

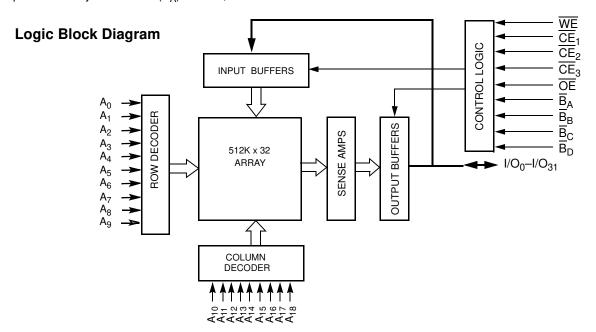
512K x 32 Static RAM

Features

- · High speed
 - $-t_{AA} = 8 \text{ ns}$
- · Low active power
 - 1080 mW (max.)
- Operating voltages of 3.3 ± 0.3V
- 2.0V data retention
- Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and CE₃ features
- Available in non Pb-free 119-ball PBGA package

Functional Description

The CY7C1062AV33 is a high-performance CMOS Static RAM organized as 524,288 words by 32 bits.


Writing to the device is accomplished by enabling the chip $(\overline{CE}_1, \overline{CE}_2)$, and \overline{CE}_3 LOW) and forcing the Write Enable (\overline{WE}) input LOW. If Byte Enable A (\overline{B}_A) is LOW, then data from I/O

pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_1$ 8). If Byte Enable B ($\overline{\rm B}_{\rm B}$) is LOW, then data from I/O pins (I/O $_8$ through I/O $_1$ 5) is written into the location specified on the address pins (A $_0$ through A $_1$ 8). Likewise, $\overline{\rm B}_{\rm C}$ and $\overline{\rm B}_{\rm D}$ correspond with the I/O pins I/O $_1$ 6 to I/O $_2$ 3 and I/O $_2$ 4 to I/O $_3$ 1, respectively.

Reading from the device is accomplished by enabling the chip (\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW) while forcing the Output Enable (\overline{OE}) LOW and Write Enable (\overline{WE}) HIGH. If the first Byte Enable (\overline{B}_A) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte Enable B (\overline{B}_B) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. Similarly, \overline{B}_c and \overline{B}_D correspond to the third and fourth bytes. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_0$ through I/O $_{31}$) are placed <u>in a high-impedance</u> state when the device is deselected (\overline{CE}_1 , \overline{CE}_2 or \overline{CE}_3 HIGH), the outputs are disabled (\overline{OE} HIGH), the byte selects are disabled (\overline{B}_{A-D} HIGH), or during a write operation (\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW, and \overline{WE} LOW).

The CY7C1062AV33 is available in a 119-ball pitch ball grid array (PBGA) package.

Selection Guide

		-8	-10	-12	Unit
Maximum Access Time		8	10	12	ns
Maximum Operating Current	Com'l	300	275	260	mA
	Ind'l	300	275	260	
Maximum CMOS Standby Current	Com'l/Ind'l	50	50	50	mA

Pin Configurations^[1, 2]

119-ball PBGA (Top View)

	1	2	3	4	5	6	7
Α	I/O ₁₆	Α	Α	Α	Α	Α	I/O ₀
В	I/O ₁₇	Α	Α	Œ ₁	Α	Α	I/O ₁
С	I/O ₁₈	B _c	CE ₂	NC	CE ₃	B _a	I/O ₂
D	I/O ₁₉	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₃
E	I/O ₂₀	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₄
F	I/O ₂₁	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₅
G	I/O ₂₂	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₆
Н	I/O ₂₃	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₇
J	NC	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	DNU
K	I/O ₂₄	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₈
L	I/O ₂₅	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₉
M	I/O ₂₆	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₁₀
N	I/O ₂₇	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₁₁
Р	I/O ₂₈	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₁₂
R	I/O ₂₉	Α	B _d	NC	B _b	Α	I/O ₁₃
Т	I/O ₃₀	Α	Α	WE	Α	Α	I/O ₁₄
U	I/O ₃₁	Α	Α	ŌE	Α	Α	I/O ₁₅

- Notes:
 1. NC pins are not connected on the die.
 2. DNU pins have to be left floating or tied to VSS to ensure proper application.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on V_{CC} to Relative $GND^{[3]}$ -0.5V to +4.6V

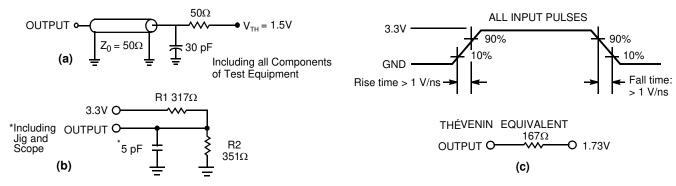
DC Voltage Applied to Outputs

in High-Z State^[3].....–0.5V to V_{CC} + 0.5V

DC Input Voltage ^[3]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	$3.3V\pm0.3V$
Industrial	–40°C to +85°C	


DC Electrical Characteristics Over the Operating Range

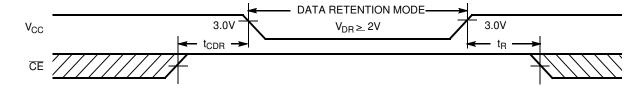
			-8			10	-12			
Parameter	Description	Test Condition	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.$	0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$	mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V_{IL}	Input LOW Voltage ^[3]		-0.3	0.8	-0.3	8.0	-0.3	8.0	V	
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$	-1	+1	-1	+1	-1	+1	μА	
l _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Obsabled	-1	+1	-1	+1	-1	+1	μА	
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		300		275		260	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		300		275		260	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$			70		70		70	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\label{eq:max_vcc} \begin{split} & \underline{\text{Max}}. \ V_{CC}, \\ & CE \geq V_{CC} - 0.3V, \\ & V_{IN} \geq V_{CC} - 0.3V, \\ & \text{or} \ V_{IN} \leq 0.3V, \ f = 0 \end{split}$	Com'l/ Ind'l		50		50		50	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit	
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 3.3V$	8	pF	
C _{OUT}	I/O Capacitance		10	pF	

AC Test Loads and Waveforms^[5]

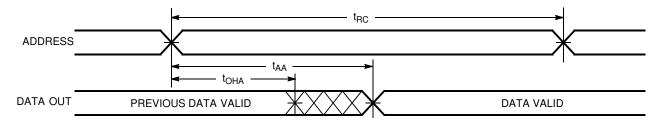
Notes:


- 3. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 4. Tested initially and after any design or process changes that may affect these parameters.
- Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1 ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage.

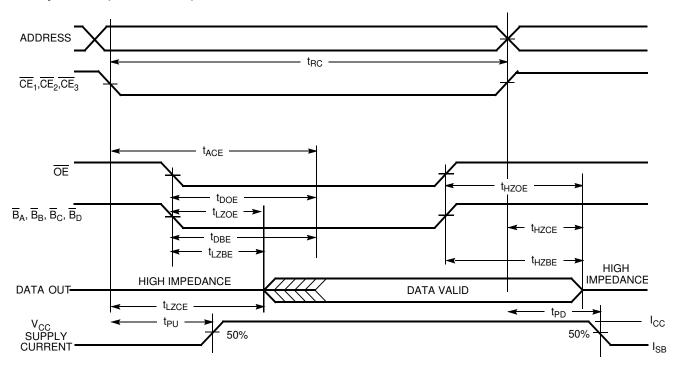
AC Switching Characteristics Over the Operating Range^[6]

		_	-8		-10		12	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	•							
t _{power}	V _{CC} (typical) to the first access ^[7]	1		1		1		ms
t _{RC}	Read Cycle Time	8		10		12		ns
t _{AA}	Address to Data Valid		8		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ , CE ₂ , or CE ₃ LOW to Data Valid		8		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		5		6	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	1		1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[8]		5		5		6	ns
t _{LZCE}	CE ₁ , CE ₂ , or CE ₃ LOW to Low-Z ^[8]	3		3		3		ns
t _{HZCE}	CE ₁ , CE ₂ , or CE ₃ HIGH to High-Z ^[8]		5		5		6	ns
t _{PU}	CE ₁ , CE ₂ , or CE ₃ LOW to Power-up ^[9]	0		0		0		ns
t _{PD}	CE ₁ , CE ₂ , or CE ₃ HIGH to Power-down ^[9]		8		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		5		6	ns
t _{LZBE}	Byte Enable to Low-Z ^[8]	1		1		1		ns
t _{HZBE}	Byte Disable to High-Z ^[8]		5		5		6	ns
Write Cycle ^{[1}	0, 11]	<u> </u>						
t _{WC}	Write Cycle Time	8		10		12		ns
t _{SCE}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 LOW to Write End	6		7		8		ns
t _{AW}	Address Set-up to Write End	6		7		8		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		ns
t _{SD}	Data Set-up to Write End	5		5.5		6		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[8]		5		5		6	ns
t _{BW}	Byte Enable to End of Write	6		7		8		ns

Data Retention Waveform


- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and transmission line loads. Test conditions for the read cycle use output loading as shown in (a) of AC Test Loads, unless specified otherwise.
 This part has a voltage regulator that steps down the voltage from 3V to 2V internally. t_{power} time has to be provided initially before a read/write operation is started.

- that the spanning a voltage regulator that steps down the voltage norms to 2 internally. the spanning and the steps down the voltage norms to 2 internally. The provinger that is to be provided initially before a read/white operation is stated.
 that the state is the provided initially before a read/white operation is stated.
 These parameters are guaranteed by design and are not tested.
 The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, CE₃ LOW, and WE LOW. The chip enables must be active and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The principle write evel time for Weite Cycle No. 3 (WE) controlled OE LOW) in the sum of the signal time for Weite Cycle No. 3 (WE)
- 11. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

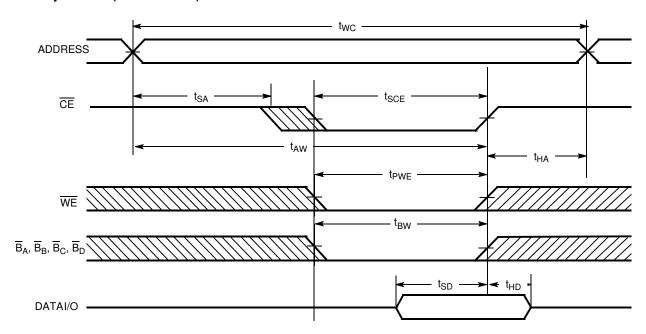


Switching Waveforms

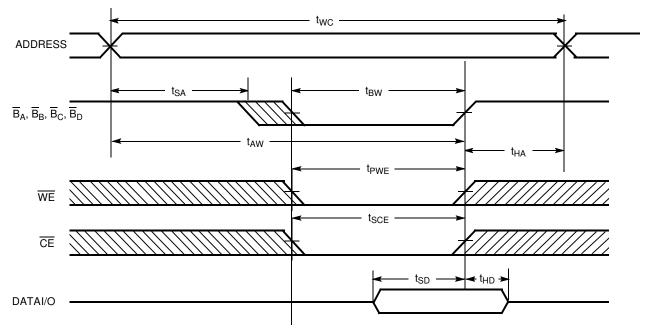
Read Cycle No. 1 $^{[12,\ 13]}$

Read Cycle No. 2 (OE Controlled)[13, 14]

12. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{B}_A , \overline{B}_B , \overline{B}_C , $\overline{B}_D = V_{|L}$.


13. \overline{WE} is HIGH for read cycle.

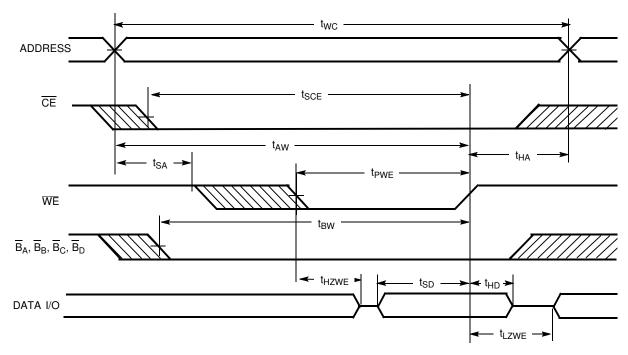
14. Address valid prior to or coincident with \overline{CE} transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[15, 16, 17]

Write Cycle No. 2 (BLE or BHE Controlled)^[15, 16, 17]



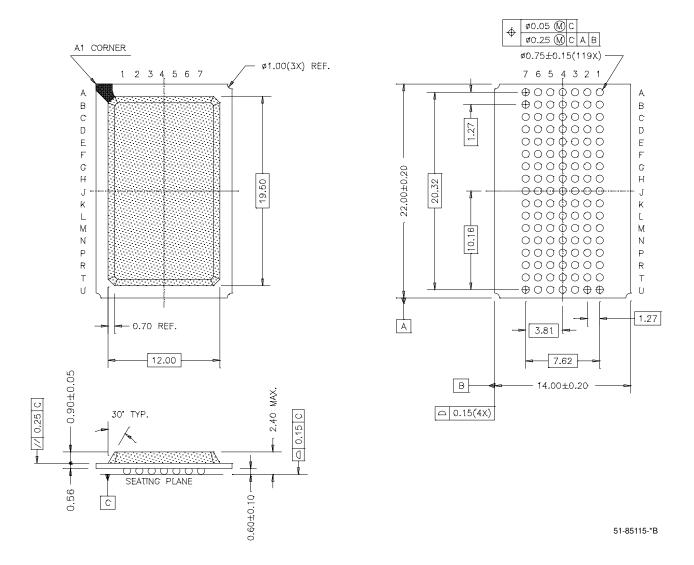
Notes: 15. \overline{CE} indicates a combination of <u>all</u> three chip enables. When ACTIVE LOW, \overline{CE} indicates the \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are LOW. 16. Data I/O is high-impedance if \overline{OE} or \overline{B}_A , \overline{B}_B , \overline{B}_C , $\overline{B}_D = V_{IH}$. 17. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)

Truth Table

CE ₁	CE ₂	CE ₃	ŌĒ	WE	B _A	B _B	B _c	B _D	I/O ₀ - I/O ₇	I/O ₈ — I/O ₁₅	I/O ₁₆ - I/O ₂₃	I/O ₂₄ - I/O ₃₁	Mode	Power
Н	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
Χ	Н	Χ	Χ	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
Χ	Χ	Н	Χ	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
L	L	L	L	Н	L	L	L	L	Data Out	Data Out	Data Out	Data Out	Read All Bits	(I _{CC})
L	L	L	L	Н	L	Ι	Ι	Ι	Data Out	High-Z	High-Z	High-Z	Read Byte A Bits Only	(I _{CC})
L	L	L	ا	Н	I	Ь	Ι	Ι	High-Z	Data Out	High-Z	High-Z	Read Byte B Bits Only	(I _{CC})
L	L	L	ا	Н	I	I	┙	Ι	High-Z	High-Z	Data Out	High-Z	Read Byte C Bits Only	(I _{CC})
L	L	∟	L	Н	Η	Η	Н	L	High-Z	High-Z	High-Z	Data Out	Read Byte D Bits Only	(I _{CC})
L	L	L	Χ	L	Ш	L	L	L	Data In	Data In	Data In	Data In	Write All Bits	(I _{CC})
L	L	L	X	L	L	Η	Ι	Η	Data In	High-Z	High-Z	High-Z	Write Byte A Bits Only	(I _{CC})
L	L	L	X	L	Τ	L	Τ	Η	High-Z	Data In	High-Z	High-Z	Write Byte B Bits Only	(I _{CC})
L	L	L	X	L	Τ	Η	┙	Η	High-Z	High-Z	Data In	High-Z	Write Byte C Bits Only	(I _{CC})
L	L	L	Х	L	Η	Η	Η	L	High-Z	High-Z	High-Z	Data In	Write Byte D Bits Only	(I _{CC})
L	L	L	Н	Н	X	X	X	X	High-Z	High-Z	High-Z	High-Z	Selected, Outputs Disabled	(I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
8	CY7C1062AV33-8BGC	51-85115	119-ball (14 x 22 x 2.4 mm) PBGA	Commercial
10	CY7C1062AV33-10BGC			
	CY7C1062AV33-10BGI	1		Industrial
12	CY7C1062AV33-12BGC	1		Commercial
	CY7C1062AV33-12BGI	1		Industrial

Package Diagram

119-ball PBGA (14 x 22 x 2.4 mm) (51-85115)

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1062AV33 512K x 32 Static RAM Document Number: 38-05137 Orig. of Change **Issue Date** REV. ECN NO. **Description of Change** 109752 02/27/02 HGK New Data Sheet Removed 15-ns bin and added 8-ns bin. Changed CE_2 TO CE_2 . Changed C_{IN} – input capacitance – from 6 pF to 8 pF. Changed C_{OUT} – output capacitance – from 8 pF to 10 pF. *A 117059 09/19/02 DFP Updated I_{CC} , T_{sd} , and T_{doe} parameters. Removed note 7 (I_Z/h_Z comment). *B 119389 10/07/02 DFP *C DFP 120384 11/13/02 Final Data Sheet. Removed note 2. Added note 3 to "AC Test Loads and Waveforms" and note 7 to t_{pu} and t_{pd}. *D 124440 2/25/03 **MEG** Changed ISB1 from 100 mA to 70 mA *E Removed $\overline{\text{CE}}_2$ waveform showing Active High signal timing on Page #5, and included it with the $\overline{\text{CE}}_1$, $\overline{\text{CE}}_3$ waveform **RKF** 329638 See ECN Corrected Truth Table on page 7 with \overline{CE}_2 active low information Included note #1 and 2 on page #2 Changed the description of I_{IX} from Input Load Current to Input Leakage *F 492137 See ECN **NXR** Current in DC Electrical Characteristics table **Updated Ordering Information Table**