

EV2661-C-00A

Evaluation Board of 500mA Linear Charger with PPM for SingleCell Li-ion Battery

The Future of Analog IC Technology

DESCRIPTION

The EV2661-C-00A is an evaluation board for the MP2661, a highly-integrated single-cell Li-Ion/Li-Polymer battery charger with system power path management, targeted at space limited portable applications. It takes input power from either an AC adapter or a USB port to supply the system load and charge the battery independently. The charger section features trickle charge, constant current (CC) and constant voltage (CV) regulation, charge termination and charge status.

EV2661 ensures the continuous power to the system by automatically selecting the input, the battery or both to power the system.

EV2661 provides system short circuit protection to prevent the Li-lon battery from being damaged due to excessive high current.

EV2661 cuts off the path between battery and system when battery UVLO to prevent the Li-Ion battery from being overly discharged.

Through the I2C connector on EV2661, the customer can program the charging parameters, such as: input current limit, input voltage regulation limit, charging current, battery regulation voltage, and battery UVLO.

ELECTRICAL SPECIFICATION

Parameter	Symbol	Value	Units
Input Voltage	V _{IN}	4.6 - 5.5	V
Battery Voltage	V_{BATT}	3.60 - 4.545	V
Input Current Limit	I _{IN} Limit	85 - 455	mA
V _{IN} Regulation Voltage	V _{IN} Limit	V _{BATT} +400mV	V
Charge Current	I _{CHG}	8 - 535	mA
Discharge Current	I _{DSG}	400 - 3200	mA

FEATURES

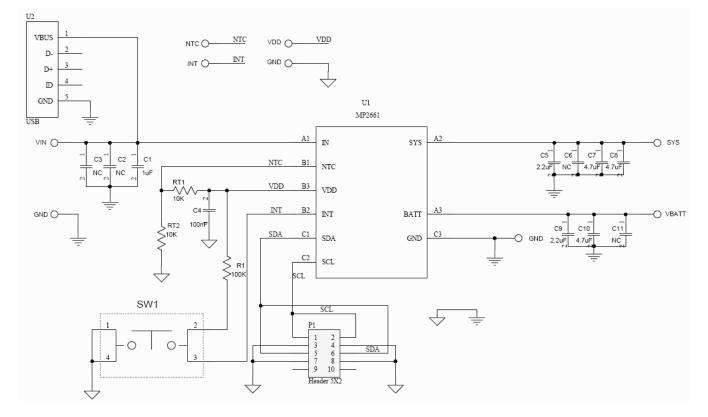
- Fully Autonomous Charger for Single-Cell Li-Ion/Polymer Batteries
- Current Limit for USB Port
- Complete Power Path Management for Simultaneously Powering the System and Charging the Battery
- 0.5% Charging Voltage Accuracy
- 12V Maximum Voltage for the Input Source
- I²C Interface for Setting charging Parameters and Status Reporting
- Robust Charging Protection Including Battery Temperature Monitor and Programmable Timer
- Battery Disconnection Function

APPLICATIONS

- Wearable devices
- Smart Handheld Devices
- Fitness Accessories
- Smart Watches

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

EV2661-C-00A EVALUATION BOARD

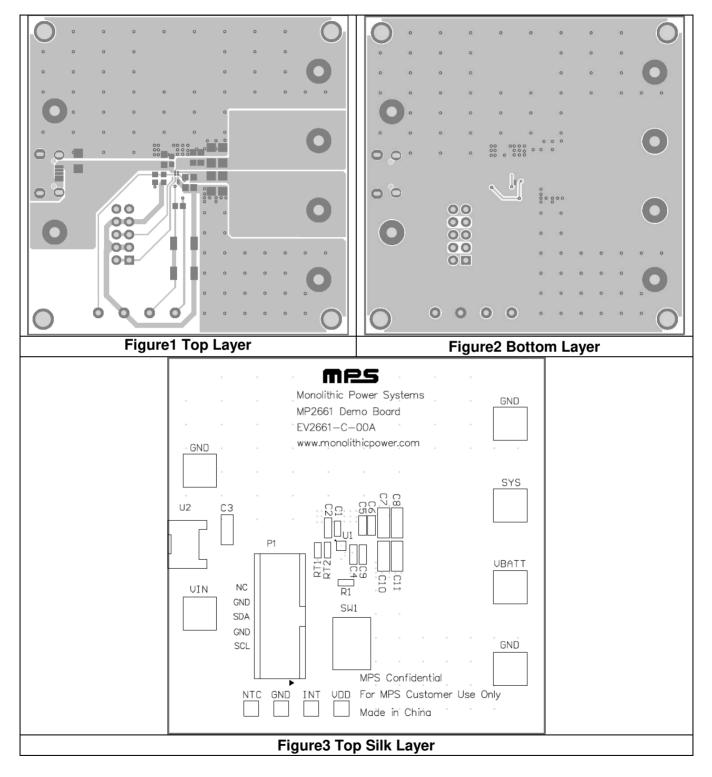


(L x W x H) 2.5" x2.5"x 0.063" (6.35cm x 6.35cm x 0.16cm)

Board Number	MPS IC Number
EV2661-C-00A	MP2661GC-xxxx*

*: "xxxx" is the register setting option. The factory default is "0000". This content can be viewed in I²C register map. For customer options, please contact an MPS FAE to obtain a "XXXX" value.

EVALUATION BOARD SCHEMATIC



EV2661-C-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Part Number
1	C1	1µF	Ceramic Cap;25V; X7R;0603;	0603	muRata	GRM188R71E105KA12D
2	C5, C9	2.2µF	Ceramic Cap;25V; X7R;0805;	0805	muRata	GRM21BR71E225KA73L
1	C2	NC	Ceramic Cap;25V; X7R;0805;	0805	muRata	GRM21BR71E225KA73L
3	C7, C8, C10	4.7µF	Ceramic Cap;25V; X7R;1206	1206	muRata	GRM31CR71E475KA88L
1	C4	100nF	Ceramic Cap;25V; X7R;0805;	0805	HHEC	C0805X104K025T
1	C6	NC	Ceramic Cap;25V; X7R;0805;	0805	muRata	GRM21BR71E225KA73L
2	C3, C11	NC	Ceramic Cap;25V; X7R;1206	1206	muRata	GRM31CR71E475KA88L
1	P1		Header, 5-Pin, Dual row			
1	R1	100k	Film Resistor;1%;	0603	Yageo	RC0603FR-07100KL
2	RT1, RT2	10k	Film Resistor;1%;	0603	Yageo	RC0603FR-0710KL
1	U2		Micro-B USB connector;			
1	U1	IC	MP2661GC-0000	WCSP 1.55mm* 1.55mm	MPS	MP2661GC-0000

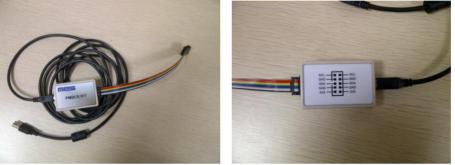
PRINTED CIRCUIT BOARD LAYOUT

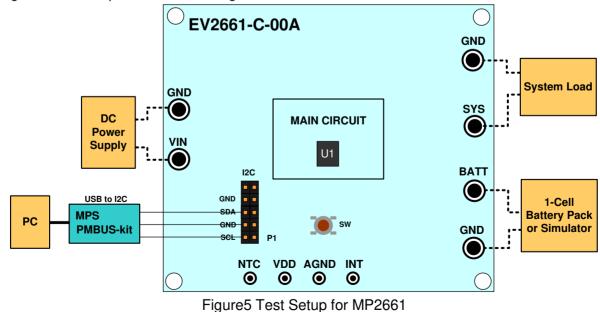
QUICK START GUIDE

This board is designed for MP2661 which is a highly-integrated single-cell Li-Ion/Li-Polymer battery charger with system power path management function. And layout accommodates most commonly used capacitors. The default function of this board is preset for charger mode and the charge full voltage is preset to 4.200V for 1 cell Li-Ion battery.

Evaluation Platform Preparation:

1) USB-to-I²C Communication Kit




Figure4 USB-to-I²C Communication Kit

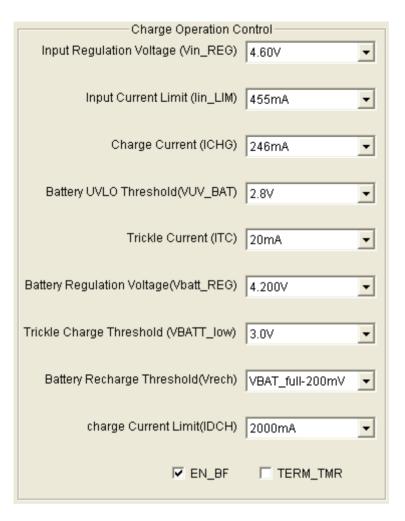
2) Software - double-click on the MP2661 Evaluation Kit_R0.6.EXE file and open the software. The software supports the Windows® XP operating systems.

3) A computer with at least one USB port and a USB cable. The MP2661 evaluation software must be properly installed.

4) Original Test Setup for MP2661 in Figure5

5) Turn on the computer. Launch the MP2661 evaluation software. The main window of the software is shown in Figure 6.

IPS MP2661 Evaluation Kit File REG control Help					
C ON C OFF	© CHG ON	BATT FET C CHG OFF C DSG OF	F	Watchdog Watch	Natchdog Timer Disable Timer 🔹 dog AUTO Reset Rate
Charge Operation C Input Regulation Voltage (Vin_REG)		Constant Current Charge Timer	-	Watchdog Reset	06s 🖵
Input Current Limit (lin_LIM)	,	Chable 2X extened safety timer Other Control Thremal Regulation Threshold 120	0C 💌		Auto monitor Register
Charge Current (ICHG)		Fault Reporting			06s 👻
Battery UVLO Threshold(VUV_BAT) Trickle Current (ITC)			Input Source C	14	7 6 5 4 3 2 1 0 0 0 1 1 0 1 1 1
Battery Regulation Voltage(Vbatt_REG)	4.200V •			Control (0X02) Current (0X03)	0 0 R R 0 1 0 0 R R R 0 1 1 1 0 R 1 0 0 1 0 1 0
Trickle Charge Threshold (VBATT_low)	3.0V •	System Status Reporting	Miscellaneous C	Control (0X05) Control (0X06)	1 0 1 0 0 0 1 1 R 1 0 0 1 0 1 0 R 1 0 0 1 1 0 1 0 R 1 0 0 0 1 0 1 1
Battery Recharge Threshold(Vrech)			System	Status(0X07) Fault (0X08)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Discharge Current Limit(IDCH) I EN_BF	2000mA		Write All		Register Rese
VPMBUS: Connected.	MP2661 Demo board:	Connected.	12C 400kHz	ww	w.monolithicpower.com


Figure6 MP2661evaluation software

Procedure

Make sure all the connections are normal -- the EVPMBUS connected and EV2661-C-00A connected. It is ready to run the program!

Charger Function

1. Set Input Voltage Regulation at 4.60 V (the range is 3.88 - 5.08V)

Input Regulation Voltage (Vin_REG)	4.60V 💌
	4.36V
	4.44V
	4.52V
	4.60V
	4.68V
	4.76V
	4.84V 💌

2. Set Input Current Limit to 455 mA (the range is 85 – 455mA)

Input Current Limit (lin_LIM)	455mA	•
	130mA	~
	175mA	
	220mA	
	265mA	=
	310mA	
	355mA	
	455mA	*

3. Set Constant Charge Current, ICHG to 246 mA (the range is 8 - 535mA)

Charge Current (ICHG)	246mA 🔹
	195mA 🔨
	212mA
	229mA
	246mA
	263mA 📃
	280mA 📃
	297mA
	314mA
	331mA
	348mA
	365mA 🛛 🖌

4. Set BATT UVLO threshold to 2.8V (the range is 2.4 - 3.1V)

Battery UVLO Threshold(VUV_BATT)	2.8V	•
	2.7V	~
	2.8V	
	2.9V	
	3.0V	
	3.1V	~

5. Set Trickle Current to 20 mA (the range is 6 – 27mA)

Trickle Current (ITC)	20mA 💌
	6mA
	13mA
	20mA
	27mA

Battery Regulation Voltage(Vbatt_REG)	4.200V	•
	4.125V	~
	4.140V	
	4.155V	
	4.170V	
	4.185V	
	4.200V	
	4.215V	
	4.230V	-
	4.245V	
	4.260V	
	4.275V	*

6. Set Charge Full Voltage to 4.200 V (the range is 3.6 - 4.545V)

7. Set Trickle - Charge to CC Charge Threshold Voltage to 3.0 V (the range is 2.8 - 3.0V)

Trickle Charge Threshold (VBATT_low)	3.0V 💌
	2.8V
	3.0V

8. Set Battery auto recharge Voltage to VBATT_Full – 300mV (the range is 150mV or 300mV)

Battery Recharge Threshold(Vrech)	VBAT_full-300mV	•
	VBAT_full-150mV	
	VBAT_full-300mV	

9. Set battery discharge current limit to 2A (the range is 400mA to 3200mA):

Discharge Current Limit(IDCH)	2000mA	•
	1800mA	~
	2000mA	
	2200mA	
	2400mA	
	2600mA	-

10. Termination Function Select

EN_BF ERM_TMR

Table 1 Termination Function Selection Tabl	Table 1	Termination	Function	Selection	Table
---	---------	-------------	----------	-----------	-------

EN BF	TERM TMR	After I _{BATT} hit I	_{BF} in CV mode
		Operation	Charge Status
	х	Keep CV Charge	Charge
		Charge Done	Charge Done
	2	Keep CV Charge	Charge Done

Others

1. LDO FET Control:

This bit only controls the on/off of the LDO FET.

2. BATT FET Control:

	BATT FET	
CHG ON	C CHG OFF	
CHG UN	CHG OFF	DSG OFF

CHG ON and CHG OFF only control the on/off of the Battery FET in charge mode.

DSG OFF selected could turn off the Battery FET at both charge and discharge mode.

DSG OFF unselected could not turn on Battery FET; pull INT to low by push button could turn on Battery FET when it's turned off by DSG OFF.

3. Other Control.

Other Conti	rol ———	
Thremal Regulation Threshold	120oC	·
🔽 Enable NTC 🔽 El	N_PCB OTP	

Above setting enables PCB OTP; for other application, please refer to the table below.

Enable NTC	EN_PCB OTP	Function
	х	Disable
		NTC
	2	PCB OTP

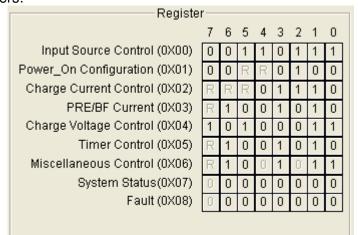
Table 2 NTC Function Selection Table

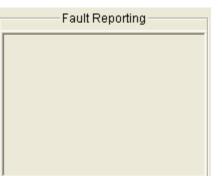
4. Safety Timer Setting

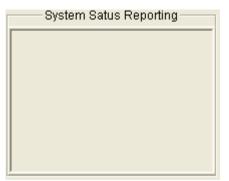
5. I²C Watchdog Timer

	Watchdog Timer
Watchdog	Disable Timer 🛛 💌
🔲 Watel	hdog AUTO Reset
Watchdog	Rate
Reset	04s 👻

www.MonolithicPower.com


MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.


6. Resister Auto Monitor


R	egister monitoring
Read all Register	Auto monitor Register Rate
	Register

7. Content of the Registers:

8. Monitor the MP2661 operation status and Fault report

♦Notes

1. For the other detailed description on the operation of this part, please contact local FAE to apply the latest datasheet

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.