

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

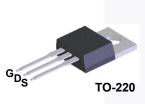
November 2015

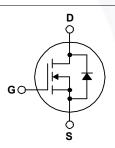
FCP125N60E

N-Channel SuperFET[®] II Easy-Drive MOSFET

600 V, 29 A, 125 m Ω

Features


- 650 V @T_J = 150°C
- Typ. R_{DS(on)} = 102 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 75 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff)} = 258 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- Telecom / Sever Power Supplies
- Industrial Power Supplies

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET easy-drive series offers slightly slower rise and fall times compared to the SuperFET II MOSFET series. Noted by the "E" part number suffix, this family helps manage EMI issues and allows for easier design implementation. For faster switching in applications where switching losses must be at an absolute minimum, please consider the SuperFET II MOSFET series.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		FCP125N60E	Unit		
V _{DSS}	Drain to Source Voltage			600	V
V _{GSS}	Gate to Source Voltage	- DC		±20	V
		- AC	(f > 1 Hz)	±30	- V
ID	Drain Current	- Continuous (T _C = 25 ^o C)		29	A
		- Continuous (T _C = 100 ^o C)		18	
I _{DM}	Drain Current	- Pulsed	(Note 1)	87	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			720	mJ
I _{AR}	Avalanche Current (Note 1)			6	А
E _{AR}	Repetitive Avalanche Energy (Note 1)			2.78	mJ
dv/dt	MOSFET dv/dt			100	V/ns
	Peak Diode Recovery dv/dt (Note 3)			20	
P _D	Devues Dissingtion	(T _C = 25 ^o C)		278	W
	Power Dissipation	- Derate Above 25°C		2.2	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C

Thermal Characteristics

Symbol	Parameter	FCP125N60E	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.45	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

FCP125N60E

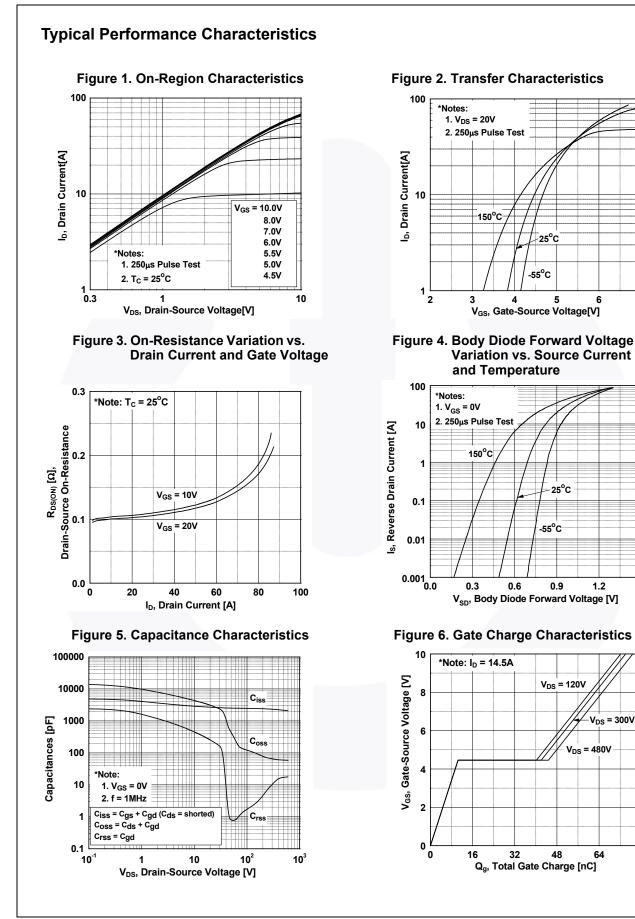
I

N-Channel SuperFET[®] II Easy-Drive MOSFET

FCP125N60E aracteristics Tracteristics Tracteristics Tracteristics to Source Breakdown V adown Voltage Temperate icient Gate Voltage Drain Current ics Threshold Voltage Drain to Source On Resard Transconductance :teristics Capacitance it Capacitance	roltage ure ent t	Tube Tube otherwise noted. Test Condition V _{GS} = 0 V, I _D = 10 mA V _{GS} = 0 V, I _D = 10 mA I _D = 10 mA, Reference V _{DS} = 600 V, V _{GS} = 0 V _{DS} = 480 V, V _{GS} = 0 V _{GS} = ±20 V, V _{DS} = 0 V _{GS} = 10 V, I _D = 250 μ V _{GS} = 10 V, I _D = 14.5 μ V _{DS} = 20 V, I _D = 14.5 μ	, $T_J = 25^{\circ}C$, $T_J = 150^{\circ}C$ ed to $25^{\circ}C$ V V, $T_C = 125^{\circ}C$ V A A	Min. 600 650 - - - 2.5 - -	N/A Typ. - 0.7 - 2 - 102	50 u Max. - - 1 ±100	Units Unit V V/ ^o C μΑ nA
Parameter ics to Source Breakdown V adown Voltage Temperate icient Gate Voltage Drain Curren to Body Leakage Curren ics Threshold Voltage Drain to Source On Res ard Transconductance cteristics Capacitance	roltage ure ent t	Test Condition $V_{GS} = 0 \ V, \ I_D = 10 \ mA$ $V_{GS} = 0 \ V, \ I_D = 10 \ mA$ $I_D = 10 \ mA, \ Reference V_{DS} = 600 \ V, \ V_{GS} = 0 V_{DS} = 480 \ V, \ V_{GS} = 0 V_{GS} = \pm 20 \ V, \ V_{DS} = 0 V_{GS} = V_{DS}, \ I_D = 250 \ \mu V_{GS} = 10 \ V, \ I_D = 14.5 \ \mu $, $T_J = 25^{\circ}C$, $T_J = 150^{\circ}C$ ed to $25^{\circ}C$ V V, $T_C = 125^{\circ}C$ V A A	600 650 - - -	- - 0.7 - 2 - - 102	- - 1 ±100	V V/ ^o C μΑ nA
to Source Breakdown V adown Voltage Temperati icient Gate Voltage Drain Curren to Body Leakage Curren ics Threshold Voltage Drain to Source On Res ard Transconductance cteristics Capacitance	ent	$\begin{split} & V_{GS} = 0 \ V, \ I_D = 10 \ mA \\ & V_{GS} = 0 \ V, \ I_D = 10 \ mA \\ & I_D = 10 \ mA, \ Reference \\ & V_{DS} = 600 \ V, \ V_{GS} = 0 \\ & V_{DS} = 480 \ V, \ V_{GS} = 0 \\ & V_{GS} = \pm 20 \ V, \ V_{DS} = 0 \\ & V_{GS} = \pm 20 \ V, \ V_{DS} = 0 \\ & V_{GS} = 10 \ V, \ I_D = 14.5 \ \mu \end{split}$, $T_J = 25^{\circ}C$, $T_J = 150^{\circ}C$ ed to $25^{\circ}C$ V V, $T_C = 125^{\circ}C$ V A A	600 650 - - -	- - 0.7 - 2 - - 102	- - 1 ±100	V V/ ^o C μΑ nA
to Source Breakdown V adown Voltage Temperati icient Gate Voltage Drain Curren to Body Leakage Curren CS Threshold Voltage Drain to Source On Res ard Transconductance Eteristics Capacitance	ent	$V_{GS} = 0 \text{ V}, I_{D} = 10 \text{ mA}$ $I_{D} = 10 \text{ mA}, \text{Reference}$ $V_{DS} = 600 \text{ V}, V_{GS} = 0$ $V_{DS} = 480 \text{ V}, V_{GS} = 0$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$ $V_{GS} = 10 \text{ V}, I_{D} = 250 \text{ \mu}$ $V_{GS} = 10 \text{ V}, I_{D} = 14.5 \text{ \mu}$	$T_{J} = 150 \circ C$ ed to 25°C V $V,T_{C} = 125^{\circ}C$ V A	650 - - - -	- 0.7 - 2 - - 102	- - 1 ±100	V V/ ^ο C - μΑ nA
adown Voltage Temperati icient Gate Voltage Drain Current to Body Leakage Current CS Threshold Voltage Drain to Source On Res ard Transconductance Ceristics Capacitance	ent	$V_{GS} = 0 \text{ V}, I_{D} = 10 \text{ mA}$ $I_{D} = 10 \text{ mA}, \text{Reference}$ $V_{DS} = 600 \text{ V}, V_{GS} = 0$ $V_{DS} = 480 \text{ V}, V_{GS} = 0$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$ $V_{GS} = 10 \text{ V}, I_{D} = 250 \text{ \mu}$ $V_{GS} = 10 \text{ V}, I_{D} = 14.5 \text{ \mu}$	$T_{J} = 150 \circ C$ ed to 25°C V $V,T_{C} = 125^{\circ}C$ V A	650 - - - -	- 0.7 - 2 - - 102	- - 1 ±100	V V/ ^ο C - μΑ nA
adown Voltage Temperati icient Gate Voltage Drain Current to Body Leakage Current CS Threshold Voltage Drain to Source On Res ard Transconductance Ceristics Capacitance	ent	$\begin{split} I_{D} &= 10 \text{ mA, Reference} \\ V_{DS} &= 600 \text{ V}, \text{ V}_{GS} = 0 \\ V_{DS} &= 480 \text{ V}, \text{ V}_{GS} = 0 \\ V_{GS} &= \pm 20 \text{ V}, \text{ V}_{DS} = 0 \\ \end{split}$	ed to 25° C V V,T _C = 125° C V A A	- - -	0.7 - 2 - 102	1 - ±100 3.5	V/°C μA nA
icient Gate Voltage Drain Curren to Body Leakage Curren CS Threshold Voltage Drain to Source On Res ard Transconductance Capacitance	ent	$V_{DS} = 600 \text{ V}, V_{GS} = 0$ $V_{DS} = 480 \text{ V}, V_{GS} = 0$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$ $V_{GS} = V_{DS}, I_D = 250 \mu$ $V_{GS} = 10 \text{ V}, I_D = 14.5 \mu$	V V,T _C = 125°C V A A	-	- 2 - 102	1 - ±100 3.5	μA nA
to Body Leakage Curren CS Threshold Voltage Drain to Source On Res ard Transconductance Eteristics Capacitance	nt	$V_{DS} = 480 \text{ V}, V_{GS} = 0$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$ $V_{GS} = V_{DS}, I_D = 250 \text{ \mu}$ $V_{GS} = 10 \text{ V}, I_D = 14.5 \text{ J}$	V,T _C = 125 ^o C V A A	-	- - 102	- ±100	nA
to Body Leakage Curren CS Threshold Voltage Drain to Source On Res ard Transconductance Eteristics Capacitance	nt	$V_{GS} = \pm 20 V, V_{DS} = 0$ $V_{GS} = V_{DS}, I_D = 250 \mu$ $V_{GS} = 10 V, I_D = 14.5 \mu$	A A	-	- - 102	3.5	nA
Threshold Voltage Drain to Source On Res ard Transconductance teristics Capacitance		$V_{GS} = \pm 20 V, V_{DS} = 0$ $V_{GS} = V_{DS}, I_D = 250 \mu$ $V_{GS} = 10 V, I_D = 14.5 \mu$	A A	- 2.5	- 102	3.5	
Threshold Voltage Drain to Source On Res ard Transconductance teristics Capacitance	sistance	V _{GS} = 10 V, I _D = 14.5	A	2.5	102		V
Drain to Source On Res ard Transconductance cteristics Capacitance	sistance	V _{GS} = 10 V, I _D = 14.5	A	2.5 - -	102		V
Drain to Source On Res ard Transconductance cteristics Capacitance	sistance	V _{GS} = 10 V, I _D = 14.5	A	-	-	105	
cteristics Capacitance		00		-		125	mΩ
Capacitance					25	-	S
Capacitance							1
				-	2250	2990	pF
		$V_{\rm DS}$ = 380 V, $V_{\rm GS}$ = 0	V,	-	60	80	pF
rse Transfer Capacitance	e	f = 1 MHz	_	-	17	-	pF
	-	$V_{DS} = 0 V \text{ to } 480 V, V_{0}$		-	258	-	pF
				-	75	95	nC
		$V_{GS} = 10 V$		-	10	-	nC
			(Note 4)	-	33	-	nC
alent Series Resistance		f = 1 MHz		-	3.5	-	Ω
cteristics							
				-	23	56	ns
,		$V_{DD} = 380 \text{ V}, \text{ I}_{D} = 14.5 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$ (Note 4)		-	20	50	ns
Off Delay Time				-	106	222	ns
				-	23	56	ns
ode Characteristic	e						1
		e Forward Current		-	-	29	A
imum Pulsed Drain to Source Diode Forward Current		-	-	87	Α		
				-	-	1.2	V
	-	000 000		-	376	-	ns
		dl _F /dt = 100 A/µs		-	6.5	-	μC
	num Continuous Drain to num Pulsed Drain to Sou	Gate Charge at 10V to Source Gate Charge to Drain "Miller" Charge valent Series Resistance acteristics On Delay Time On Rise Time Off Delay Time Off Fall Time Off Fall Time ode Characteristics num Continuous Drain to Source Diode num Pulsed Drain to Source Diode Fo to Source Diode Forward Voltage rse Recovery Time	Gate Charge at 10V $V_{DS} = 380 \text{ V}, I_D = 14.5$ to Source Gate Charge $V_{GS} = 10 \text{ V}$ to Drain "Miller" Charge $V_{GS} = 10 \text{ V}$ valent Series Resistance $f = 1 \text{ MHz}$ acteristicsOn Delay Time $V_{DD} = 380 \text{ V}, I_D = 14.5$ Off Delay Time $V_{DD} = 380 \text{ V}, I_D = 14.5$ Off Fall Time $V_{GS} = 10 \text{ V}, R_g = 4.7 \text{ g}$ ode Characteristicsnum Continuous Drain to Source Diode Forward Currentnum Pulsed Drain to Source Diode Forward Currentto Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 14.5 \text{ J}$ rse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 14.5 \text{ J}$	Gate Charge at 10V $V_{DS} = 380 \text{ V}, \text{ I}_{D} = 14.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ to Source Gate Charge $V_{GS} = 10 \text{ V}$ to Drain "Miller" Charge (Note 4) valent Series Resistance $f = 1 \text{ MHz}$ acteristicsOn Delay Time $V_{DD} = 380 \text{ V}, \text{ I}_{D} = 14.5 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$ Off Delay Time $V_{DD} = 380 \text{ V}, \text{ I}_{D} = 14.5 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$ Off Fall Time (Note 4) ode Characteristicsnum Continuous Drain to Source Diode Forward Current num Pulsed Drain to Source Diode Forward Current to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 14.5 \text{ A},$ $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 14.5 \text{ A},$	Gate Charge at 10V to Source Gate Charge to Drain "Miller" Charge valent Series Resistance $V_{DS} = 380 \text{ V}, I_D = 14.5 \text{ A}, V_{GS} = 10 \text{ V}$ -Acteristics On Delay Time On Rise Time Off Delay Time Off Fall Time $V_{DD} = 380 \text{ V}, I_D = 14.5 \text{ A}, V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ -Ode Characteristics num Continuous Drain to Source Diode Forward Current to Source Diode Forward Current-Ode Characteristics num Pulsed Drain to Source Diode Forward Current to Source Diode Forward Voltage-V_{GS} = 0 V, I_{SD} = 14.5 \text{ A}, V_{GS} = 0 V, I_{SD} = 14.5 \text{ A},The Recovery TimeV_{GS} = 0 V, I_{SD} = 14.5 \text{ A},V_{GS} = 0 V, I_{SD} = 14.5 \text{ A},The Recovery TimeV_{GS} = 0 V, I_{SD} = 14.5 \text{ A},	Gate Charge at 10V to Source Gate Charge $V_{DS} = 380 \text{ V}, \text{ I}_D = 14.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ -75to Source Gate Charge to Drain "Miller" Charge $V_{GS} = 10 \text{ V}$ (Note 4)-33valent Series Resistancef = 1 MHz-3.5acteristicsOn Delay Time Off Delay Time $V_{DD} = 380 \text{ V}, \text{ I}_D = 14.5 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 4.7 \Omega$ -23Off Delay Time Off Fall Time-23ode Characteristicsnum Continuous Drain to Source Diode Forward Current num Pulsed Drain to Source Diode Forward Currentnum Continuous Drain to Source Diode Forward Current $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 14.5 \text{ A},$ $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 14.5 \text{ A},$ res Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 14.5 \text{ A},$ $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 14.5 \text{ A},$ -376	Gate Charge at 10V $V_{DS} = 380 \text{ V}, I_D = 14.5 \text{ A},$ - 75 95 to Source Gate Charge $V_{GS} = 10 \text{ V}$ - 10 - to Drain "Miller" Charge (Note 4) - 33 - valent Series Resistance f = 1 MHz - 3.5 - acteristics On Delay Time $V_{DD} = 380 \text{ V}, I_D = 14.5 \text{ A},$ - 23 56 On Rise Time $V_{DS} = 10 \text{ V}, R_g = 4.7 \Omega$ - 106 222 Off Delay Time $V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ - 106 222 Off Fall Time (Note 4) - 23 56 ode Characteristics num Continuous Drain to Source Diode Forward Current - - 29 num Pulsed Drain to Source Diode Forward Current - - 87 to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 14.5 \text{ A},$ - - 1.2 rse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 14.5 \text{ A},$ - 376 -

4. Essentially independent of operating temperature.

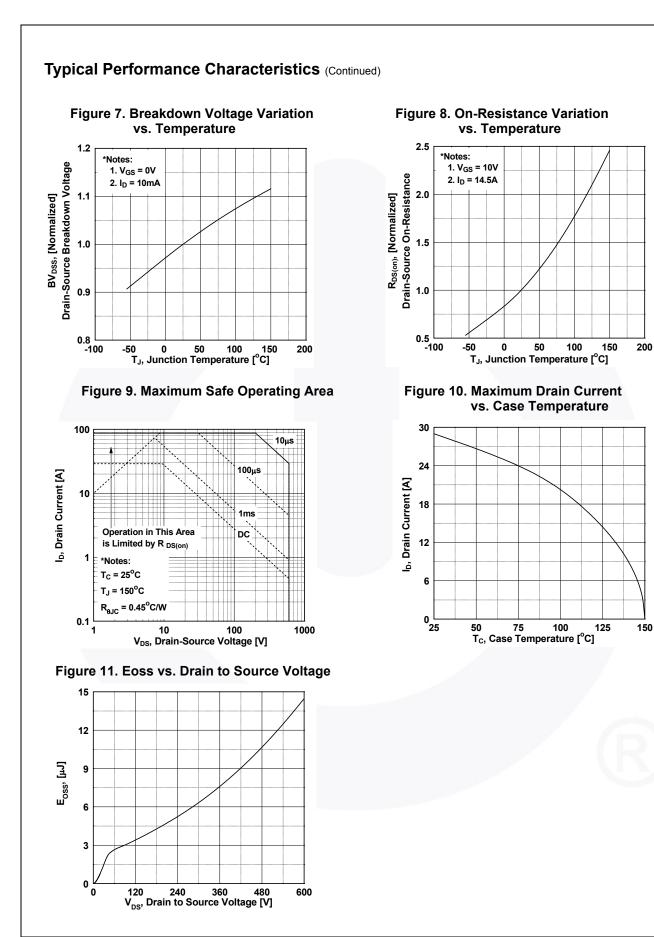
6


1.2

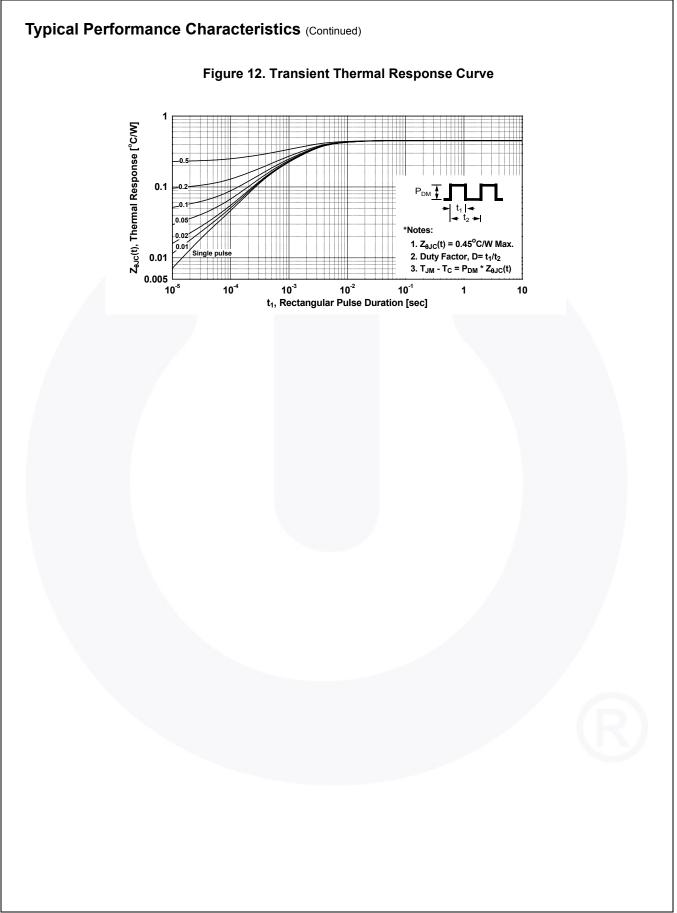
V_{DS} = 300V

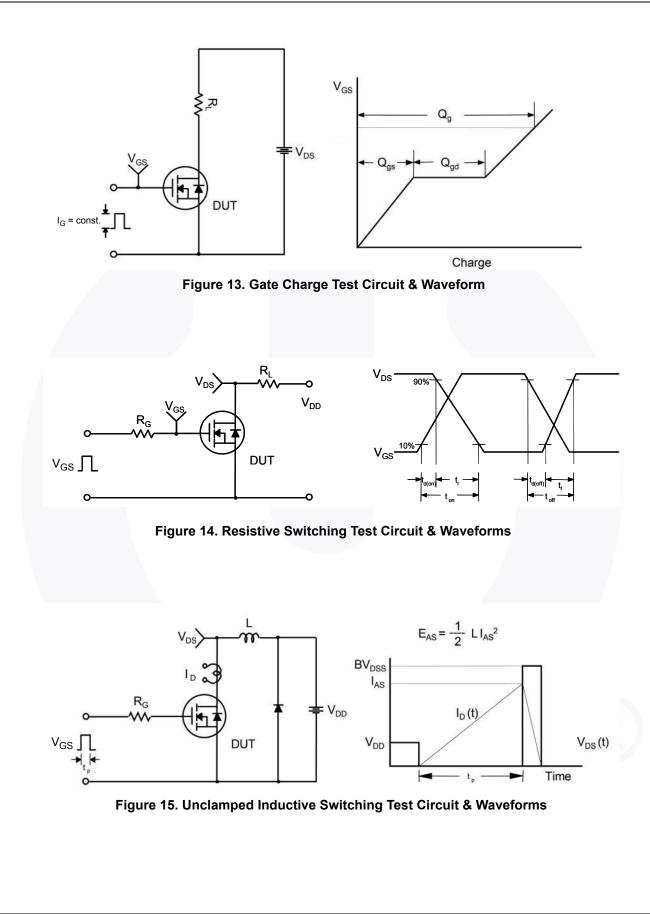
64

1.5

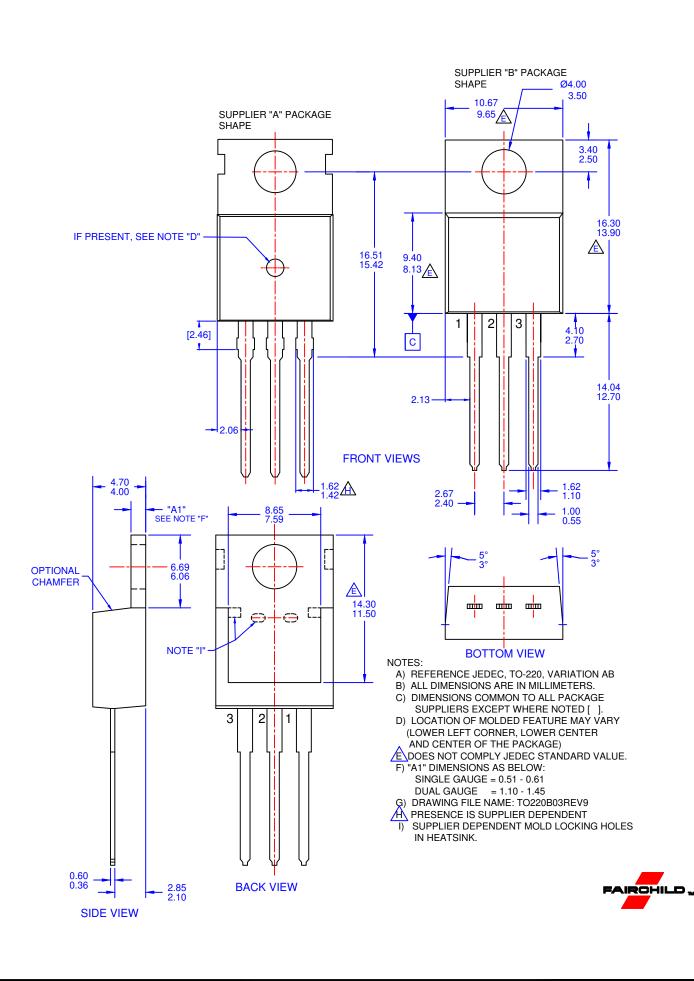

7

©2015 Fairchild Semiconductor Corporation FCP125N60E Rev. 1.0


80


FCP125N60E — N-Channel SuperFET[®] II Easy-Drive MOSFET

©2015 Fairchild Semiconductor Corporation FCP125N60E Rev. 1.0


4

FCP125N60E — N-Channel SuperFET[®] II Easy-Drive MOSFET

DUT + ۱_{sd} م 0 L Driver R_G Same Type as DUT V_{DD} ∏∏ v_{gs} - dv/dt controlled by R_{G} - \mathbf{I}_{SD} controlled by pulse period Î Gate Pulse Width V_{GS} D = Gate Pulse Period 10V (Driver) T I_{FM} , Body Diode Forward Current I_{SD} di/dt (DUT) I_{RM} Body Diode Reverse Current V_{DS} (DUT) Body Diode Recovery dv/dt V_{SD} V_{DD} Body Diode Forward Voltage Drop Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC