TIMES MICROWAVE SYSTEMS

LMR[®] lite-195 Flexible Low Loss Communications Coax Ideal for...

- Jumper Assemblies in Wireless Communications Systems
- Short Antenna Feeder runs
- Any application (e.g. WLL, GPS, LMR, WLAN, WISP, WiMax, SCADA, Mobile Antennas) requiring an easily routed, low loss RF cable
- Drop-in replacement for RG-58 and RG-142

• LMR-LW is a lightweight low loss coaxial cable that employs an aluminum braid shield instead of the traditional tinned copper shield. LMR-LW has been designed and engineered with a combination of electrical, physical and mechanical properties that reduce weight and cost.

Flexibility and bendability that are hallmarks of LMR are also the same for LMR-LW. The flexible outer conductor enables the tightest bend radius available for any cable of similar size and performance.
Low Loss is another hallmark feature of LMR-LW. Size for size LMR[®] has the lowest loss of any flexible cable and comparable loss to semi rigid hard-line cables.

• **RF Shielding** is 50 dB greater than typical single shielded coax (40 dB). The multi-ply bonded foil outer conductor is rated conservatively at > 90 dB (i.e. >180 dB between two adjacent cables).

Weatherability: LMR-LW cables designed for outdoor exposure incorporate the best materials for UV resistance and have life expectancy in excess of 20 years.
Connectors: LMR-LW uses the same connectors, tools and installation accessories as standard LMR[®]. A wide variety of connectors are available for LMR-LW195 including all common interface types, reverse polarity, and a choice of solder or non-solder center pins. Most LMR

connectors employ crimp outer attachment using standard hex crimp sizes.

LMR life 195

• **Cable Assemblies**: All LMR-LW cable types are available as pre-terminated cable assemblies.

F	Part Description			Stock
Part Number	Application	Jacket	Color	Code
LMR-LW195	Outdoor	PE	Black	45110
PE = Polyethylene				

Construction Specifications			
Description	Material	ln.	(mm)
Inner Conductor	Solid BC	0.037	(0.94)
Dielectric	Foam PE	0.110	(2.79)
Outer Conductor	Aluminum Tape	0.116	(2.95)
Overall Braid	Aluminum	0.139	(3.53)
Jacket	(See table above)	0.195	(4.95)

Mechanical Specifications				
Performance Property	Units	US	(metric)	
Bend Radius: installation	in. (mm)	0.5	(12.7)	
Bend Radius: repeated	in. (mm)	2	(50.8)	
Bending Moment	ft-lb (N-m)	0.2	(0.27)	
Weight	lb/ft (kg/m)	.015	(0.022)	
Tensile Strength	lb (kg)	40	(18.2)	
Flat Plate Crush	lb/in. (kg/mm)	15	(0.27)	

Environmental Specifications			
Performance Property	°F	°C	
Installation Temperature Range	-40/+185	-40/+85	
Storage Temperature Range	-94/+185	-70/+85	
Operating Temperature Range	-40/+185	-40/+85	

Electrical Specifications				
Performance Property		US	(metric)	
Velocity of Propagation	n %	80		
Dielectric Constant	NA	1.56		
Time Delay	nS/ft (nS/m)	1.27	(4.17)	
Impedance	ohms	50		
Capacitance	pF/ft (pF/m)	25.4	(83.3)	
Inductance	uH/ft (uH/m)	0.064	(0.21)	
Shielding Effectiveness	dB	>90		
DC Resistance				
Inner Conductor	ohms/1000ft (/km)	7.6	(24.9)	
Outer Conductor	ohms/1000ft (/km)	18.1	(59.4)	
Voltage Withstand	Volts DC	1000		
Jacket Spark	Volts RMS	3000		
Peak Power	kW	2.5		

AES MICROWAVE

Attenuation vs. Frequency (typical) 100.0 Attenuation (db per 100 feet) Frequency (MHz) 10.0 1.0 10 100 1,000 10,000 450 900 Frequency (MHz) 30 50 150 220 1500 1800 2000 2500 5800 8000 Attenuation dB/100 ft 2.5 4.4 5.4 7.8 14.5 16.0 2.0 11.1 16.9 19.0 29.9 35.7 Attenuation dB/100 m 6.5 8.4 14.6 17.7 25.5 36.5 47.7 52.5 55.4 98.1 117.1 62.4 Avg. Power kW 0.89 0.68 0.39 0.32 0.22 0.16 0.12 0.11 0.10 0.09 0.06 0.04

 $\begin{array}{l} \mbox{Calculate Attenuation = (0.356859)} \bullet \sqrt{\mbox{FMHz}} + (0.000470) \bullet \mbox{FMHz} (interactive calculator available at http://www.timesmicrowave.com/cable_calculators)} \\ \mbox{Attenuation: VSWR=1.0 ; Ambient = +25°C (77°F) Power: VSWR=1.0; Ambient = +40°C; Inner Conductor = 100°C (212°F);} \\ \mbox{Sea Level; dry air; atmospheric pressure; no solar loading} \end{array}$