

DS3896/DS3897

BTL Trapezoidal[™] Transceivers

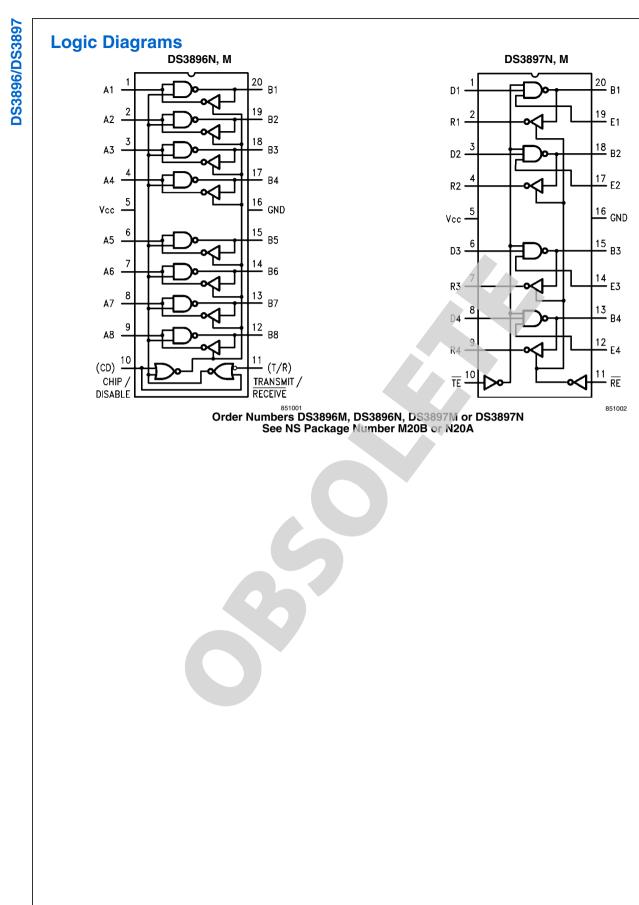
General Description

These advanced transceivers are specifically designed to overcome problems associated with driving a densely populated backplane, and thus provide significant improvement in both speed and data integrity. Their low output capacitance, low output signal swing and noise immunity features make them ideal for driving low impedance buses with minimum power consumption.

The DS3896 is an octal high speed schottky bus transceiver with common control signals, whereas the DS3897 is a quad device with independent driver input and receiver output pins. The DS3897 has a separate driver disable for each driver and is, therefore, suitable for arbitration lines. The separate driver disable pins (En) feature internal pull ups and may be left open if not required. On the other hand, the DS3896 provides high package density for data/address lines.

The open collector drivers generate precise trapezoidal waveforms, which are relatively independent of capacitive loading conditions on the outputs. This significantly reduces noise coupling to adjacent lines. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity and provide equal rejection to both negative and positive going noise pulses on the bus.

To minimize bus loading, these devices also feature a schottky diode in series with the open collector output that isolates the driver output capacitance in the disabled state. The output low voltage is typically "1V" and the output high level is intended to be 2V. This is achieved by terminating the bus with a pull up resistor to 2V at both ends. The device can drive an equivalent DC load of 18.5Ω (or greater) in the above configuration.


These signalling requirements, including a 1 volt signal swing, low output capacitance and precise receiver thresholds are referred to as Bus Transceiver Logic (BTL).

Features

- 8 bit DS3896 transceiver provides high package density
- 4 bit DS3897 transceiver provides separate driver input and receiver output pins
- BTL compatible
- Less than 5 pF output capacitance for minimal bus loading
- 1 Volt bus signal swing reduces power consumption
- Trapezoidal driver waveforms (t_r, t_f 6 ns typical) reduce noise coupling to adjacent lines
- Temperature insensitive receiver thresholds track the bus logic high level to maximize noise immunity in both high and low states
- Guaranteed A.C. specifications on noise immunity and propagation delay over the specified temperature and supply voltage range
- Open collector driver output allows wire-or connection
- Advanced low power schottky technology
- Glitch free power up/down protection on driver and receiver outputs
- TTL compatible driver and control inputs and receiver outputs

DS3896/DS3897 BTL Trapezoidal Transceivers

Trapezoidal™ is a trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	6V
Control Input Voltage	5.5V
Driver Input and Receiver Output	5.5V
Receiver Input and Driver Output	2.5V
Power Dissipation at 70°C N Package	1480 mW
M Package	TBD mW

Storage Temperature Range Lead Temperature (Soldering, 4 sec.) DS3896/DS3897

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Bus Termination Voltage	1.90	2.10	V
Operating Free Air Temperature	0	70	°C

Electrical Characteristics: (Notes 2, 3)

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C, 4.75V \le V_{CC} \le 5.25V$ unless otherwise specified)

Symbo	ol Parameter	Conditions	Min	Тур	Max	Units
Driver a	and Control Inputs: (An, Dn, En, CD, T/	R, RE, TE)		•	•	
V _{IH}	Logical "1" Input Voltage		2.0			V
V _{IL}	Logical "0" Input Voltage				0.8	V
l _l	Logical "1" Input Current	An = Dn = En = V_{CC}			1	mA
I _{IH}	Logical "1" Input Current	An = Dn = En = 2.4V			40	μA
I _{IHC}	Logical "1" Input Current	$CD = T/\overline{R} = \overline{RE} = \overline{TE} = 2.4V$			80	μA
I _{IL}	Logical "0" Input Current	An = Dn = En = 0.4V		-1	-1.6	mA
I _{ILC}	Logical "0" Input Current	$CD = T/\overline{R} = \overline{RE} = \overline{TE} = 0.4V$		-180	-400	μA
V _{CL}	Input Diode Clamp Voltage	Iclamp = -12 mA		-0.9	-1.5	V
Driver	Output/Receiver Input: (Bn)		•	•		
V _{OLB}	Low Level Bus Voltage	$An = Dn = En = T/\overline{R} = 2V, VL = 2V$	0.75	1.0	1.2	V
		RL = 18.50, CD = TE = 0.8V (Figure 1)				
I _{IHB}	Maximum Bus Current (Power On)	An = Dn = En = 0.8 V, V _{CC} = 5.25 V		10	100	μA
		Bn = 2V				
I _{ILB}	Maximum Bus Current (Power Off)	$An = Dn = En = 0.8V, V_{CC} = 0V$			100	μA
		Bn = 2V				
V _{TH}	Receiver Input Threshold	$V_{CC} = 5V$	1.47	1.55	1.62	V
Receiv	er Output: (An, Rn)			-	*	
V _{OH}	Logical "1" Output Voltage	Bn = 1.2V, Ι _{OH} = -400 μA	2.4	3.2		V
		$CD = T/\overline{R} = \overline{RE} = 0.8V$				
V _{OL}	Logical "0" Output Voltage	Bn = 2V, I _{OL} = 16 mA		0.35	0.5	V
		$CD = T/\overline{R} = \overline{RE} = 0.8V$				
I _{OS}	Output Short Circuit Current	Bn = 1.2V	-20	-70	-100	mA
		$CD = T/\overline{R} = \overline{RE} = 0.8V$				
I _{CC}	Supply Current (DS3896)	$V_{CC} = 5.25V$		90	135	mA
I _{CC}	Supply Current (DS3897)	V _{CC} = 5.25V		50	80	mA

Note 1: "Absolute maximum ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristic" provide conditions for actual device operation.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: All typicals are given for V_{CC} = 5V and T_a = 25°C.

DS3896 Switching Characteristics

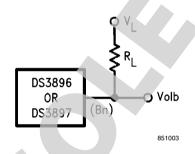
 $(0^{\circ}C \le T_{A} \le 70^{\circ}C, 4.75V \le V_{CC} \le 5.25V$ unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Driver:						
t _{DLH}	An to Bn	$CD = 0.8V, T/\overline{R} = 2.0V, VL = 2V$	5	9	15	ns
t _{DHL}		(Figure 2)	5	9	15	ns
•DHL		(1.94.02)	Ŭ		10	

DS3896/DS3897

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Driver:						
t _{DLHC}	CD to Bn	$An = T/\overline{R} = 2.0V, VL = 2V$	5	10	18	ns
t _{DHLC}		(Figure 2)	5	12	20	ns
t _{DLHT}	T/R to Bn	VCI = An, VC = 5V, (Figure 5)	5	15	25	ns
		CD = 0.8V, RC = 390Ω, CL = 30 pF	5	22	35	ns
		RL1 = 18Ω, RL2 = NC, VL = 2V				
t _R	Driver Output Rise Time	$CD = 0.8V, T/\overline{R} = 2V, VL = 2V$	3	6	10	ns
t _F	Driver Output Fall Time	(Figure 2)	3	6	10	ns
Receiver:				1		
t _{RLH}	Bn to An	$CD = 0.8V, T/\overline{R} = 0.8V$	5	12	18	ns
t _{RHL}	-	(Figure 3)	5	10	18	ns
RLZC	CD to An	Bn = 2.0V, T/R = 0.8V, CL = 5 pF	5	10	18	ns
TIEZO		RL1 = 390Ω, RL2 = NC, VL = 5V (Figure 4)				
RZLC	-	Bn = 2.0V, T/\overline{R} = 0.8V, CL = 30 pF	5	8	15	ns
TIZEO		RL1 = 390Ω, RL2 = 1.6k, VL = 5V (Figure 4)				
t _{RHZC}	-	Bn = 0.8V, T/\overline{R} = 0.8V, VL = 0V,	2	4	8	ns
		RL1 = 390Ω , RL2 = NC, CL = 5 pF (Figure 4)				
t _{RZHC}	-	Bn = 0.8V, T/\overline{R} = 0.8V, VL = 0V,	3	7	12	ns
TIZI IO		RL1 = NC, RL2 = 1.6k, CL = 30 pF (Figure 4)				
t _{RLZT}	T/R to An	VCI = Bn, VC = 2V, RC = 18Ω,	5	10	18	ns
		CD = 0.8V, VL = 5V, RL1 = 390Ω,				
		RL2 = NC, CL = 5 pF (Figure 5)				
t _{RZLT}		$VCI = Bn, VC = 2V, RC = 18\Omega,$	14	24	40	ns
		CD = 0.8V, VL = 5V, RL1 = 390Ω,				
		RL2 = 1.6k, CL = 30 pF (Figure 5)				
t _{RHZT}		$VCI = Bn, VC = 0V, RC = 18\Omega,$	2	4	8	ns
		$CD = 0.8V, VL = 0V, RL1 = 390\Omega,$				
		RL2 = NC, CL = 5 pF (Figure 5)				
t _{RZHT}		$VCI = Bn$, $VC = 0V$, $RC = 18\Omega$,	2	8	15	ns
		CD = 0.8V, VL = 0V, RL1 = NC				
		RL2 = 1.6k, CL = 30 pF (Figure 5)				
t _{NR}	Receiver Noise	(Figure 6)	3	6		ns
	Rejection Pulse Width					

Note: NC means open


DS3897 Switching Characteristics

$(0^{\circ}C \le T_A \le 70^{\circ}C, 4.75V \le V_{CC})$	≤ 5.25V unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Driver:						
t _{DLH}	Dn, En to Bn	$\overline{\text{TE}} = 0.8\text{V}, \overline{\text{RE}} = 2.0\text{V}, \text{VL} = 2\text{V}$	5	9	15	ns
t _{DHL}]	(Figure 2)	5	9	15	ns
t _{DLHT}	TE to Bn	An = \overline{RE} = 2.0V, VL = 2V, (Figure 2)	5	10	18	ns
t _{DHLT}		RC = 390Ω, VCI = An, VC = 5V, CL = 30 pF	5	12	20	ns
		$RL1 = 18\Omega$, $RL2 = NC$, $VL = 2V$ (Figure 5)				
t _R	Driver Output Rise Time	$CD = 0.8V, T/\overline{R} = 2V, VL = 2V$	3	6	10	ns
tF	Driver Output Fall Time	(Figure 2)	3	6	10	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Receiver:				•		
t _{RLH}	Bn to Rn	$\overline{\text{TE}} = 2.0\text{V}, \overline{\text{RE}} = 0.8\text{V}$ (Figure 3)	5	10	18	ns
t _{RHL}			5	12	18	ns
t _{RLZR}	RE to Rn	$Bn = \overline{TE} = 2V, VL = 5V, CL = 5 pF$	5	10	18	ns
		$RL1 = 390\Omega$, $RL2 = NC$ (Figure 4)				
t _{RZLR}		$Bn = \overline{TE} = 2V, VL = 5V, CL = 30 \text{ pF}$	5	8	15	ns
		$RL1 = 390\Omega$, $RL2 = 1.6k$ (Figure 4)				
t _{RHZR}		$Bn = 0.8V, \overline{TE} = 2V, VL = 0V,$	2	4	8	ns
		$RL1 = 390\Omega$, $RL2 = NC$, $CL = 5 pF$ (Figure 4)				
t _{RZHR}		$Bn = 0.8V, \overline{TE} = 2V, VL = 0V,$	3	7	12	ns
		RL1 = NC, RL2 = 1.6k, CL = 30 pF (Figure 4)				
t _{NR}	Receiver Noise	(Figure 6)	3	6		ns
	Rejection Pulse Width					
Driver plus	Receiver:			-		
t _{DRLH}	Dn to Rn	$\overline{\text{TE}} = \overline{\text{RE}} = 0.8 \text{V}$ (Figure 7)	10	20	30	ns
t _{DRHL}			10	20	30	ns

Note: NC means open

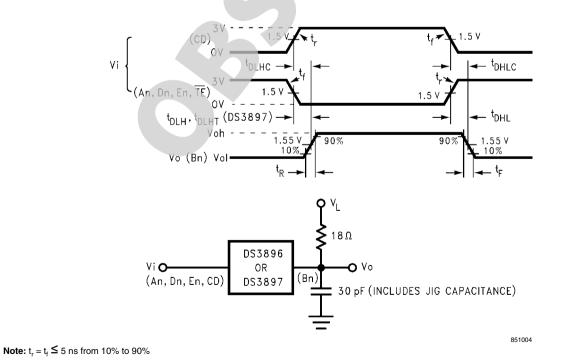
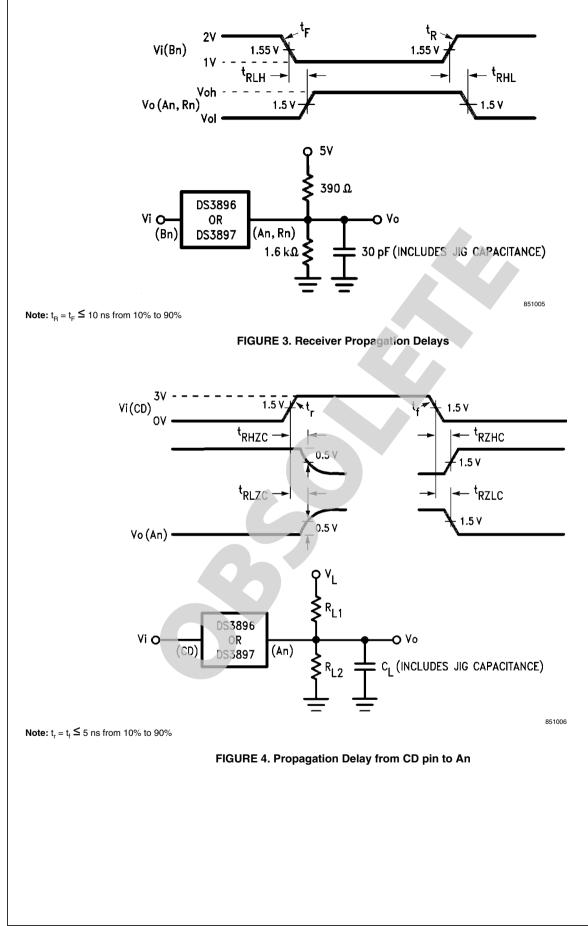
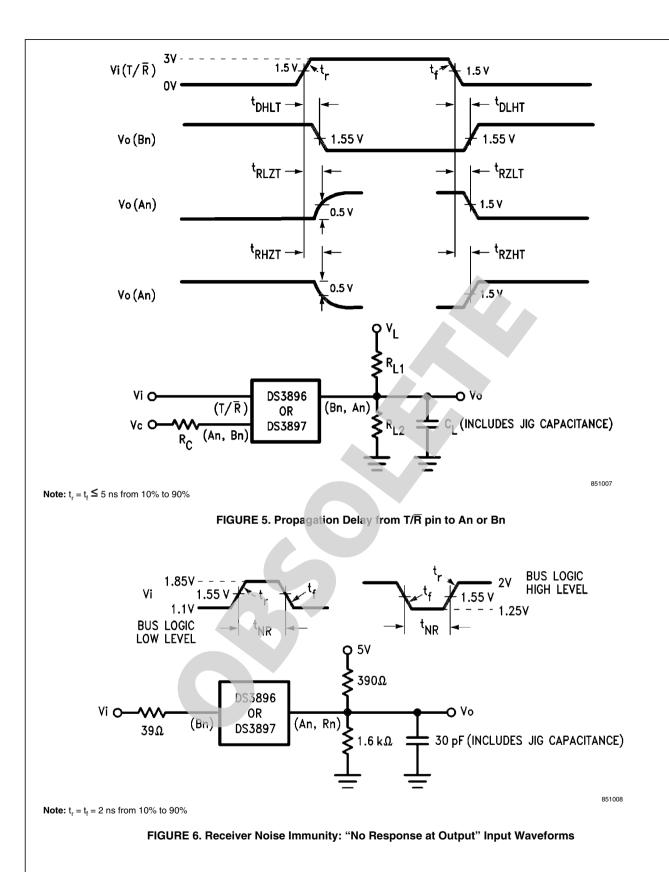
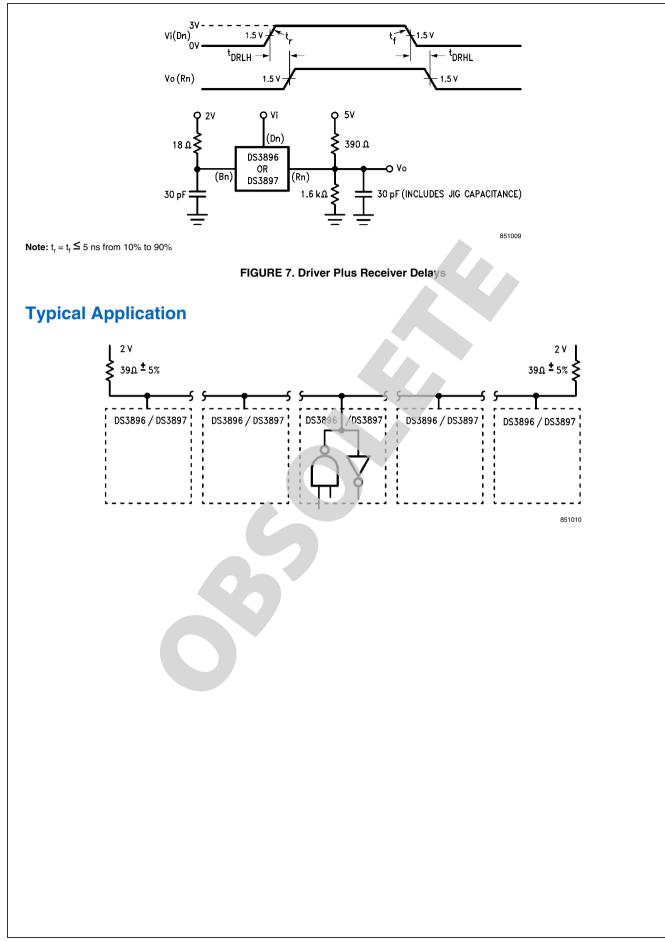
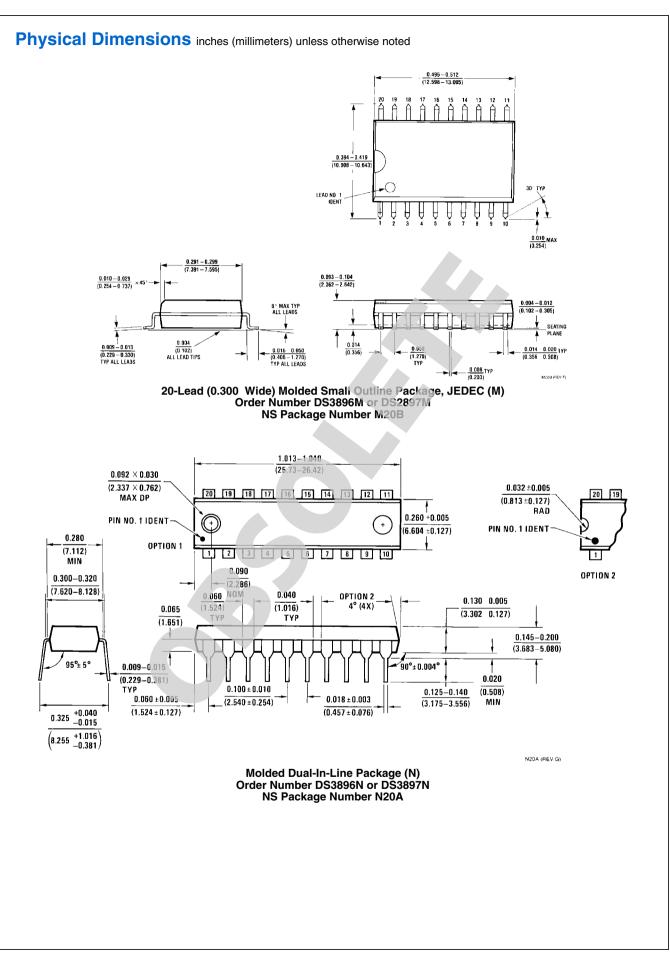




FIGURE 2. Driver Propagation Delays


www.national.com



www.national.com

7

Notes

Decian Support

Transceive	For more National S
dal	Amplifiers
o <u>i</u> o	Audio
6 G	Clock and Timing
ğ	Data Converters
L'	Interface
	LVDS
F	Power Manageme
m	Switching Reg
97	LDOs
8 8 8	LED Lighting
S	Voltage Refer
Q	PowerWise® Solu
96/	Serial Digital Interf
8	Temperature Sens
S	Wireless (PLL/VC0
	L

Semiconductor product information and proven design tools, visit the following Web sites at:

Droducte

FIC	baucis	Desig	n Support
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com vw.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com