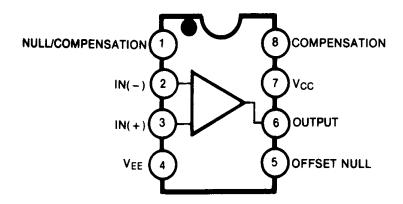


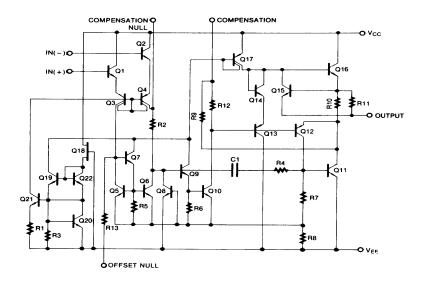
# **KA301A**

# Single Operational Amplifier

#### **Features**


- Short circuit protection and latch free operation
- Slew rate of 10V/µs as a summing amplifier
- Class AB output provides excellent linearity
- · Low bias current

## **Description**


The KA301A is a general purpose operational amplifier which is externally phase compensated, permit a choice of operation for optimum high frequency performance at a selected gain: unity gain compensation can be obtained with a single capacitor.



## **Internal Block Diagram**



## **Schematic Diagram**



## **Absolute Maximum Ratings**

| Parameter                     | Symbol   | Value        | Unit |  |
|-------------------------------|----------|--------------|------|--|
| Supply Voltage                | Vcc      | ±18          | V    |  |
| Differential Input Voltage    | VI(DIFF) | 30           | V    |  |
| Input Voltage                 | VI       | ±15          | V    |  |
| Output short Circuit Duration | -        | Continuous   | -    |  |
| Power Dissipation             | PD       | 500          | mW   |  |
| Operating Temperature Range   | Topr     | 0 ~ +70      | °C   |  |
| Storage Temperature Range     | TSTG     | - 65 ~ + 150 | °C   |  |

## **Electrical Characteristics**

(TA =+25 $^{\circ}$ C, VCC = +15V, VEE = -15V, unless otherwise specified)

| Davamatav                                                             | 0                 | Conditions                                                 |                     |      | KA301A |      |       |
|-----------------------------------------------------------------------|-------------------|------------------------------------------------------------|---------------------|------|--------|------|-------|
| Parameter                                                             | Symbol            |                                                            |                     | Min. | Тур.   | Max. | Unit  |
| Input Offset Voltage                                                  | Vio               | Rs <u>&lt;</u> 50KΩ                                        |                     | -    | 2.0    | 7.5  | mV    |
|                                                                       | VIO               |                                                            | Note 1              | -    | =.     | 10   | mV    |
| Input Offset Current                                                  | lio               |                                                            |                     | -    | 4.5    | 50   | nA    |
|                                                                       | liO               |                                                            | Note 1              | -    | -      | 70   | nA    |
| Input Bias Current                                                    | IBIAS             |                                                            | •                   | -    | 60     | 250  | nA    |
|                                                                       | IBIAS             |                                                            | Note 1              | -    | -      | 300  | nA    |
| Supply Current                                                        |                   | V <sub>C</sub> C = ± 20V                                   | •                   | -    | -      | -    | mA    |
|                                                                       | Icc               | VCC = ± 15V                                                |                     | -    | 2.0    | 3.0  | mA    |
|                                                                       |                   | $V_{CC} = \pm 20V, T_A = T_A(MAX)$                         |                     | -    | -      | -    | mA    |
| Large Signal Voltage Gain                                             | Gv                | $V_{CC} = \pm 15V, R_{L} \ge 20$<br>$V_{O(P-P)} = \pm 10V$ | 2ΚΩ,                | 25   | 160    | -    | V/mV  |
|                                                                       |                   |                                                            | Note 1              | 15   | -      | -    | V/mV  |
| Average Temperature<br>Coefficient of Input<br>Offset Voltage (NOTE2) | ΔV10/ΔΤ           | Note 1                                                     |                     | -    | 6.0    | 30   | μV/°C |
| Average Temperature                                                   |                   | 25 °C ≤ TA ≤ TA(MAX)                                       |                     | -    | 0.01   | 0.3  | nA/°C |
| Coefficient of Input<br>Offset Current (NOTE2)                        | ΔΙΙΟ/ΔΤ           | T <sub>A</sub> (MIN) ≤ T <sub>A</sub> ≤ 25 °C              |                     | -    | 0.02   | 0.6  | nA/°C |
| Input Voltage Range                                                   | Vivo              | VCC = ± 20V                                                | Note 1              | -    | -      | -    | V     |
|                                                                       | V <sub>I(R)</sub> | V <sub>C</sub> C = ± 15V                                   | Note 1              | ± 12 | -      | -    | V     |
| Common-Mode Rejection<br>Ratio                                        | CMRR              | Rs ≤ 50KΩ                                                  | Note 1              | 70   | 95     | -    | dB    |
| Power Supply Rejection<br>Ratio                                       | PSRR              | Rs ≤ 50KΩ                                                  | Note 1              | 70   | 100    | -    | dB    |
| Output Voltage Swing                                                  | Vo(DD)            | VCC = ± 15V                                                | RL = 10KΩ           | ± 12 | ± 14   | -    | V     |
|                                                                       | VO(P.P)           |                                                            | $R_L = 2.0 K\Omega$ | ± 10 | ± 13   | -    | V     |
| Input Resistance (NOTE2)                                              | Rı                | -                                                          | •                   | 0.5  | 2.0    | -    | МΩ    |

#### Note:

1. KA301A:  $0 \le T_A \le +70 \,{}^{\circ}C$ 

2. Guaranteed by design.

## **Typical Performance Characteristics**

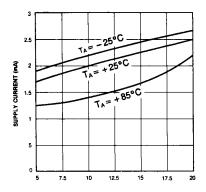



Figure 1. Supply Current

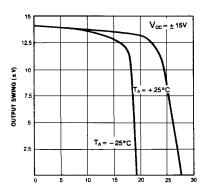



Figure 3. Current Limiting

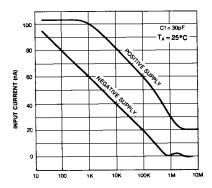



Figure 5. Power Supply Rejection

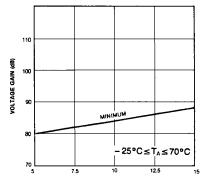



Figure 2. Voltage Gain

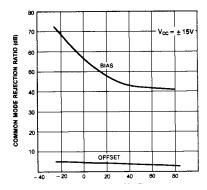
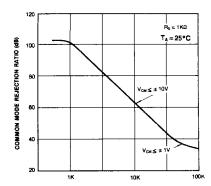
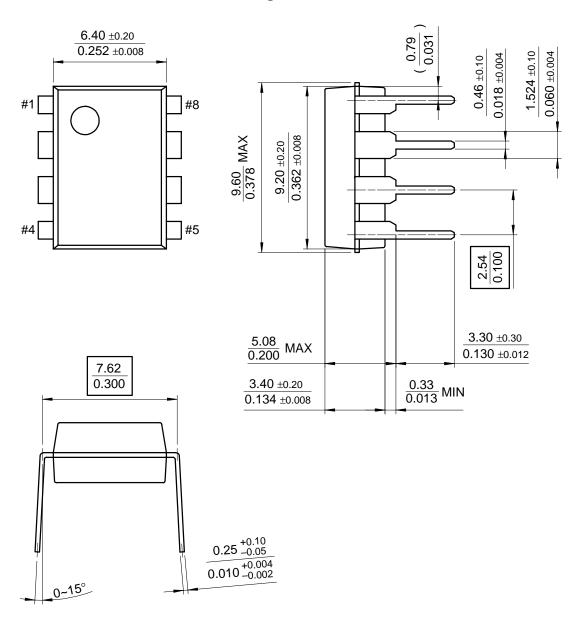



Figure 4. Input Current





Figure 6. Common Mode Rejection

### **Mechanical Dimensions**

### **Package**

#### **Dimensions in millimeters**

## 8-DIP



### **Ordering Information**

| Product Number | Package | Operating Temperature |
|----------------|---------|-----------------------|
| KA301A         | 8-DIP   | 0 ~ + 70 °C           |

#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com