0x0E(0x2E)	PORTE	-	-	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	7.1.2		
0x0D(0x2D)	DDRE	-	-	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	7.1.2		
0x0C(0x2C)	PINE	-	-	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	7.1.2		
0x0B(0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0			
0x0A(0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0			
0x09(0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0			
0x08(0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTCO			
0x07(0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0			
0x06(0x26)	PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINCO			
0x05(0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0			
0x04(0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0			
0x03(0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0			
0x02(0x22)	PORTA	-	-	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	7.1.2		
0x01(0x21)	DDRA	-	1	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	7.1.2		
0x0(0x20)	PINA	-	-	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	7.1.2		
		= unchang	ged from AT	mega328p		•	•	•				
		= Reserve	d registers	that are be	st not used	for XLR8 b	locks becau	ise ATmega	328PB uses	them		
			-					-0-				
			= ATmega328p registers not implemented in XLR8 = Some differences in XLR8 compared to ATmega328p									
<u> </u>			= new registers for XLR8 Blocks									
			Built-in XB registers. Not reserved in OpenXLR8 and can be used for OpenXLR8 registers									
			Ŧ		veu in ope				LINO I EBISIE	.13		
		= Sho Edg	e specific re									

Figure 18: Sno Edge Register Summary

7.1 Sno Edge and XB Register Descriptions

7.1.1 Register Access Definitions

In Figure 19: Register Access Definitions, the abbreviations used in the following CSR definitions are defined.

Ab breviation	Meaning
RW	Read and Write Access
R	Read Only
W	Write Only
RW1C	Read and Write, Write 1 to Clear
RW1CS	Read and Write, Write 1 to Clear, Sticky
RWS	Read and Write, Sticky

Figure 19: Register Access Definitions

Sticky bits are not initialized or modified by hot reset or function level reset.

7.1.2 Ports A, E and G

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
0x31(0x51)	PCMSKA	PCMSKA7	PCMSKA6	PCMSKA5	PCMSKA4	PCMSKA3	PCMSKA2	PCMSKA1	PCMSKA0	
Read/	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A	N/A	0	0	0	0	0	0	
0x02(0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	
Read/\	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A	N/A	0	0	0	0	0	0	
0x01(0x21)	DDRA	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0	
Read/\	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A	N/A	0	0	0	0	0	0	
0x0(0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINAO	
Read/\	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A								

0x32(0x52)	PCMSKE	PCMSKE7	PCMSKE6	PCMSKE5	PCMSKE4	PCMSKE3	PCMSKE2	PCMSKE1	PCMSKE0	
Read/	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A	N/A	0	0	0	0	0	0	
0x0E(0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	
Read/	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A	N/A	0	0	0	0	0	0	
0x0D(0x2D)	DDRE	DDRE7	DDRE6	DDRE5	DDRE4	DDRE3	DDRE2	DDRE1	DDREO	
Read/	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial '	Value	N/A	N/A	0	0	0	0	0	0	
0x0C(0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINEO	
Read/	Write	N/A	N/A	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A								

0x33(0x53)	PCMSKG	PCMSKG7	PCMSKG6	PCMSKG5	PCMSKG4	PCMSKG3	PCMSKG	PCMSKG	PCMSKG0	
Read/	Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	0	0	0	0	0	0	0	0	
0x14(0x34)	PORTG	PORTG7	PORTG6	PORTG5	PORTG4	PORTG3	PORTG	PORTG	PORTG0	
Read/	Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	0	0	0	0	0	0	0	0	
0x13(0x33)	DDRG	DDRG7	DDRG6	DDRG5	DDRG4	DDRG3	DDRG	DDRG	DDRG0	
Read/	Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	0	0	0	0	0	0	0	0	
0x12(0x32)	PING	PING7	PING6	PING5	PING4	PING3	PING	PING	PING0	
Read/	Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

7.1.3 Ports JA, JB, JC, and JD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
0x93	PCMSKJA	PCMSKJA7	PCMSKJA6	PCMSKJA5	PCMSKJA4	PCMSKJA3	PCMSKJA2	PCMSKJA1	PCMSKJA0	
Read/V	Vrite	RW								

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Notes
Initial	Value	0	0	0	0	0	0	0	0	
0x92	PORTJA	PORTJA7	PORTJA6	PORTJA5	PORTJA4	PORTJA3	PORTJA2	PORTJA1	PORTJA0	
Read/	Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x81	DDRJA	DDRJA7	DDRJA6	DDRJA5	DDRJA4	DDRJA3	DDRJA2	DDRJA1	DDRJA0	
Read/	Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x90	PINJA	PINJA7	PINJA6	PINJA5	PINJA4	PINJA3	PINJA2	PINJA1	PINJAO	
Read/	Write	RW								
Initial	Value	N/A								

0x97	PCMSKJB	PCMSKJB7	PCMSKJB6	PCMSKJB5	PCMSKJB4	PCMSKJB3	PCMSKJB2	PCMSKJB1	PCMSKJB0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x96	PORTJB	PORTJB7	PORTJB6	PORTJB5	PORTJB4	PORTJB3	PORTJB2	PORTJB1	PORTJB0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x95	DDRJB	DDRJB7	DDRJB6	DDRJB5	DDRJB4	DDRJB3	DDRJB2	DDRJB1	DDRJB0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x94	PINJB	PINJB7	PINJB6	PINJB5	PINJB4	PINJB3	PINJB2	PINJB1	PINJBO	
Read/	/Write	RW								
Initial	Value	N/A								

0x9B	PCMSKJC	PCMSKJC7	PCMSKJC6	PCMSKJC5	PCMSKJC4	PCMSKJC3	PCMSKJC2	PCMSKJC1	PCMSKJC0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x9A	PORTJC	PORTJC7	PORTJC6	PORTJC5	PORTJC4	PORTJC3	PORTJC2	PORTJC1	PORTJCO	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x99	DDRJC	DDRJC7	DDRJC6	DDRJC5	DDRJC4	DDRJC3	DDRJC2	DDRJC1	DDRJCO	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x98	PINJC	PINJC7	PINJC6	PINJC5	PINJC4	PINJC3	PINJC2	PINJC1	PINJCO	
Read/	/Write	RW								
Initial	Value	N/A								

0x9F	PCMSKJD	PCMSKJD7	PCMSKJD	PCMSKJD	PCMSKJD4	PCMSKJD3	PCMSKJD2	PCMSKJD1	PCMSKJD0	
Read/	′Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	0	0	0	0	0	0	0	0	
0x9E	PORTJD	PORTJD7	PORTJD	PORTJD	PORTJD4	PORTJD3	PORTJD2	PORTJD1	PORTJD0	
Read/	′Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	0	0	0	0	0	0	0	0	
0x9D	DDRJD	DDRJD7	DDRJD	DDRJD	DDRJD4	DDRJD3	DDRJD2	DDRJD1	DDRJD0	
Read/	'Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	0	0	0	0	0	0	0	0	
0x9C	PINJD	PINJD7	PINJD	PINJD	PINJD4	PINJD3	PINJD2	PINJD1	PINJDO	
Read/	′Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial	Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

7.1.4 Ports KA, KB, KC, and KD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
0x93	PCMSKKA	PCMSKKA7	PCMSKKA6	PCMSKKA5	PCMSKKA4	PCMSKKA3	PCMSKKA2	PCMSKKA1	PCMSKKA0	
Read/	Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x92	PORTKA	PORTKA7	PORTKA6	PORTKA5	PORTKA4	PORTKA3	PORTKA2	PORTKA1	PORTKA0	
Read/	Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x81	DDRKA	DDRKA7	DDRKA6	DDRKA5	DDRKA4	DDRKA3	DDRKA2	DDRKA1	DDRKA0	
Read/	Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x90	PINKA	PINKA7	PINKA6	PINKA5	PINKA4	PINKA3	PINKA2	PINKA1	PINKA0	
Read/	Write	RW								
Initial	Value	N/A								

0x97	PCMSKKB	PCMSKKB7	PCMSKKB6	PCMSKKB5	PCMSKKB4	PCMSKKB3	PCMSKKB2	PCMSKKB1	PCMSKKB0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x96	PORTKB	PORTKB7	PORTKB6	PORTKB5	PORTKB4	PORTKB3	PORTKB2	PORTKB1	PORTKB0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x95	DDRKB	DDRKB7	DDRKB6	DDRKB5	DDRKB4	DDRKB3	DDRKB2	DDRKB1	DDRKB0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x94	PINKB	PINKB7	PINKB6	PINKB5	PINKB4	PINKB3	PINKB2	PINKB1	PINKB0	
Read/	/Write	RW								
Initial	Value	N/A								

0x9B	PCMSKKC	PCMSKKC7	PCMSKKC6	PCMSKKC5	PCMSKKC4	PCMSKKC3	PCMSKKC2	PCMSKKC1	PCMSKKC0	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x9A	PORTKC	PORTKC7	PORTKC6	PORTKC5	PORTKC4	PORTKC3	PORTKC2	PORTKC1	PORTKCO	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x99	DDRKC	DDRKC7	DDRKC6	DDRKC5	DDRKC4	DDRKC3	DDRKC2	DDRKC1	DDRKCO	
Read/	/Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x98	PINKC	PINKC7	PINKC6	PINKC5	PINKC4	PINKC3	PINKC2	PINKC1	PINKCO	
Read/	/Write	RW								
Initial	Value	N/A								

0x9F	PCMSKKD	PCMSKKD7	PCMSKKD6	PCMSKKD5	PCMSKKD4	PCMSKKD3	PCMSKKD2	PCMSKKD1	PCMSKKD0	
Read/	′Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x9E	PORTKD	PORTKD7	PORTKD6	PORTKD5	PORTKD4	PORTKD3	PORTKD2	PORTKD1	PORTKD0	
Read/	′Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x9D	DDRKD	DDRKD7	DDRKD6	DDRKD5	DDRKD4	DDRKD3	DDRKD2	DDRKD1	DDRKD0	
Read/	′Write	RW								
Initial	Value	0	0	0	0	0	0	0	0	
0x9C	PINKD	PINKD7	PINKD6	PINKD5	PINKD4	PINKD3	PINKD2	PINKD1	PINKDO	
Read/	'Write	RW								

Initial Value N/A N	N/A I N/A	N/A	N/A	N/A	N/A	N/A	

7.1.5 Port PL

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
0x8F	PCMSKPL	PCMSKPL7	PCMSKPL6	PCMSKPL5	PCMSKPL4	PCMSKPL3	PCMSKPL2	PCMSKPL1	PCMSKPL0	
Read/	Write	RW								
Initial '	Value	0	0	0	0	0	0	0	0	
0x8E	PORTPL	PORTPL7	PORTPL6	PORTPL5	PORTPL4	PORTPL3	PORTPL2	PORTPL1	PORTPLO	
Read/	Write	RW								
Initial '	Value	0	0	0	0	0	0	0	0	
0x8D	DDRPL	DDRPL7	DDRPL6	DDRPL5	DDRPL4	DDRPL3	DDRPL2	DDRPL1	DDRPLO	
Read/	Write	RW								
Initial '	Value	0	0	0	0	0	0	0	0	
0x8C	PINPL	PINPL7	PINPL6	PINPL5	PINPL4	PINPL3	PINPL2	PINPL1	PINPLO	
Read/	Write	RW								
Initial	Value	N/A								

7.1.6 XFCTRL, XFSTAT, XFR0, XFR1, XFR2, XFR3– Floating Point XB Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
0x3B(0x5B)	XFR3		XI	R8 Function	(floating po	int) 32 bit Re	esult High By	te		
0x3A(0x5A)	XFR2			XLR8 Functi	ion (floating	point) 32 bit	Result Byte			
0x39(0x59)	XFR1			XLR8 Functi	on (floating	point) 32 bit	Result Byte			
0x38(0x58)	XFRO		Х	LR8 Function	n (floating po	int) 32 bit Re	esult Low By	te		
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial V	/alue	0	0	0	0	0	0	0	0	
0x11(0x31)	XFSTAT	XFDONE	XFERR	-	-	-	-	-	-	
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial V	/alue	0	0	0	0	0	0	0	0	
0x10(0x30)	XFCTRL	_	XFSTART	_	_	_		XFCMD		
Read/\	Nrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial \	/alue	0	0	0	0	0	0	0	0	

A floating-point calculation is started by writing the XFSTART bit in the XFCTRL register, along with the desired operation in the XFCMD field (1=add, 2=multiply, 3=divide). Operands come directly from the AVR's general-purpose register file (using our library ensures they will be in the right place). When the operation is done, the result appears in the XFR0/1/2/3 registers and the XFDONE status bit is set. If an unsupported XFCMD is used, the XFERR bit is also sets, allowing software to revert to using a software-based calculation. The XFSTAT register auto-clears when it is read, or when the next operation is started via writing the XFSTART bit. The easiest way to use these registers is with the XLR8Float library

(https://github.com/AloriumTechnology/XLR8Float).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes	
0x29(0x49)	CLKSPD		Clock speed programming used by XLR8 bootloader								
Read/V	Vrite	R	R	R	R	R	R	R	R		
Initial V	'alue	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
0x29(0x49)	CLKSPD	-	-	-	-	-	-	-	OSCOUT		

7.1.7 CLKSPD – Clock Speed Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
Read/	Write	W	W	W	W	W	W	W	W	
Initial	Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	
(0x64)	PRR	-	-	-	-	PRINTOSC	-	-	-	
Read/	Write	R	R	R	R	RW	R	R	R	
Initial	Value	0	0	0	0	0	0	0	0	

The clock speed register holds a constant value that represents the value to be programmed into the UBRR0L register to run the UART at a baud rate of 115200. It is used by the modified bootloader to allow it to run correctly regardless of whether Sno Edge is running 16MHZ, 32MHz, or some other speed.

Sno Edge includes an on-chip oscillator that currently isn't being used, but a divide-by-1024 version of it can be output to digital pin 8 by writing bit 0 of the CLKSPD register high. This is a write-only operation, it does not change the value that is read from the CLKSPD register. The internal oscillator can be turned off entirely by setting the PRINTOSC bit of the PRR register. The other bits of this register are currently unused.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0x65)	ХАСК			-				XIOX8	XIGPIO	
Read/\	Vrite	R	R	R	R	R	R	RW1C	RW1C	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0x63)	XMSK			-				XIOX8	XIGPIO	
Read/\	Vrite	R	R	R	R	R	R	RW	RW	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0x62)	XIFR			-				XIOX8	XIGPIO	
Read/\	Vrite	R	R	R	R	R	R	RW1C	RW1C	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0x61)	XICR			-				XIOX8	XIGPIO	
Read/V	Vrite	R	R	R	R	R	R	RW	RW	
Initial \	/alue	0	0	0	0	0	0	0	0	

7.1.8 XICR, XIFR, XMSK, XACK – Extended IRQ

A bit in the Flag register (XIFR) will be set when an IRQ is received if the corresponding bit in the Mask register (XMSK) is set and the corresponding bit in the Acknowledge (XACK) register is not set.

A bit in the Flag register is cleared either by the corresponding bit in the Acknowledge register being set, or by the source of the IRQ being cleared.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the Control register (XICR) is set.

When an IRQ is generated to the AVR core it will respond by setting a bit in the acknowledge register. This will block the corresponding bit in the Flag register from being set, preventing further IRQs of that type from being sent to the AVR core. The bit in the Acknowledge must be cleared by software once the interrupt has been serviced and control is returned to the original program. Bits in the Acknowledge register can be cleared by writing a one to the corresponding bit location in the Acknowledge register

/1213 0/				CIINEIRO		0				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0x6A)	OX8MSK	OX8I7	OX8I6	OX8I5	OX8I4	OX8I3	OX8I2	OX8I1	OX8I0	
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0x67)	OX8IFR	OX8I7	OX8I6	OX8I5	OX8I4	OX8I3	OX8I2	OX8I1	OX8I0	
Read/V	Vrite	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0x66)	OX8ICR	OX8I7	OX8I6	OX8I5	OX8I4	OX8I3	OX8I2	OX8I1	OX8I0	
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW1C	RW1C	
Initial \	/alue	0	0	0	0	0	0	0	0	

7.1.9 OX8ICR, OX8IFR, OX8MSK – OpenXLR8 Interrupts

A bit in the Flag register (OX8IFR) will be set when a pin change notification is received if the corresponding bit in the Mask register (OX8MSK) is set.

A bit in the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the Control register (OX8ICR) is set.

712120 01				i chunge	meenap					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0x73)	SPIMSK	-	-	SPCIPL	SPCIPK	SPCIPJ	SPCIPG	SPCIPE	SPCIPA	
Read/V	Vrite	R	R	RW	RW	RW	RW	RW	RW	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0x72)	SPIFR	-	-	SPCIPL	SPCIPK	SPCIPJ	SPCIPG	SPCIPE	SPCIPA	
Read/V	Vrite	R	R	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0x71)	SPICR	-	-	SPCIPL	SPCIPK	SPCIPJ	SPCIPG	SPCIPE	SPCIPA	
Read/V	Vrite	R	R	RW	RW	RW	RW	RW1C	RW1C	
Initial \	/alue	0	0	0	0	0	0	0	0	

7.1.10 SPICR, SPIFR, SPIMSK – Sno Pin Change Interrupts

The bits in the above registers correspond to the ports in the following way. Notice that in the figure above and in Figure 14: Sno Pin Change Interrupt Fields, the four Jx ports and the four Kx ports are combined into single bits.

A bit in the Flag register (SPCIFR) will be set when a pin change notification is received if the corresponding bit in the Mask register (SPCIMSK) is set.

A bit in the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the Control register (SPCICR) is set.

Neither the Mask register nor the Control register support bit operations, so a read-modify-write operation should be used to change individual bits.

7.1.11 XLR8ADCR – Sno Edge ADC Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0x7D)	XLR8ADCR	AD12EN	-	-	-	-	-	-	-	
Read/V	Nrite	RW	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	

The AD12EN bit enables the ADC to run in 12 bit mode. The results reported in the ADCL and ADCH registers when running with ADLAR=0 can range from 0-4095, and when running with ADLAR=1, bits 5:4 of ADCL will include the least significant bits of the 12 bit ADC result. When running in 10 bit mode, the result is truncated (not rounded) from the 12 bit result.

7.1.12 FCFGCID – Chip ID Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0xCF)	FCFGCID		Chip ID register							
Read/V	Vrite	R	R	R	R	R	R	R	R	write-reset
Initial \	/alue	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

The chip ID register is a read-only register that provides chip ID information. Multiple bytes of chip ID information are available and each read presents the next byte. Writing the register (with any value) resets the read pointer back to the beginning (and does not store the write data in any way).

7.1.13 FCFGDAT, FCFGSTS, FCFGCTL – FPGA Reconfiguration Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Notes
(0xD2)	FCFGDAT			FPGA	Reconfigura	tion Data Re	gister			
Read/\	Write	W	W	W	W	W	W	W	W	
Initial \	Value	0	0	0	0	0	0	0	0	
(0xD1)	FCFGSTS	FCFGDN	FCFGOK	FCFGFAIL	FCFGRDY	-	-	-	-	
Read/\	Write	RW1C	RW1C	RW1C	R	R	R	R	R	
Initial \	Value	0	0	0	0	0	0	0	0	
(0xD0)	FCFGCTL	-		FCFGSEC		-	FCFG	icmd	FCFGEN	
Read/\	Write	RW	RW	RW	RW	RW	RW	RW	RW	
Initial \	Value	0	0	0	0	0	0	0	0	

These registers are used during reconfiguration of the FPGA and are not intended for customer use. FCFGEN auto-clears after a reconfiguration is complete. The data register is a write-only register.

7.1.14 XLR8VERL, XLR8VERH, XLR8VERT – Version Number Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Notes	
(0xD6)	XLR8VERT		XLR8 Version Number Flags								
(0xD5)	XLR8VERH			XLR8 Ve	rsion Numbe	er Register H	igh Byte				
(0xD4)	XLR8VERL			XLR8 Ve	ersion Numb	er Register L	ow Byte				
Read/\	Vrite	R	R R R R R R R								
Initial \	/alue	N/A	N/A N/A N/A N/A N/A N/A N/A N/A								

The version number register provides the FPGA design revision, while the version flags register indicates if the build had a mixed or modified version. The registers have a constant value for a

particular design, but the value changes for each version. The easiest way to use these registers is with the XLR8Info library (<u>https://github.com/AloriumTechnology/XLR8Info</u>).

7.1.1.5 XE	noquuu									
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Notes
(0xE9)	QERAT3			Uppei	r 8 bits of qu	adrature rat	e data			
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE8)	Q ERAT2			Upper-mi	ddle 8 bits o	f quadrature	rate data			
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE7)	QERAT1			Lower-mi	ddle 8 bits o	f quadrature	e rate data			
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE6)	QERAT0			Lower	r 8 bits of qu	adrature rat	e data			
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE5)	QECNT3			Upper	8 bits of qua	drature cou	nt data			
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE4)	QECNT2			Upper-mic	ldle 8 bits of	quadrature	count data			
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE3)	QECNT1			Lower-mid	ldle 8 bits of	quadrature	count data			
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE2)										
Read/\	Nrite	R	R	R	R	R	R	R	R	
Initial \	/alue	0	0	0	0	0	0	0	0	
(0xE0)	QECR	QEEN	QEDIS	QECLR	QERATE		QEC	HAN		
Read/\	Nrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial \	Initial Value 0			0	0	0	0	0	0	

7.1.15 XLR8Quad – XLR8 Quadrature

To start a channel typically the channel is reset first, then the control register with the desired channel indicated and both the enable and update bits set.

7.1.16 XLR8PID – XLR8 PID

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Notes
(0xF6)	PID_OP_L				Low Byt	e output				
Read/V	Read/Write R R R R R R R R									
Initial V	/alue	0	0	0	0	0	0	0	0	
(0xF5)	PID_OP_H				High Byt	e output				
Read/V	Vrite	R	R	R	R	R	R	R	R	
Initial V	/alue	0	0 0 0 0 0 0 0 0							
(0xF4)	PID_PV_L				Process varia	able low byte	9			
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	/alue	0	0	0	0	0	0	0	0	
(0xF3)	PID_PV_H			F	Process varia	ble high byte	9			
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	itial Value 0 0 0 0 0 0 0 0									
(0xF2)	PID_SP_L				Set point	low byte				

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Notes
Read/V	Read/Write		RW	RW	RW	RW	RW	RW	RW	
Initial V	'alue	0	0	0	0	0	0	0	0	
(0xF1)	PID_SP_H				Set point	high byte				
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	'alue	0	0	0	0	0	0	0	0	
(0xF0)	PID_KP_L				KP coefficie	ent low byte				
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	'alue	0	0	0	0	0	0	0	0	
(OxEF)	PID_KP_H				KP coefficie	nt high byte				
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	'alue	0	0	0	0	0	0	0	0	
(OxEE)	PID_KI_L	KI coefficient low byte								
Read/V	Read/Write		RW	RW	RW	RW	RW	RW	RW	
Initial V	/alue	0	0	0	0	0	0	0	0	
(0xED)	PID_KI_H	KI coefficient high byte								
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	'alue	0	0	0	0	0	0	0	0	
(0xEC)	PID_KD_L				KD coefficie	ent low byte				
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	/alue	0	0	0	0	0	0	0	0	
(OxEB)	(0xEB) PID_KD_H				KD coefficie	nt high byte				
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	/alue	0	0	0	0	0	0	0	0	
(0xEA)	PIDCR	PEDEN	PIDDIS	PIDUPD			PIDCHAN			
Read/V	Vrite	RW	RW	RW	RW	RW	RW	RW	RW	
Initial V	/alue	0	0	0	0	0	0	0	0	

To start a channel typically the channel is reset first, then the control register with the desired channel indicated and both the enable and update bits set.

Bit 0

RW 0

RW

0

RW

0

Register

RW

0

RW

0

Notes

7.1.17 SVFWII, SVFWL, SVCK - Selvo XD Registers										
Address	ddress Name		Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1		
(0xFD) SVPWH		-	-	-	-	Serv	th High R			
Read/V	Vrite	R	R	R	R	RW	RW	RW		
Initial \	/alue	0	0	0	0	0	0	0		
(0xFC)	SVPWL			Ser	vo Pulse Wic	th Low Regis	ster			

RW

0

SVUP

W

0

RW

0

SVDIS

W

0

17 SVPWH SVPWL SVCR – Servo XB Registers

RW

0

SVEN

RW

0

Read/Write

Initial Value

Read/Write

SVCR

(OxFB)

Initial Value The servo data registers SVPWH and SVPWL represent the desired servo pulse width in microseconds. The value is programmed to the channel selected by SVCHAN when the SVCR register is written with the update (SVUP) bit set. The channel can be enabled to begin at the same time by also setting the enable (SVEN) bit. A channel is disabled by writing SVCR with the desired channel in the SVCHAN field, the SVEN bit clear and the SVDIS set. The pulse width of a channel can be changed without changing its enabled/disabled status by leaving the SVEN and SVDIS bits clear when writing the SVCR register. SVDIS and SVUP are strobes and will always read zero. Reading SVEN will give the current enabled/disabled status of the channel read in the SVCHAN field. The value of SVCHAN corresponds to the Arduino pin to use (i.e. 0=RX, 1=TX, 2=D2, ...,

RW

0

RW

0

RW

0

RW

0

RW

0

SVCHAN

RW

0

14=A0, etc.). Multiple pins can be driven simultaneously, each with a different pulse width...with a small limitation. The 32 possible values of SVCHAN directly alias to the 16 available timers (e.g. channels 1 and 17 could both be enabled, but they would always have the same pulse width of whichever one was programmed most recently). The easiest way to use these registers is with the XLR8Servo library (https://github.com/AloriumTechnology/XLR8Servo).

7.2 Using the Sno Edge Registers in Software

The Sno Edge registers can be accessed from Arduino sketches in much the same way as standard Arduino registers. The Sno Edge has been defined as a "variant" in the Arduino IDE so its registers are available to the Arduino compiler. Simply use the register names and register field names as defined in Figure 18. No #include statements required to pull in the register definitions. Just select the Sno Edge board in the Arduino IDE under Tools->Board.

The register names are defined using the _SFR_MEM8(), such that using the name causes the register to be read or written, depending on the context.

The field names are defined as a number between 0 and 7, to indicate which bit in the register the field starts at. For multiple bit fields this will indicate the low order bit of the field. This makes it simple to use left shift operators to specify bit positions.

The values of registers can be read by specifying their names on the right side of an equal sign.

```
// Read value of the XICR register into the "var1" variable
var1 = XICR;
```

To write registers use the name of the register on the left side of the equal sign.

```
// Write the value of the "var2" variable to the XICR register
XICR = var2;
```

To use a field name to specify a bit location, use the left shift operator.

```
// Shift a 1 to the bit position of the XIOX8 field in the XICR register
// and write it to the XICR register. All other bits in the register will
// be set to 0.
XICR = (1 << XIOX8);</pre>
```

To preserve the other bits in the register from changes while setting/clearing a specific bit, use the compound assignment operators |= or &=.

```
// Set the bit at the XIOX8 location in the XICR register while preserving
// the state of all other bits.
XICR |= (1 << XIOX8);</pre>
```

```
// Clear the bit at the XIOX8 location in the XICR register while preserving // the state of all other bits. XICR \& = ~(1 << XIOX8);
```

To set multiple bits in a register, multiple left shift operations can be bit-wise OR'd together.

```
// Set both the XIOX8 and the XIGPIO bits in the XICR register.
XICR = (1 << XIOX8) | (1 << XIGPIO);</pre>
```

Multibit fields can be left shifted the same as single bit fields since the field name is set to the lowest order bit in the field. Care must be taken that field values are within the max value of the field or run the risk of fields overlapping during the shift operations.

```
// Shift the values for the fields of the FCFGCTL register to the correct
// offsets in the register and write to the FCFGCTL register. Though these
// are multi-bit fields, the field definitions are set to shift the values
// to the correct location.
FCFGCTL = (var3 << FCFGSEC) | (var4 << FCFGCMD) | (var5 << FCFGGEN);</pre>
```

Another way to make accessing the fields of the registers is to create struct types to define them and then access the subfields. Using the FCFGCTL register as an example:

```
// Define a struct type for the FCFGCTL register
typedef struct {
    unsigned int fcfgen : 1; // [ 0] - Enable
    unsigned int fcfgcmd : 2; // [2:1] - Command
    unsigned int rsrv3 : 1; // [ 3] - unused
    unsigned int rsrv3 : 1; // [ 3] - unused
    unsigned int fcfgsec : 3; // [6:4] = Sec
    unsigned int rsrv7 : 1; // [ 7] - unused
} fcfgctl_t;
fcfgctl_t;
fcfgctl_t fcfgctl; // Create fcfgctl as a struct of type fcfgctl_t
// Read register fields
fcfgctl = FCFGCTL; // Read the FCFGCTL reg into the struct
i = fcfgctl.fcfgsec; // set i to the value of the fcfgsec field
```

```
// Write register fields
fcfgctl.fcfgcmd = 0x2; // Set the value of a field
FCFGCTL = fcfgctl; // Write the struct to the register
```

8 Schematics and Other Resources

Schematics, Pin Map, and Product Brief Schematics, product brief, and a standalone pin map document are available on the resources page for Sno Edge here:

- <u>Product Brief</u>
- <u>Pin Map</u>
- <u>Schematics</u>

9 Credits

Some code is used and modified from the AVR core written by Ruslan Lepetenok (<u>lepetenokr@yahoo.com</u>) that is available at <u>http://opencores.org/project,avr_core</u>.

Ruslan's AVR core does not contain copyright or license notices, but we certainly wish to recognize its contribution to this project.

The I2C module builds upon the I2C core written by Richard Herveille (<u>richard@asics.ws</u>) that is available at <u>http://opencores.org/project,i2c</u>. The I2C core was released under BSD license with the following copyright statement:

Copyright (C) 2001 Richard Herveille richard@asics.ws

This source file may be used and distributed without restriction provided that this copyright statement is not removed from the file and that any derivative work contains the original copyright notice and the associated disclaimer

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

10 Appendix A – Arduino IDE Installation and Running Test Program

10.1 Installing Arduino IDE

The first step in setting up your computer to connect to and program the Sno Edge is to install the standard Arduino IDE software. Follow the instructions below to install the Arduino IDE on your computer.

10.1.1 Microsoft Windows

- 1. Click here for the official Arduino IDE installation guide for Microsoft Windows.
- 2. Follow the instructions for installing the IDE.
- 3. Once the IDE is installed, return here to finish installation of the Alorium Technology board specific packages and libraries.

10.1.2 Mac OS X

- 1. Click here for the official Arduino IDE installation guide for Mac OS X.
- 2. Follow the instructions for installing the IDE.
- 3. Once the IDE is installed, return here to finish installation of the Alorium Technology board specific packages and libraries.

10.1.3 Linux

If you are running Linux, the setup steps are a bit different. Therefore, we have created one tutorial that incorporates all of the steps Linux requires to setup Arduino IDE.

This document was originally created when we released our XLR8 board, and it still carries the XLR8 name in the title. However, the steps remain the same for using Arduino with Sno Edge, as well.

Click the link below to see our Linux Setup Tutorial:

• <u>Linux Setup Tutorial</u>

10.2 FTDI Driver Installation

Sno Edge can be programmed with the Arduino IDE across an FTDI interface located at the top edge of the board.

A USB-to-FTDI adapter of some kind will be required to connect your computer to Snō for programming with Arduino. There are a variety of cables and solutions available on the market. One of our favorites is the <u>SparkFun Beefy 3 Basic FTDI Breakout.</u>

In order to communicate with the FTDI breakout board, drivers for the FTDI chip may need to be installed. A great set of instructions for installing the driver can be found here:

• <u>SparkFun FTDI Installation Guide</u>

The SparkFun guide will tell you if you need to install the driver. You may need to reboot your computer after installation.

<u>A note about FTDI drivers and Mac OS:</u>

If you are running macOS, you may run into issues with the usb serial port disappearing and not reconnecting. There are known issues between the factory installed macOS FTDI drivers and drivers available for installation from FTDI directly. And, unfortunately, the jury still appears to be out on which version of macOS will work consistently without ever seeing the lost serial port problem.

The following video on our YouTube channel provides the steps for a potential fix to this Mac related issue that has worked for several of us at Alorium Technology since the summer of 2017. It's no iron-clad guarantee, but it seems to have solved the problem so far.

How to Fix FTDI Driver Issue on Mac and macOS

10.3 Installing Sno Edge Board Package and Libraries

To take advantage of the XBs that come with Sno Edge, you'll need to take the following additional steps.

Note: Sno Edge is part of our XLR8 family of boards, and they are all supported with the top-level XLR8 boards package and XLR8 Arduino libraries. So, you will be downloading and installing files that have the XLR8 name.

10.3.1 Add Sno Edge Board Support

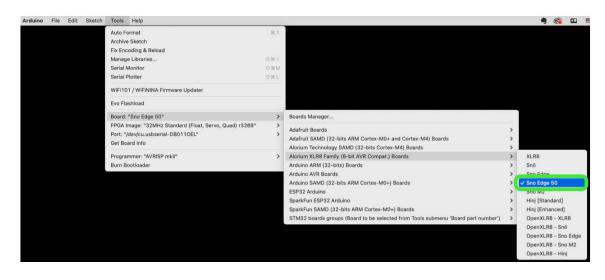
Open the Arduino IDE and follow these steps to add board support in the Arduino IDE.

- 1. For Windows and Linux: Go to **File > Preferences**, in your Arduino IDE menu bar.
- 2. For Mac: Go to **Arduino > Preferences**, in your Arduino IDE menu bar.
- 3. Locate the 'Additional Boards Manager URLs' input field.
- 4. Copy and paste this URL into the "Additional Boards Manager URLs" input field

https://raw.githubusercontent.com/AloriumTechnology/Arduino Boards/master/packag <u>e aloriumtech index.json</u>

00		Preferences			
		Settings Network			
Sketchbook location:					
/Users/jason/Documents/Ar	duino				Browse
Editor language:	System Default		0	(requires restart	of Arduino)
Editor font size:	12				
Interface scale:	🗸 Automatic	100 🗇 % (requires restart of Ar	rduino)		
Theme:	Default theme	(requires restart of Arduin	10)		
Show verbose output during:	compilation	🗸 upload			
Compiler warnings:	None 😌				
🗹 Display line numbers		🗹 Enable Code Fol	ding		
🗹 Verify code after upload		🗌 Use external edi	itor		
Check for updates on star	tup	Save when verify	ying or uple	oading	
Use accessibility features					
Additional Boards Manager UR	Ls: NoriumTechno	ology/Arduino_Boards/master/p	ackage_alo	oriumtech_index.js	on, 🗖
More preferences can be edite	d directly in the file				
/Users/jason/Library/Arduing	15/preferences.txt				
(edit only when Arduino is not	running)				
				ОК	Cancel

Note: Multiple URLs can be added to this field by separating each URL with a comma.


Install Alorium's XLR8 board package

- 1. Go to **Tools > Board > Boards Manager**.
- 2. Type "alorium," in the search field and you will see an option to install board files for Alorium XLR8 AVR compatible boards.
- 3. Select the "Alorium XLR8 Family (8-bit AVR Compat.) Boards" package and then click "Install."

000			Boards Manager			
ype All	0	alorium				
Alorium Technolo by Alorium Technolo Boards included in thi Evo M51 Plus. <u>Online Help</u> <u>More Info</u>	gy version 1.5		M4) Boards			
Alorium XLR8 Fai by Alorium Technole Boards included in thi Alorium XLR8, Aloriur <u>Online Help</u> More Info	gy package:	-	ards , Alorium Sno Edge, Alorium	n Sno Edge 50.		
				2.3.	0 0	Install
						Clos

Select the Sno Edge Board

- Go to Tools > Board. You should see a new section titled "Alorium XLR8 Family (8-bit AVR Compat.) Boards" now exists.
- 2. Select "Sno Edge 50" board.

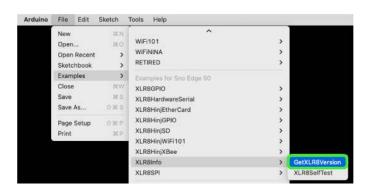
After selecting Sno Edge 50, you will find a new menu item at Tools > FPGA Image, where you will see the list of released Sno Edge images that are packaged with the Arduino IDE.

Arduino	File	Edit	Sketch	Tools	Help			
				Auto Fo			SE T	
				Archive	Sketch			
				Fix Enc	oding & Reload			
				Manage	Libraries		公開上	
				Serial N	lonitor		O 3€M	
				Serial P	lotter		0%L	
				WiFi10	I / WiFiNINA Firmware Update	er		
				Evo Fla	shload			
				Board:	'Sno Edge 50"		>	
				FPGA In	nage: "16MHz Standard (Floa	at, Servo, Quad) r3269"	>	✓ 16MHz Standard (Float, Servo, Quad) r3269
				Port: "/	lev/cu.usbserial-DB0110EL"		>	SZIVITZ STAHUARU (FIDAL, SELVO, QUAU) 15209
				Get Boa	rd Info			
				Program	nmer: "AVRISP mkll"		>	
				Burn Bo	otloader			

10.3.2 Sno Edge Libraries

All libraries required to use Sno Edge are packaged with the Alorium Technology XLR8 Arduino board package.

As new functionality or Xcelerator Blocks (XBs) are added for the FPGA, new libraries may be released. Detailed instructions for installing required libraries will be added at that time.


10.4 Running an Example Sketch/Program

To be sure that everything is installed and working correctly, we have provided an example Arduino sketch called "GetXLR8Version" that you can load from the Arduino IDE Examples menu.

- 1. Be sure that your Sno Edge board is connected to your computer either with the FTDI interface or to a USB cable on your Sno Edge carrier board.
- 2. Go to **Tools** > **Port** and verify that Arduino IDE is connected to the Sno Edge serial port. Note that your will likely have a different identifier than what's shown below.

Arduino	File	Edit	Sketch	Tools	Help		
				Auto Fo	ormat	36 T	
				Archive	Sketch		
				Fix Enc	oding & Reload		
				Manage	e Libraries	0.36 (
				Serial N	Nonitor	\0 %N	4
				Serial P	flotter	☆第日	
				WiFi10	1 / WiFiNINA Firmware Updater		
				Evo Fla	shload		
				Board:	"Sno Edge 50"	;	
				FPGA Ir	mage: "16MHz Standard (Float, Servo, Quad) r3269")	
				Port: "/	dev/cu.usbserial-DB011OEL"	;	Serial ports
				Get Boa	ard Info		/dev/cu.BLTH
				Program	nmer: "AVRISP mkll"	,	/dev/cu.Bluetooth-Incomina-Port
					potloader		✓ /dev/cu.usbserial-DB0110EL

3. Go to File > Examples > XLR8Info and select GetXLR8Version

4. In the GetXLR8Version sketch window, click on the Upload button

5. Check the Serial Monitor window for the output, which should look like the output below. Note that you will need to set the baud rate for the Serial Monitor to 115200 for this sketch to display output correctly.

Board Type: Sno Edge 50 FPGA Image: 16 MHz r3253
XLR8 Hardware Version = 3253 Modified working copy XLR8 CID = 0xC020960C
Design Configuration = 0x8000C8A Image = 1 Clock = 32MHz PLL Speed = 16MHz FPGA Size = M50
No Builtin XB Enabled
OpenXLR8 Info Regs = 3 Info Reg 1 = 0x11 Info Reg 2 = 0x12 Info Reg 3 = 0x13
Int Osc = 55.08 MHz

If you get this output from GetXLR8Version, that means everything is installed correctly. Congratulations!