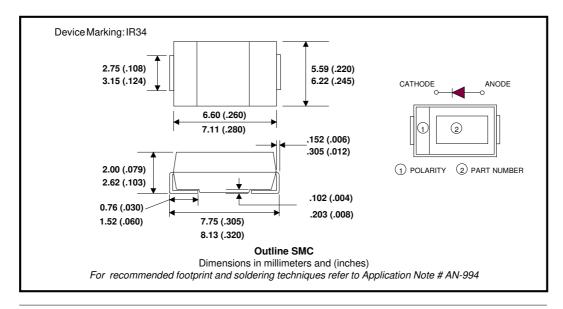

International Rectifier

MBRS340TR

SCHOTTKY RECTIFIER

3 Amp


Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	Α
V _{RRM}	40	V
I _{FSM} @t _p =5μs sine	1580	Α
V _F @3.0Apk,T _J =125°C	0.43	V
T _J range	- 55 to 150	°C

Description/ Features

The MBRS340TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Bulletin PD-20585 rev. D 03/03

International TOR Rectifier

Voltage Ratings

	Part number	MBRS340TR
V_{R}	Max. DC Reverse Voltage (V)	40
V _{RWI}	Max. Working Peak Reverse Voltage (V)	

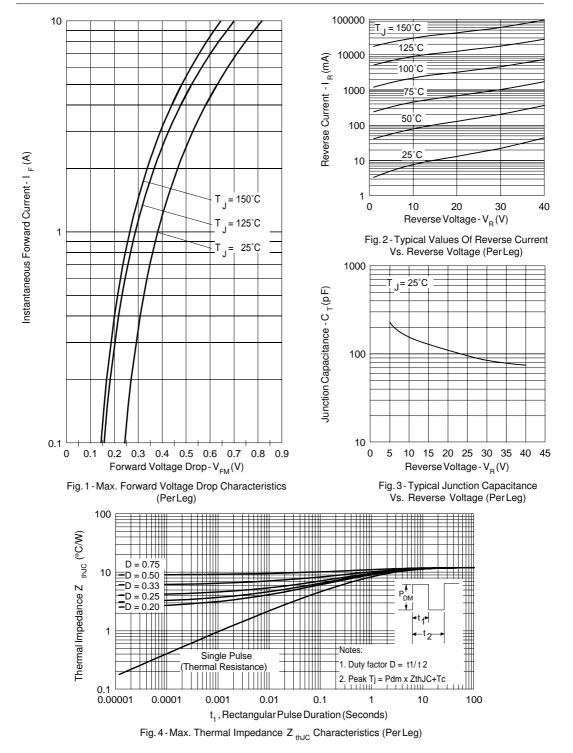
Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle @ T _L = 118 °C, rectangular wave form	
		4.0		50% duty cycle@T _L = 110 °C, rectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	1580	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	80		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	6	mJ	T _J =25°C, I _{AS} =1.0A, L=12mH	
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 μ sec Frequency limited by T_J max. $Va = 1.5 \times Vr$ typical	

Electrical Specifications

	Parameters	Value	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.525	V	@ 3A	T 05.00
		0.68	V	@ 6A	T _J = 25 °C
		0.43	V	@ 3A	T (05.00
		0.57	V	@ 6A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage (1)	2.0	mA	T _J = 25 °C	
	Current	20	mA	T _J = 100°C	$V_R = \text{rated } V_R$
		35	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	230	pF	V _R = 5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _S	Typical Series Inductance	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%


Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max.JunctionTemperatureRange (*)	-55 to 150	°C	
T _{stg}	Max.StorageTemperatureRange	-55 to 150	°C	
R _{thJL}	Max.Thermal Resistance Junction to Lead (**)	12	°C/W	DCoperation
R _{thJA}	Max.Thermal Resistance Junction to Ambient	46	°C/W	DCoperation
wt	Approximate Weight	0.24(0.008)	g(oz.)	
	Case Style	SMC		Similar to DO-214AB
	Device Marking	IR34		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \qquad \text{thermal } \text{runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

Bulletin PD-20585 rev. D 03/03

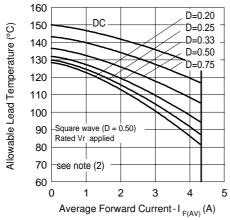


Fig. 4-Maximum Average Forward Current Vs. Allowable Lead Temperature

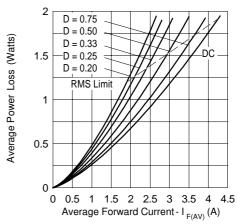


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

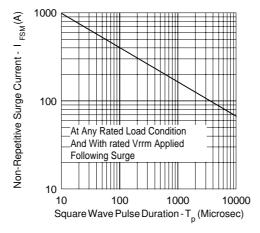
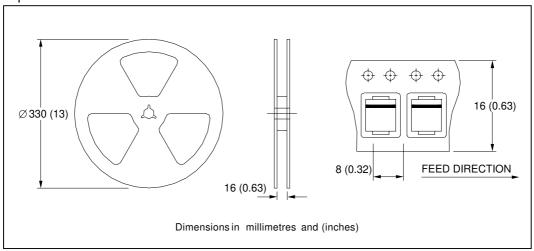
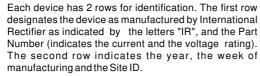
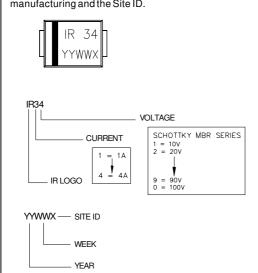



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


 $\begin{aligned} \textbf{(2)} \ \ & \text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} \cdot (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \times \textbf{R}_{\text{thJC}}; \\ & \text{Pd} = \text{Forward Power Loss} = \textbf{I}_{F(AV)} \times \textbf{V}_{\text{FM}} \textcircled{0} \ (\textbf{I}_{F(AV)} / \textbf{D}) \ \ (\text{see Fig. 6}); \\ & \text{Pd}_{\text{REV}} = \text{Inverse Power Loss} = \textbf{V}_{\text{R1}} \times \textbf{I}_{\text{R}} (\textbf{1} - \textbf{D}); \ \textbf{I}_{\text{R}} \textcircled{0} \ \textbf{V}_{\text{R1}} = \textbf{80} \% \text{ rated } \textbf{V}_{\text{R}} \end{aligned}$


Tape & Reel Information

Marking & Identification

Ordering Information

MBRS340TR - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS340TR - 6000 PIECES

MBRS340TR
Bulletin PD-20585 rev. D 03/03

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 03/03