General Description

The MAX3453E–MAX3456E \pm 15kV ESD-protected USBcompliant transceivers interface low-voltage ASICs with USB devices. The devices fully comply with USB 1.1 and USB 2.0 when operating at full (12Mbps) and low (1.5Mbps) speeds. The MAX3453E–MAX3456E operate with V_L as low as +1.65V, ensuring compatibility with low-voltage ASICs.

The MAX3453E–MAX3456E feature a logic-selectable suspend mode that reduces current consumption to less than 40 μ A. Integrated ±15kV ESD protection protects the USB D+ and D- bidirectional bus connections.

The MAX3453E supports only full-speed (12Mbps) operation. The MAX3453E/MAX3454E feature an internal 1.5k Ω USB pullup resistor and an enumeration function that allows devices to logically disconnect while plugged in. The MAX3453E/MAX3455E provide a pushpull bus-detect (BD) output that asserts high when VBUS > +4.0V.

The MAX3453E–MAX3456E operate over the extended temperature range (-40°C to +85°C) and are available in 14-pin TSSOP and 16-pin (3mm x 3mm) thin QFN packages.

Applications
PDAs
PC Peripherals
Cellular Telephones
Data Cradles
MP3 Players

_Features

- ♦ ±15kV ESD Protection on D+ and D-
- USB 1.1 and USB 2.0 (Low-Speed and Full-Speed)-Compliant Transceivers
- Combined VP and VM Inputs/Outputs
- +1.65V to +3.6V V_L Logic Supply Input for Interfacing with Low-Voltage ASICs
- Enumerate Input Function (MAX3453E/MAX3454E)
- Powered from Li+ Battery as Low as +3.1V (MAX3454E/MAX3456E)
- VBUS Detection (MAX3453E/MAX3455E)
- Internal Pullup Resistor (MAX3453E/MAX3454E)
- No Power-Supply Sequencing Required

Ordering Information

PART	TEMP RANGE	PIN-PKG	PKG CODE
MAX3453EEUD	-40°C to +85°C	14 TSSOP	U14-1
MAX3453EETE	-40°C to +85°C	16 Thin QFN	T1633-4
MAX3454EEUD	-40°C to +85°C	14 TSSOP	U14-1
MAX3454EETE	-40°C to +85°C	16 Thin QFN	T1633-4
MAX3455EEUD	-40°C to +85°C	14 TSSOP	U14-1
MAX3455EETE	-40°C to +85°C	16 Thin QFN	T1633-4
MAX3456EEUD	-40°C to +85°C	14 TSSOP	U14-1
MAX3456EETE	-40°C to +85°C	16 Thin QFN	T1633-4

Selector Guide

PART	V _{BUS} POWER- SUPPLY VOLTAGE (V)	V _L POWER- SUPPLY VOLTAGE (V)	INTERNAL PULLUP RESISTOR	V _{BUS} LEVEL DETECT	ENUMERATE	USB SPEED SUPPORTED	±15kV ESD PROTECTION
MAX3453E	4.0 to 5.5	1.65 to 3.6	Yes	Yes	Yes	Full	Yes
MAX3454E	3.0 to 5.5	1.65 to 3.6	Yes	No	Yes	Low/full	Yes
MAX3455E	4.0 to 5.5	1.65 to 3.6	No	Yes	No	Low/full	Yes
MAX3456E	3.0 to 5.5	1.65 to 3.6	No	No	No	Low/full	Yes

Typical Operating Circuit appears at end of data sheet. Pin Configurations appear at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

VBUS, VL, D+, D- to GND	0.3V to +6.0V
V _{TRM} to GND	0.3V to (V _{BUS} + 0.3V)
VP, VM, SUS, ENUM, SPD,	
RCV, OE, BD to GND	0.3V to (V _L + 0.3V)
Current (into any pin)	±15mA
Short-Circuit Current (D+ and D-)	±150mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)

14-Pin TSSOP (derate 9.1mW/°C above +	-70°C)727mW
16-Pin Thin QFN (derate 14.7mW/°C above	e +70°C)1176mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{BUS} = +4.0V to +5.5V or V_{TRM} = +3.0V to +3.6V, V_L = +1.65V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +5.0V, V_L = +2.5V, and T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS	
SUPPLY INPUTS (VBUS, VTRM, VI)							
Regulated Supply Voltage Output	V _{TRM}	Internal regulator	Internal regulator		3.3	3.6	V	
Operating Supply Current	IVBUS		itting and receiving at oF on D+ and D- (Note 2)			10	mA	
Operating V_L Supply Current	IVL	Full-speed transm 12Mbps (Note 2)	itting and receiving at			2.5	mA	
Full-Speed Idle and SE0 Supply	1	Full-speed idle: V	$_{D+} > 2.7 V, V_{D-} < 0.3 V$		250	350		
Current	IVBUS(IDLE)	SE0: $V_{D+} < 0.3V$,	V _{D-} < 0.3V		250	350	μA	
Static VL Supply Current		Full-speed idle, SE0, or suspend	MAX3453E/MAX3455E			15	- μΑ	
Static VL Supply Current	IVL(STATIC)	mode	MAX3454E/MAX3456E			5		
Suspend Supply Current		VM = VP = open,	MAX3453E (ENUM = low), MAX3455E			40	μΑ	
Suspend Supply Current	IVBUS(SUSP)	$SUS = \overline{OE} = high$	MAX3454E (ENUM = low), MAX3456E			35		
Disable Mode Supply Current	IVBUS(DIS)	$V_L = GND$ or oper	ו			20	μA	
Sharing Made V. Supply Current		$V_{BUS} = GND$ or open, $\overline{OE} = low$, VP = low or high,	MAX3453E/MAX3455E			20		
Sharing Mode V _L Supply Current	IVL(SHARING)	VF = low of high, VM = low or high, SUS = high	MAX3454E/MAX3456E			5	μA	
D+/D- Sharing Mode Load Current	ID_(SHARING)	$V_{BUS} = GND$ or open, $V_{D_{-}} = 0$ or +5.5V				20	μA	
D+/D- Disable Mode Load Current	I _{D_(DIS)}	$V_L = GND$ or oper	n, V _D _ = 0 or +5.5V			5	μA	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{BUS} = +4.0V \text{ to } +5.5V \text{ or } V_{TRM} = +3.0V \text{ to } +3.6V, V_L = +1.65V \text{ to } +3.6V, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at $V_{BUS} = +5.0V$, $V_L = +2.5V$, and $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS
		MAX3453E/MAX3455E, supply lost			3.6	
		MAX3453E/MAX3455E, supply present	4.0			
USB Power-Supply Detection Threshold	V _{TH_VBUS}	MAX3454E/MAX3456E, supply lost			0.8	V
mreshold		MAX3454E/MAX3456E, supply present (Note 3)	3.6			
USB Power-Supply Detection		MAX3453E/MAX3455E		40		
Hysteresis	VHYST_VBUS	MAX3454E/MAX3456E		75		mV
V _L Power-Supply Detection Threshold	V _{TH_VL}			0.85		V
DIGITAL INPUTS/OUTPUTS (VP,	VM, RCV, SUS	S, OE, SPD, BD, ENUM)				
Input-Voltage Low	VIL	VM, VP, SUS, SPD, ENUM, OE			$0.3 \times V_L$	V
Input-Voltage High	V _{IH}	VM, VP, SUS, SPD, ENUM, OE	$0.7 \times V_L$			V
Output-Voltage Low	VOL	VM, VP, RCV, BD, I _{OL} = +2mA			0.4	V
Output-Voltage High	Voh	VM, VP, RCV, BD, I _{OH} = -2mA	V _L - 0.4			V
Input Leakage Current	I _{LKG}		-1		+1	μA
Input Capacitance	CIN	Measured from input to GND		10		рF
ANALOG INPUTS/OUTPUTS (D+	, D-)					
Differential Input Sensitivity	VID	IV _{D+} - V _{D-} I	0.2			V
Differential Common-Mode Voltage	V _{CM}	Includes VID range	0.8		2.5	V
Single-Ended Input Low Voltage	VILSE				0.8	V
Single-Ended Input High Voltage	VIHSE		2.0			V
Hysteresis	VHYST			250		mV
Output-Voltage Low	Vold	$R_{L} = 1.5 k\Omega$ to +3.6V			0.3	V
Output-Voltage High	Vohd	$R_L = 15k\Omega$ to GND	2.8		3.6	V
Off-State Leakage Current	I _{LZ}		-1		+1	μA
Transceiver Capacitance	CIND	Measured from D_ to GND		20		рF
Driver Output Impedance	Z _{DRV}	Steady-state drive	3.5		15.5	Ω
Input Impedance	Z _{IN}	Driver off	10			MΩ
Internal Pullup Resistance	Rpullup	I _{LOAD} = 500μΑ (ΜΑΧ3453Ε/ΜΑΧ3454Ε) (Note 4)	1.425		1.575	kΩ
ESD PROTECTION (D+, D-)						
Human Body Model				±15		kV
IEC 61000-4-2 Contact Discharge				±8		kV

TIMING CHARACTERISTICS

 $(V_{BUS} = +4.0V \text{ to } +5.5V \text{ or } V_{TRM} = +3.0V \text{ to } +3.6V, V_L = +1.65V \text{ to } +3.6V, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at $V_{BUS} = +5V$, $V_L = +2.5V$, and $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DRIVER CHARACTERISTICS (Fu	II-Speed Mod	de, C _L = 50pF)	•				
Rise Time	tFR	10% to 90% of IV _{OHD} - V _{OLD} I, Figures 1, 6	4		20	ns	
Fall Time	tFF	90% to 10% of IV _{OHD} - V _{OLD} I, Figures 1, 6	4		20	ns	
Rise/Fall-Time Matching (Note 2)	tfr / tff	Excluding the first transition from idle state, Figures 1, 6	90		110	%	
Output-Signal Crossover Voltage (Note 2)	V _{CRS_F}	Excluding the first transition from idle state, Figures 2, 6	1.3		2.0	V	
	^t PLH_DRV	Low-to-high transition, Figures 2, 6			18		
Driver Propagation Delay	tphl_drv	High-to-low transition, Figures 2, 6			18	ns	
Driver Dischle Deley	^t PHZ_DRV	High-to-off transition, Figure 3			20	ns	
Driver Disable Delay	tplz_drv	Low-to-off transition, Figure 3			20	ns	
Driver Enable Delay	^t PZH_DRV	Off-to-high transition, Figure 3			20	ns	
Driver Erlable Delay	tpzl_drv	Off-to-low transition, Figure 3			20	ns	
DRIVER CHARACTERISTICS (Iov	v-speed mod	le, C _L = 200pF to 600pF, MAX3454E/MAX345	5E/MAX3	456E)			
Rise Time	tLR	10% to 90% of IV _{OHD} - V _{OLD} I, Figures 1, 6	75		300	ns	
Fall Time	tLF	90% to 10% of IV _{OHD} - V _{OLD} I, Figures 1, 6	75		300	ns	
Rise/Fall-Time Matching	t _{LR} / t _{LF}	Excluding the first transition from idle state, Figures 1, 6	80		125	%	
Output-Signal Crossover Voltage	VCRS_L	Excluding the first transition from idle state, Figures 2, 6	1.3		2.0	V	
RECEIVER CHARACTERISTICS (C _L = 15pF)						
Differential Receiver Propagation	tplh_rcv	Low-to-high transition, Figures 4, 6			22		
Delay tPHL_RCV		High-to-low transition, Figures 4, 6			22	ns	
Single-Ended Receiver	tplh_se	SE Low-to-high transition, Figures 4, 6			12	20	
Propagation Delay	tphl_se	High-to-low transition, Figures 4, 6			12	ns	
Single-Ended Receiver Disable TPHZ_SE		High-to-off transition, Figure 5			15		
Delay	tplz_se	Low-to-off transition, Figure 5			15	ns	
Single-Ended Receiver Enable	tpzh_se	Off-to-high transition, Figure 5			15	P 2	
Delay	tpzl_se	Off-to-low transition, Figure 5			15	ns	

Note 1: Parameters are 100% production tested at +25°C, unless otherwise noted. Limits over temperature are guaranteed by design.

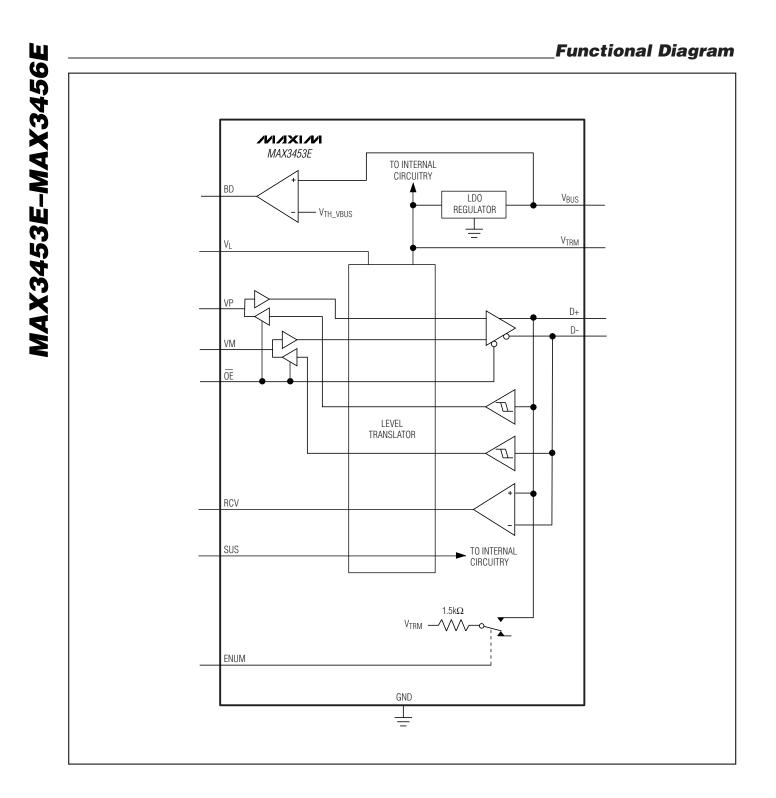
Note 2: Guaranteed by design, not production tested.

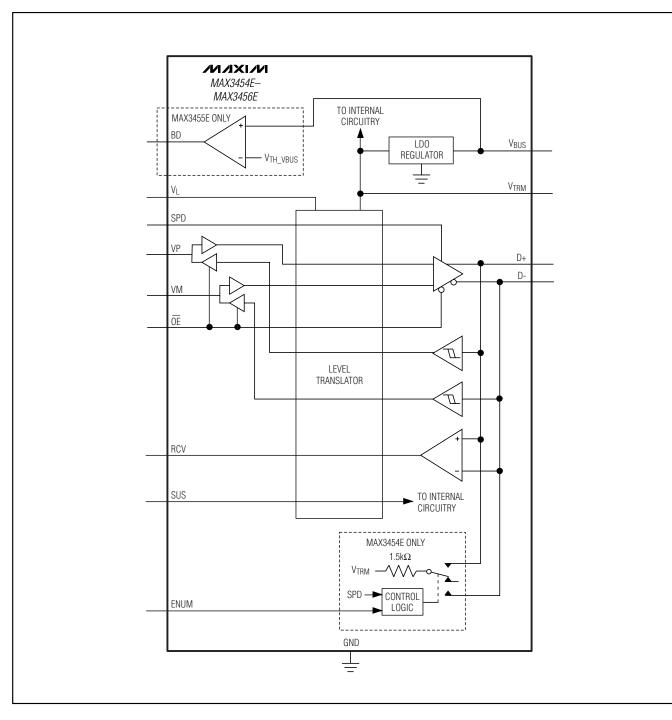
Note 3: Production tested to +2.7V for V_L < +3.0V.

Note 4: Including external 27Ω series resistor.

SINGLE-ENDED RECEIVER **RISE-/FALL-TIME MATCHING RISE-/FALL-TIME MATCHING PROPAGATION DELAY vs. VL** (FULL SPEED) (LOW SPEED) 8 $C_L = 50 pF$ $C_L = 15 pF$ $C_I = 400 pF$ 7 $T_A = +25^{\circ}C$ PROPAGATION DELAY (ns) 6 T_A = +85°C 5 D+/D-D+/D-1V/div 1V/div 4 $T_A = -40^{\circ}C$ 3 2 1 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 20ns/div 100ns/div $V_{L}(V)$ LOGIC SUPPLY CURRENT SUPPLY CURRENT **OE**, VP, VM TIMING vs. D+/D- CAPACITANCE vs. D+/D- CAPACITANCE -1AX3453E-56E toc04 500 24 $C_L = 15 pF$ 22 450 VP 20 2V/div _ SPD = V_L, f_{IN} = 6MHz LOGIC SUPPLY CURRENT (µA) 400 18 SUPPLY CURRENT (mA) 350 16 300 14 250 12 VM 2V/div 10 200 $SPD = V_L$, $f_{IN} = 6MHz$ 8 150 6 ŌĒ 100 4 5V/div 50 2 SPD = GND, f_{IN} = 750kHz $SPD = GND, f_{IN} = 750 kHz$ 0 0 20ns/div 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 0 0 D+/D- CAPACITANCE (pF) D+/D- CAPACITANCE (pF)

Typical Operating Characteristics


(V_{BUS} = +5.0V, V_L = +3.3V, T_A = +25°C, unless otherwise noted.)


	PI	N			
MAX	3454E/ 3455E/ 3456E	MAX3453E		NAME	FUNCTION
TSSOP	THIN QFN	TSSOP	THIN QFN		
1	15	1	15	VL	Digital I/O Connections Logic Supply. Connect a +1.65V to +3.6V supply to V _L . Bypass V _L to GND with a 0.1 μ F ceramic capacitor.
2	1	_		SPD	Speed Selector Input. Connect SPD to GND to select the low-speed data rate (1.5Mbps). Connect SPD to V _L to select the full-speed data rate (12Mbps). The MAX3453E only supports full-speed operation.
3	2	3	2	RCV	Differential Receiver Output. RCV responds to the differential inputs on D+ and D- (see Tables 3, 4). RCV asserts low if $SUS = V_L$.
4	3	4	3	VP	Receiver Output/Driver Input. VP functions as a receiver output when $\overline{OE} = V_L$. VP duplicates D+ when receiving. VP functions as a driver input when $\overline{OE} = GND$.
5	4	5	4	VM	Receiver Output/Driver Input. VM functions as a receiver output when $\overline{OE} = V_L$. VM duplicates D- when receiving. VM functions as a driver input when $\overline{OE} = GND$.
6, 13*	5, 8, 13*, 16	6	5, 8, 16	N.C.	No Connection. Not internally connected. *Pin 13 is No Connection for MAX3456E only.
7	6	7	6	GND	Ground
8	7	8	7	SUS	Suspend Input. Drive SUS low for normal operation. Drive SUS high to put the MAX3453E–MAX3456E into suspend mode. RCV asserts low in suspend mode. VP and VM remain active in suspend mode.
9	9	9	9	ŌE	Output Enable. Drive \overline{OE} to GND to enable the transmitter outputs. Drive \overline{OE} to V _L to disable the transmitter outputs. \overline{OE} also controls the I/O direction of VP and VM (see Tables 3, 4).
10	10	10	10	D-	USB Input/Output. For \overline{OE} = GND, D- functions as a USB output, with VM providing the input signal. For \overline{OE} = V _L , D- functions as a USB input, with VM functioning as a single-ended receiver output. Connect a 1.5k Ω resistor from D- to V _{TRM} for low-speed (1.5Mbps) operation (MAX3455E/MAX3456E). Drive ENUM to V _L to connect the internal 1.5k Ω resistor from D- to V _{TRM} for low-speed (MAX3454E, SPD = GND) operation.

Pin Description (continued)

	PIN				
MAX3	454E/ 455E/ 3456E	MAX3453E		NAME	FUNCTION
TSSOP	THIN QFN	TSSOP	THIN QFN		
11	11	11	11	D+	USB Input/Output. For \overline{OE} = GND, D+ functions as a USB output, with VP providing the input signal. For \overline{OE} = V _L , D+ functions as a USB input, with VP functioning as a single-ended receiver output. Connect a 1.5k Ω resistor from D+ to V _{TRM} for full-speed (12Mbps) operation (MAX3455E/MAX3456E). Drive ENUM to V _L to connect the internal 1.5k Ω resistor (MAX3453E/ MAX3454E) from D+ to V _{TRM} for full-speed (MAX3454E, SPD = V _L) operation.
12	12	12	12	Vtrm	Internal Regulator Output. VTRM provides a regulated +3.3V output. Bypass VTRM to GND with a 1µF (min) ceramic capacitor as close to the device as possible. VTRM normally derives power from VBUS. Alternatively, drive VTRM directly with a +3.3V ±10% supply (MAX3454E/MAX3456E). VTRM provides power to internal circuitry and provides the pullup voltage for an external USB pullup resistor (MAX3455E/MAX3456E). Do not use VTRM to power external circuitry.
13 (MAX3455E only)	13 (MAX3455E only)	13	13	BD	Bus-Detection Output (MAX3453E/MAX3455E). The push-pull BD output asserts low and the device enters sharing mode if $V_{BUS} < +3.6V$. BD asserts high if $V_{BUS} > +4.0V$.
13 (MAX3454E only)	13 (MAX3454E only)	2	1	ENUM	Enumerate Function Selection Input (MAX3453E/MAX3454E). Drive ENUM to V _L to connect the internal 1.5k Ω resistor between V _{TRM} and D+ or D-, depending on the state of SPD. Drive ENUM to GND to disconnect the internal 1.5k Ω resistor. For SPD = V _L , the 1.5k Ω resistor connects to D+. For SPD = GND, the 1.5k Ω resistor connects to D For the MAX3453E, the resistor only connects to D+.
14	14	14	14	VBUS	USB Power-Supply Input. Connect a +4.0V to +5.5V power supply to V _{BUS} . V _{BUS} provides power to the internal linear regulator. Bypass V _{BUS} to GND with a 0.1 μ F ceramic capacitor as close to the device as possible. Connect V _{BUS} and V _{TRM} together when powering the MAX3454E/MAX3456E with an external power supply (+3.3V ±10%).

_Functional Diagram (continued)

_Detailed Description

The MAX3453E–MAX3456E USB-compliant transceivers convert single-ended or differential logic-level signals to USB signals, and USB signals to single-ended or differential logic-level signals. The MAX3453E fully complies with full-speed (12Mbps) operation under USB specification 2.0. The MAX3454E–MAX3456E fully comply with USB specification 1.1, and full-speed (12Mbps) and low-speed (1.5Mbps) operation under USB specification 2.0. The MAX3453E operate with V_L as low as +1.65V, ensuring compatibility with low-voltage ASICs.

The MAX3453E–MAX3456E derive power from the USB host (V_{BUS}) or from a single-cell Li+ battery (MAX3454E/MAX3456E) connected to V_{BUS} or from a +3.3V regulated supply connected to V_{BUS} and V_{TRM}. The MAX3453E–MAX3456E meet the physical layer specifications for logic-level supply voltages (V_L) from +1.65V to +3.6V. Integrated ±15kV ESD protection safeguards the D+ and D- USB I/O ports.

The MAX3453E/MAX3454E feature an enumerate function providing an internal 1.5k Ω pullup resistor from D+ (MAX3453E/MAX3454E) or D- (MAX3454E only) to V_{TRM}. The enumerate function disconnects the 1.5k Ω

pullup resistor, allowing the MAX3453E/MAX3454E to simulate a bus disconnect while powered and connected to the USB cable. The MAX3453E/MAX3455E feature a bus-detect output (BD) that asserts high if V_{BUS} > +4V. BD asserts low if V_{BUS} < +3.6V. The MAX3455E/MAX3456E require external pullup resistors from either D+ or D- to V_{TRM} to utilize the appropriate bus speed. The MAX3456E is pin-for-pin compatible with the Micrel MIC2550A.

Applications Information

Power-Supply Configurations

Normal Operating Mode

Connect V_L and V_{BUS} to system power supplies (Table 1). Connect V_L to a +1.65V to +3.6V supply. Connect V_{BUS} to a +4.0V to +5.5V supply. Alternatively, the MAX3454E/MAX3456E can derive power from a single Li+ battery. Connect the battery to V_{BUS}.

Additionally, the MAX3454E/MAX3456E can derive power from a +3.3V \pm 10% voltage regulator. Connect V_{BUS} and V_{TRM} to an external +3.3V voltage regulator. V_{BUS} no longer consumes current to power the internal linear regulator in this configuration.

V _{BUS} (V)	V _{TRM} (V)	V _L (V)	CONFIGURATION	NOTES
4.0 to 5.5	3.0 to 3.6 output	1.65 to 3.6	Normal mode	—
3.1 to 4.5	3.0 to 3.6 output	1.65 to 3.6	Battery supply	MAX3454E/MAX3456E
3.0 to 3.6	3.0 to 3.6 input	1.65 to 3.6	Voltage regulator supply	MAX3454E/MAX3456E
GND or floating	High-Z	1.65 to 3.6	Sharing mode	Table 2
3.0 to 5.5	High-Z	GND or floating	Disable mode	Table 2

Table 1. Power-Supply Configurations

INPUTS/OUTPUTS	DISABLE MODE	SHARING MODE
VBUS/VTRM	+3.0V to +5.5V / High Impedance	 Floating or connected to GND (MAX3453E/MAX3454E/MAX3456E) / High Impedance < 3.6V (MAX3453E/MAX3455E) / High Impedance
VL	Floating or connected to GND	1.65V to 3.6V input
D+ and D-	High impedance	High impedance
VP and VM	Invalid*	High impedance for $\overline{OE} = Iow$
VP and VW	Invalid	High for \overline{OE} = high
RCV	Invalid*	Undefined**
SPD (MAX3454E–MAX3456E), SUS, OE, ENUM (MAX3453E/MAX3454E)	High impedance	High impedance
BD (MAX3453E/MAX3455E)	Invalid*	Low

*High impedance or low.

**High or low.

Disable Mode

Connect V_{BUS} to a system power supply and leave V_L unconnected or connect to GND. D+ and D- enter a tristate mode and V_{BUS} (or V_{BUS} and V_{TRM}) consumes less than 20µA of supply current. D+ and D- withstand external signals up to +5.5V in disable mode (Table 2).

Sharing Mode

Connect V_L to a system power supply and leave V_{BUS} (or V_{BUS} and V_{TRM}) unconnected or connect to GND. D+ and D- enter a tri-state mode, allowing other circuitry to share the USB D+ and D- lines, and V_L consumes less than 20μ A of supply current. D+ and D- withstand external signals up to +5.5V in sharing mode (Table 2).

Device Control

 $\overline{\text{OE}}$ controls the direction of communication. Drive $\overline{\text{OE}}$ low to transfer data from the logic side to the USB side. For $\overline{\text{OE}}$ = low, VP and VM serve as differential driver inputs to the USB transmitter.

Drive \overline{OE} high to transfer data from the USB side to the logic side. For \overline{OE} = high, VP and VM serve as singleended receiver outputs from the USB inputs (D+ and D-). RCV serves as a differential receiver output, regardless of the state of \overline{OE} .

ENUM (MAX3453E/MAX3454E)

The MAX3453E/MAX3454E feature an enumerate function that allows software control of USB enumeration. USB protocol requires a $1.5k\Omega$ pullup resistor to D+ or D- to indicate the transmission speed to the host (see the SPD section). The MAX3453E/MAX3454E provide an internal $1.5k\Omega$ pullup resistor. Disconnect the pullup resistor from the circuit to simulate the removal of a device from the USB. Drive ENUM low to disconnect the internal pullup resistor. Drive ENUM high to connect the internal pullup resistor. The SPD state (MAX3454E only) determines whether the pullup resistor connects to D+ or D-. For ENUM = high, the internal pullup resistor connects to D+ when $SPD = V_L$ (full speed) or to Dwhen SPD = GND (low speed). The MAX3453E only supports full-speed operation; therefore, the pullup resistor only connects to D+ or is disconnected.

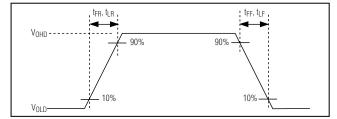


Figure 1. Rise and Fall Times

Table 3a. Transmit Truth Table $(\overline{OE} = 0, SUS = 0)$

INPUTS		C	UTPUT	OUTPUT STATE	
VP	VM	D+	D-	RCV	OUTPUT STATE
0	0	0	0	Х	SE0
0	1	0	1	0	Logic 0
1	0	1	0	1	Logic 1
1	1	1	1	Х	Undefined

X = Undefined.

Table 3b. Transmit Truth Table $(\overline{OE} = 0, SUS = 1)$

INP	INPUTS		UTPUT	OUTPUT STATE	
VP	VM	D+	D-	RCV	OUTPUT STATE
0	0	0	0	0	SE0
0	1	0	1	0	Logic 0
1	0	1	0	0	Logic 1
1	1	1	1	0	Undefined

Table 4a. Receive Truth Table $\overline{(OE} = 1 \text{ and } SUS = 0)$

INPUTS		C	OUTPUT	OUTPUT STATE	
D+	D-	VP	VM	RCV	OUTPUT STATE
0	0	0	0	Х	SE0
0	1	0	1	0	Logic 0
1	0	1	0	1	Logic 1
1	1	1	1	Х	Undefined

X = Undefined.

Table 4b. Receive Truth Table $\overline{(OE} = 1 \text{ and } SUS = 1)$

INPUTS		C	OUTPUT	OUTPUT STATE		
D+	D-	VP	VM	RCV	OUTPUT STATE	
0	0	0	0	0	SE0	
0	1	0	1	0	Logic 0	
1	0	1	0	0	Logic 1	
1	1	1	1	0	Undefined	

SPD (MAX3454E/MAX3455E/MAX3456E)

SPD sets the transceiver speed. Connect SPD to GND to select the low-speed data rate (1.5Mbps). Connect SPD to V_L to select the full-speed data rate (12Mbps). The MAX3454E provides an internal pullup resistor for selecting the bus speed. The MAX3455E and MAX3456E require an external pullup resistor to D+ or D- to set the bus speed. Connect the 1.5k Ω resistor between D+ and V_{TRM} to set the full-speed (12Mbps) data rate, or connect the 1.5k Ω resistor between D- and V_{TRM} to set the low-speed (1.5Mbps) data rate.

SUS

The SUS state determines whether the MAX3453E– MAX3456E operate in normal mode or in suspend mode. Connect SUS to GND to enable normal operation. Drive SUS high to enable suspend mode. RCV asserts low and VP and VM remain active in suspend mode (Tables 3 and 4). Supply current decreases in suspend mode (see the *Electrical Characteristics*).

BD (MAX3453E/MAX3455E)

The push-pull bus detect (BD) output monitors V_{BUS} and asserts high if V_{BUS} is greater than +4.0V. BD asserts low if V_{BUS} is less than +3.6V and the MAX3453E/MAX3455E enters sharing mode (Table 2).

VTRM

An internal linear regulator generates the V_{TRM} voltage (+3.3V, typ). V_{TRM} derives power from V_{BUS} (see the *Power-Supply Configurations* section). V_{TRM} powers the internal portions of the USB circuitry and provides the pullup voltage for an external USB pullup resistor (MAX3455E/MAX3456E). Bypass V_{TRM} to GND with a 1µF ceramic capacitor as close to the device as possible. Do not use V_{TRM} to provide power to external circuitry.

D+ and D-

D+ and D- serve as bidirectional bus connections and are ESD protected to ± 15 kV (Human Body Model). For \overline{OE} = low, D+ and D- serve as transmitter outputs. For \overline{OE} = high, D+ and D- serve as receiver inputs.

VBUS

For most applications, V_{BUS} connects to the V_{BUS} terminal on the USB connector (see the *Power-Supply Configurations* section). V_{BUS} can also connect to an external supply as low as +3.1V (MAX3454E/MAX3456E). Drive V_{BUS} low to enable sharing mode. Bypass V_{BUS} to GND with a 0.1 μ F ceramic capacitor as close to the device as possible.

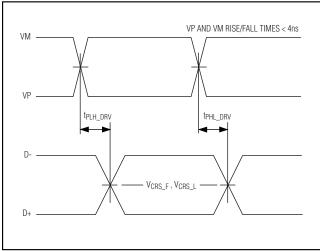


Figure 2. Timing of VP and VM to D+ and D-

External Components

External Resistors

Proper USB operation requires two external resistors, each $27\Omega \pm 1\%$, 1/8W (or greater). Install one resistor in series between D+ of the MAX3453E–MAX3456E and D+ on the USB connector. Install the other resistor in series between D- of the MAX3453E–MAX3456E and Don the USB connector (see *Typical Operating Circuit*).

The MAX3455E/MAX3456E require an external 1.5k Ω pullup resistor between VTRM and D+ or D- to set the bus speed.

External Capacitors

The MAX3453E–MAX3456E require three external capacitors for proper operation. Bypass V_L to GND with a 0.1µF ceramic capacitor. Bypass V_{BUS} to GND with a 0.1µF ceramic capacitor. Bypass V_{TRM} to GND with a 1µF (min) ceramic capacitor. Install all capacitors as close to the device as possible.

Data Transfer

Transmitting Data to the USB

The MAX3453E–MAX3456E transmit data to the USB differentially on D+ and D-. VP and VM serve as differential input signals to the driver (Tables 3a and 3b).

Receiving Data from the USB

To receive data from the USB, drive \overline{OE} high and SUS low. Differential data received by D+ and D- appears as a differential logic signal at RCV. Single-ended receivers on D+ and D- drive VP and VM, respectively (Tables 4a and 4b).

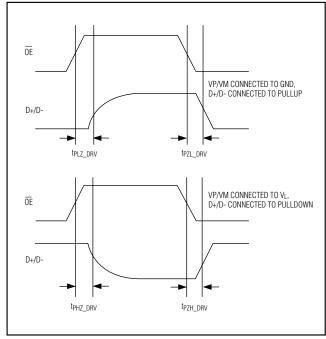


Figure 3. Enable and Disable Timing, Driver

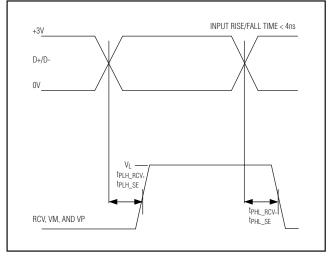


Figure 4. Timing of D+ and D- to RCV, VM, and VP

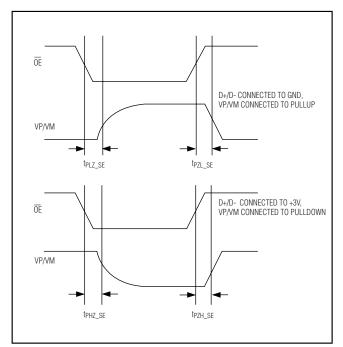


Figure 5. Enable and Disable Timing, Receiver

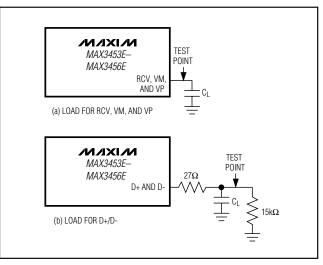


Figure 6. Test Circuits

MAX3453E-MAX3456E

_ESD Protection

D+ and D- possess extra protection against static electricity to protect the devices up to ± 15 kV. The ESD structures withstand high ESD in all operating modes: normal operation, suspend mode, and powered down. D+ and D- provide protection to the following limits:

- ±15kV using the Human Body Model
- ±8kV using the Contact Discharge method specified in IEC 61000-4-2

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 7 shows the Human Body Model and Figure 8 shows the current waveform generated when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which then discharges into the test device through a $1.5k\Omega$ resistor.

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the Human Body Model and IEC 61000-4-2 is a higher peak current in IEC 61000-4-2, due to lower series resistance. Hence, the ESD withstand voltage measured to IEC 61000-4-2 generally is lower than that measured using the Human Body Model. Figure 9 shows the IEC 61000-4-2 model. The Contact Discharge method connects the probe to the device before the probe is charged.

Machine Model

The Machine Model for ESD tests all connections using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. All pins require this protection during manufacturing, not just inputs and outputs. After PC board assembly, the Machine Model is less relevant to I/O ports.

Chip Information

TRANSISTOR COUNT: 873 PROCESS: BICMOS

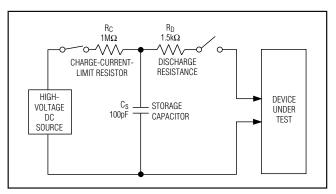


Figure 7. Human Body ESD Test Models

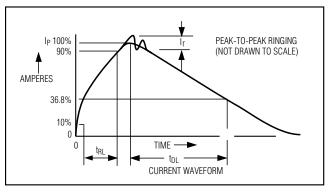


Figure 8. Human Body Model Current Waveform

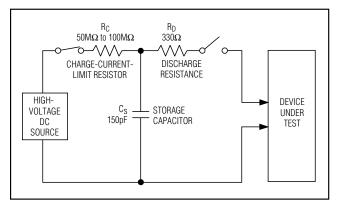
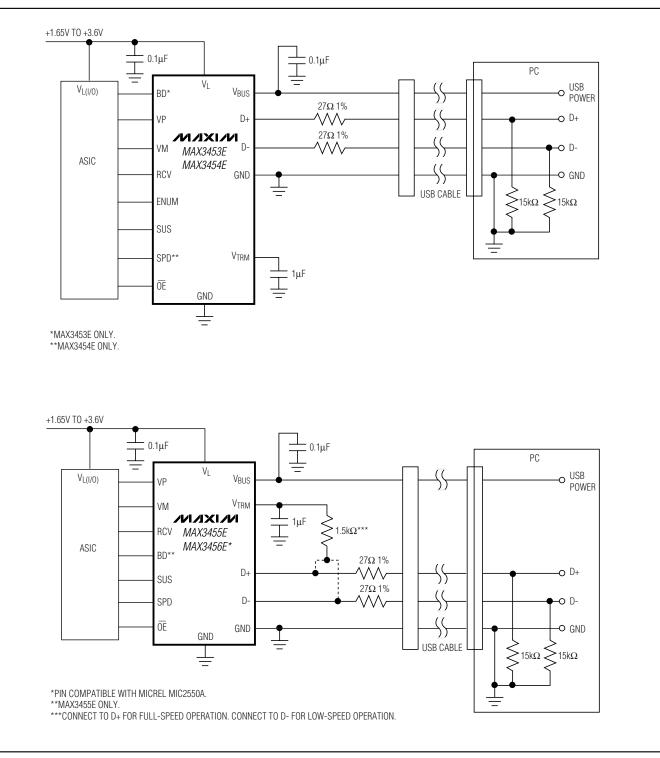
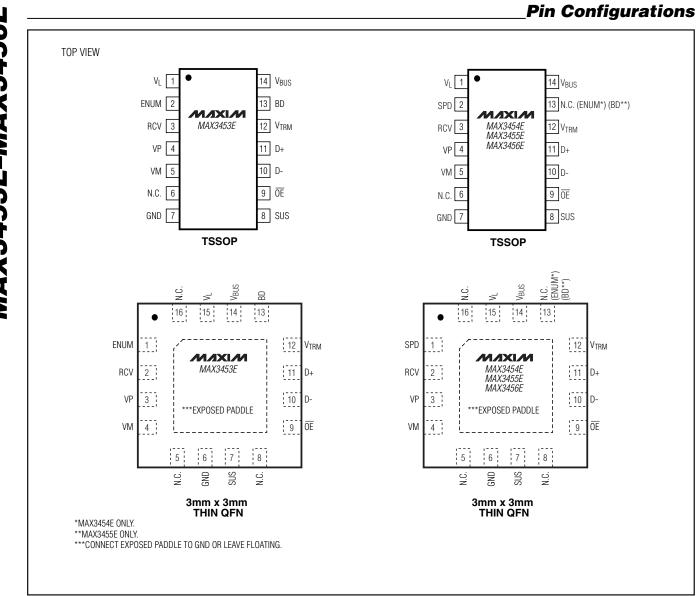
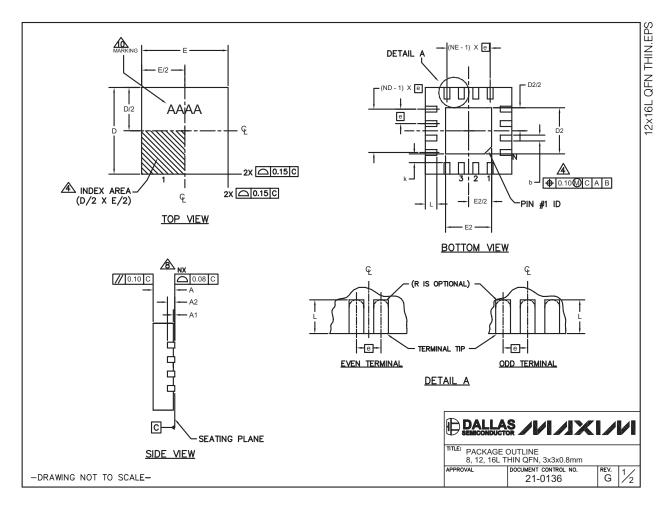




Figure 9. IEC 61000-4-2 ESD Test Model


Typical Operating Circuits

M/IXI/M

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

DOCUMENT CONTROL NO.

21-0136

REV

G 2/2

PACKAGE OUTLINE 8, 12, 16L THIN QFN, 3x3x0.8mm

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

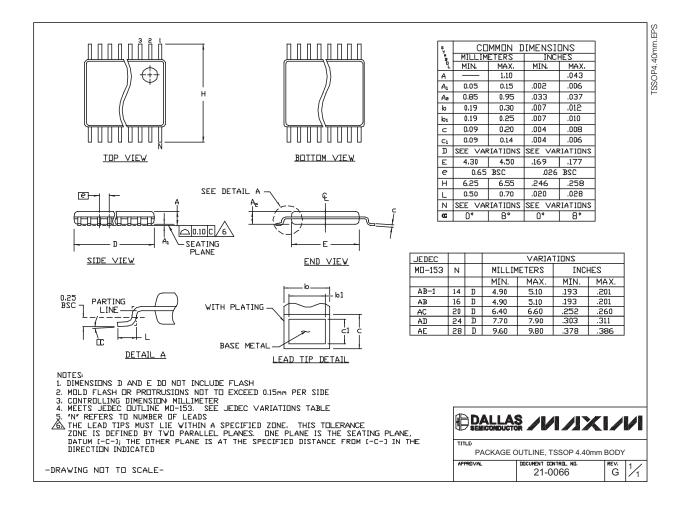
PKG	8L 3x3			1	12L 3x3	6	16L 3x3			
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	
D	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10	
Е	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10	
е	0.65 BSC.			0.50 BSC.			0.50 BSC.			
L	0.35	0.55	0.75	0.45	0.55	0.65	0.30	0.40	0.50	
Ν		8			12			16		
ND	2			3			4			
NE	2			3			4			
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	
A2	C	.20 RE	F	0.20 REF			0.20 REF			
k	0.25	-	-	0.25	-	-	0.25	-	-	

		EXF	POSE) VAR	IATIC	DNS		
PKG.	D2			E2					DOWN
CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	PIN ID	JEDEC	BONDS ALLOWED
TQ833-1	0.25	0.70	1.25	0.25	0.70	1.25	0.35 x 45 _i	WEEC	NO
T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45 _i	WEED-1	NO
T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45 _i	WEED-1	YES
T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45 _i	WEED-1	YES
T1633-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45 _i	WEED-2	NO
T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45j	WEED-2	YES
T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45 _i	WEED-2	N/A
T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45 _i	WEED-2	N/A
T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45j	WEED-2	NO

TITLE:

APPROVAL

NOTES:


- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- N IS THE TOTAL NUMBER OF TERMINALS.
- A THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO
- JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- A DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP.
- A ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- ▲ COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- DRAWING CONFORMS TO JEDEC MO220 REVISION C.
- 9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.
- 11. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY

-DRAWING NOT TO SCALE-

M/IXI/M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Revision History

Pages changed at Rev1: 1, 14, 19, slide

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2006 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.

19