Product Preview

Very Low Forward Voltage Trench-based Schottky Rectifier

Exceptionally Low $V_F = 0.60 \text{ V}$ at $I_F = 10 \text{ A}$

Features

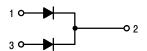
- Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage
- Fast Switching with Exceptional Temperature Stability
- Low Power Loss and Lower Operating Temperature
- Higher Efficiency for Achieving Regulatory Compliance
- Low Thermal Resistance
- High Surge Capability
- These Devices are Pb-Free and Halogen Free/BFR Free

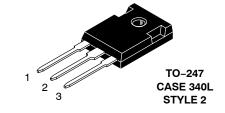
Typical Applications

- Switching Power Supplies including Telecom AC to DC Power Stages
- High Voltage DC-DC Converters
- Freewheeling and OR-ing Diodes
- Output Rectifier in Welding Power Supplies
- Industrial Automation

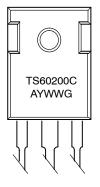
Mechanical Characteristics

- Case: Epoxy, Molded
- Epoxy Meets Flammability Rating UL 94-0 @ 0.125 in
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Maximum for 10 sec




ON Semiconductor®

http://onsemi.com


VERY LOW FORWARD
VOLTAGE, LOW LEAKAGE
SCHOTTKY BARRIER
RECTIFIERS 60 AMPERES,
200 VOLTS

PIN CONNECTIONS

MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (Rated V_R , T_C = 112°C) Per device (Rated V_R , T_C = 133°C) Per diode	I _{F(AV)}	60 30	А
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, T_C = 115°C) Per device (Rated V_R , Square Wave, 20 kHz, T_C = 128°C) Per diode	I _{FRM}	120 60	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	300	Α
Operating Junction Temperature	TJ	-55 to +150	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Typical Thermal Resistance Junction-to-Case Per Diode Junction-to-Case Per Device	$R_{ heta JC}$	0.72 0.63	°C/W
Junction-to-Ambient Per Diode Junction-to-Ambient Per Device	$R_{ heta JA}$	40.62 40.17	

ELECTRICAL CHARACTERISTICS (Per Leg unless otherwise noted)

Rating	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Note 1)	V _F			V
$(I_F = 10 \text{ A}, T_J = 25^{\circ}\text{C})$ $(I_F = 15 \text{ A}, T_J = 25^{\circ}\text{C})$		0.74 0.79	-	
(I _F = 13 A, I _J = 25 °C) (I _F = 30 A, T _J = 25 °C)		1.04	1.90	
$(I_F = 10 \text{ A}, T_J = 125^{\circ}\text{C})$ $(I_F = 15 \text{ A}, T_J = 125^{\circ}\text{C})$ $(I_F = 30\text{A}, T_J = 125^{\circ}\text{C})$		0.60 0.64 0.74	- - 0.85	
Instantaneous Reverse Current (Note 1) $(V_R = 180 \text{ V}, T_J = 25^{\circ}\text{C})$ (Rated dc Voltage, $T_J = 25^{\circ}\text{C})$	I _R	3 5	- 100	μ Α μ Α
$(V_R = 180 \text{ V}, T_J = 125^{\circ}\text{C})$ (Rated dc Voltage, $T_J = 125^{\circ}\text{C}$)		5.3 7	- 30	mA mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Device	Package	Shipping
NTSW60200CTG	TO-220AB (Pb-Free, Halide Free)	30 Units / Rail

^{1.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%

TYPICAL CHARACTERISTICS

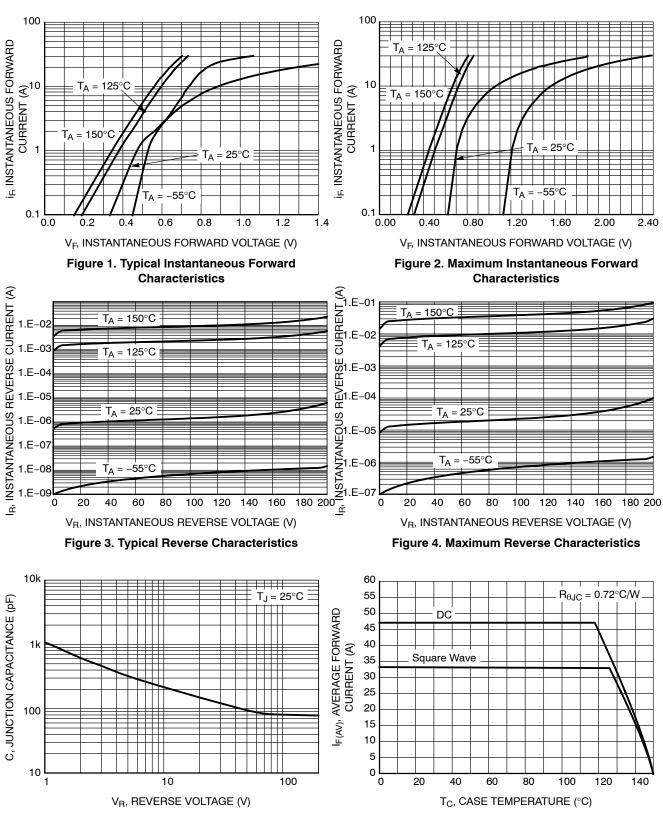


Figure 5. Typical Junction Capacitance

Figure 6. Current Derating per Diode

TYPICAL CHARACTERISTICS

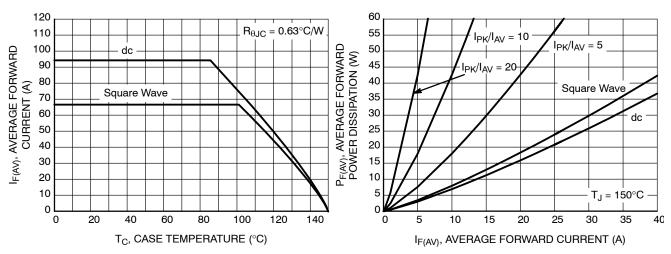


Figure 7. Current Derating per Device

Figure 8. Forward Power Dissipation

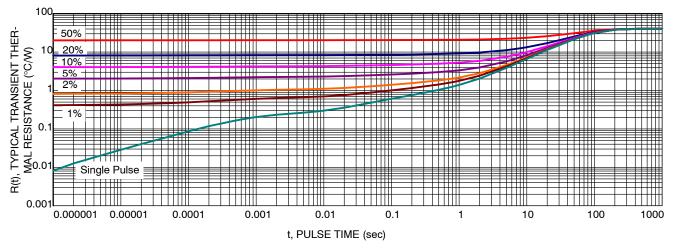
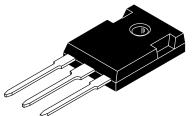
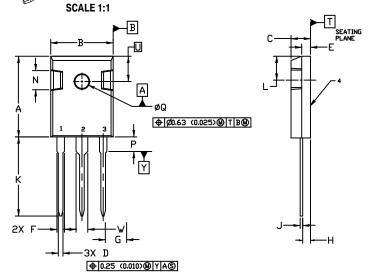
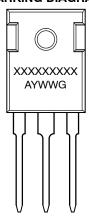



Figure 9. Typical Transient Thermal Response


TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
Α	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
К	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15	6.15 BSC 0.242 BSC		BSC
W	2.87	3.12	0.113	0.123

GENERIC MARKING DIAGRAM*

STYLE 1: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

> PIN 1. CATHODE 2. ANODE

STYLE 5:

STYLE 2: PIN 1. ANODE 2. CATHODE (S) 3. ANODE 2 4. CATHODES (S)

PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2

STYLE 6:

STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 4:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

XXXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

2. ANODE
2. MAIN TERMINAL 2
3. GATE
4. ANODE
4. MAIN TERMINAL 2
4. MAIN TERMINAL 2
5. GATE
6. MAIN TERMINAL 2
6. MAIN TERMINAL 2
7. MAIN TERMINAL 2
7. MAIN TERMINAL 2
8. MAIN TERMINAL 2
8. MAIN TERMINAL 2
9. MAIN TERMINAL

DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247		PAGE 1 OF 1	

onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales