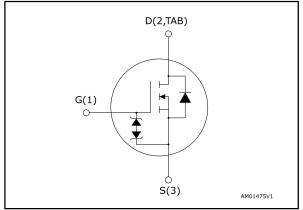

STP9N80K5, STW9N80K5



N-channel 800 V, 0.73 Ω typ., 7 A MDmesh $^{\rm TM}$ K5 Power MOSFETs in a TO-220 and TO-247 packages

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} R _{DS(on)} max.		ID
STP9N80K5	800 V	0.90 Ω	7 A
STW9N80K5	800 V	0.90 12	7 A

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

These very high voltage N-channel Power MOSFET are designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STP9N80K5		TO-220	Tuba
STW9N80K5	9N80K5	TO-247	Tube

DocID028461 Rev 3

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	TO-220 type A package information	11
	4.2	TO-247 package information	13
5	Revisio	n history	

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	± 30	V
ID	Drain current (continuous) at T _C = 25 °C	7	А
ID	Drain current (continuous) at Tc = 100 °C	4.4	А
ID ⁽¹⁾	Drain current (pulsed)	28	А
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	110	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	
TJ	Operating unction temperature range	EE to 150	°C
T _{stg}	Storage temperature range	- 55 to 150	-C

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{(2)}I_{SD} \leq 7$ A, di/dt
 ≤ 100 A/µs; V_Ds peak < V(BR)DSS,VDD= 640 V $^{(3)}V_{DS} \leq 640$ V

Table 3: Thermal data

Symbol	Parameter	Value		Unit
		TO-220 TO-247		
Rthj-case	Thermal resistance junction-case	1.14		°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or not repetitive (pulse width limited by Tjmax)	2.4	А
Eas	Single pulse avalanche energy (starting Tj = 25 °C, I_D = I_{AR}, V_{DD} = 50 V)	200	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 5: On/oπ-state						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	800			V
		$V_{GS} = 0 V, V_{DS} = 800 V$			1	μA
IDSS	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 800 V$ T _c = 125 °C ⁽¹⁾			50	μA
I _{GSS}	Gate body leakage current	$V_{\text{DS}} = 0 \ V, \ V_{\text{GS}} = \pm 20 \ V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{\text{DS}} = V_{\text{GS}}, I_{\text{D}} = 100 \ \mu\text{A}$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V_{GS} = 10 V, I_{D} = 3.5 A		0.73	0.90	Ω

Table 5: On/off-state

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		I	340	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	37	-	pF
Crss	Reverse transfer capacitance		I	0.65	-	pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related	V _{GS} = 0 V, V _{DS} = 0 to 640 V	-	61	-	pF
$C_{o(er)}^{(2)}$	Equivalent capacitance energy related	$\mathbf{v}_{\mathrm{GS}} = 0 \mathbf{v}, \mathbf{v}_{\mathrm{DS}} = 0 0 0 0 0 \mathbf{v}$		22		pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	7	-	Ω
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, \text{ I}_{D} = 7 \text{ A}$	-	12	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	3.8	-	nC
Q _{gd}	Gate-drain charge	See (Figure 16: "Test circuit for gate charge behavior")	-	6.7	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}C_{0(tr)}$ is a constant capacitance value that gives the same charging time as Coss while V_{DS} is rising from 0 to 80% $V_{DSS}.$

 $^{(2)}C_{0(er)}$ is a constant capacitance value that gives the same stored energy as Coss while V_{DS} is rising from 0 to 80% $V_{DSS}.$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{\text{DD}}\text{=}$ 400 V, I_{D} =3.5 A, R_{G} = 4.7 Ω	-	11	-	ns
tr	Rise time	V _{GS} = 10 V	-	5.7	-	ns
td(off)	Turn-off delay time	See (Figure 15: "Test circuit for resistive load switching times" and	-	65.3	-	ns
t _f	Fall time	Figure 20: "Switching time waveform")	-	13.6	-	ns

Table 7: Switching times

DocID028461 Rev 3

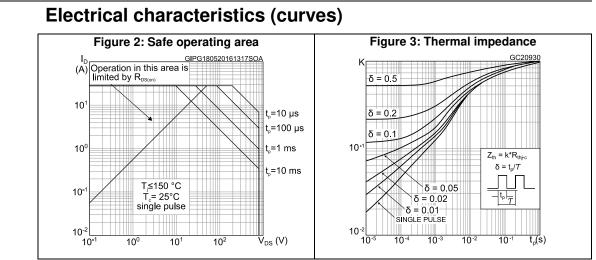
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		7	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		28	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 7 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.5	V
trr	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs,	-	292		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V See <i>Figure 17: "Test circuit for</i>	-	2.66		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times"	-	18.2		А
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs	-	477		ns
Qrr	Reverse recovery charge	$V_{DD} = 60$ V, $T_j = 150$ °C See <i>Figure 17: "Test circuit for</i>	-	3.91		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times"	-	16.4		А

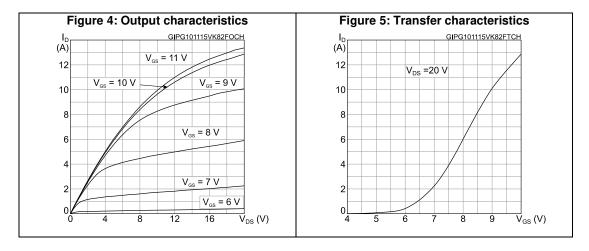
Table 8: Source-drain diode

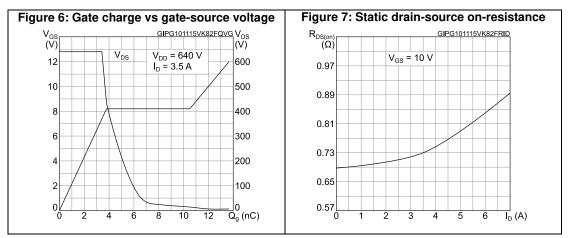
Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area

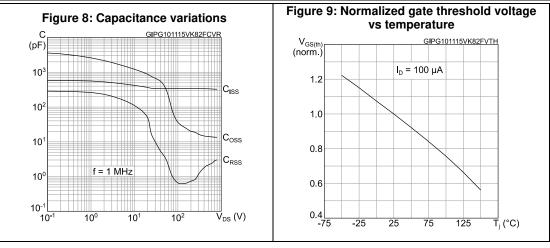
 $^{(2)}$ Pulsed: pulse duration = 300 µs, duty cycle 1.5%

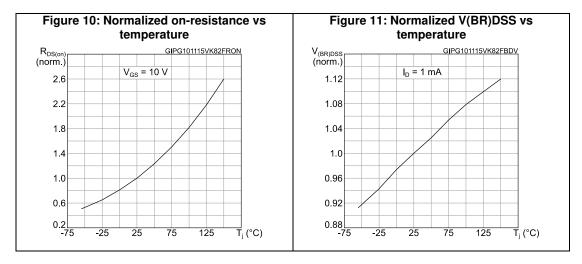

Table 9: Gate-source Zener diode

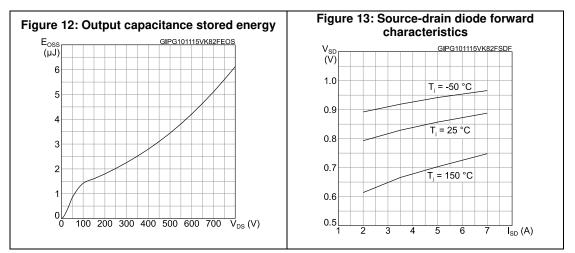

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V(BR)GSO	Gate-source breakdown voltage	I _{GS} = ± 1mA,I _D = 0 A	30	-	-	V


The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

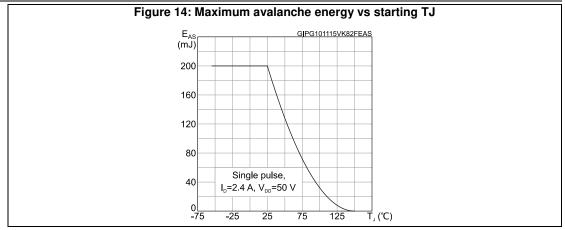
2.1





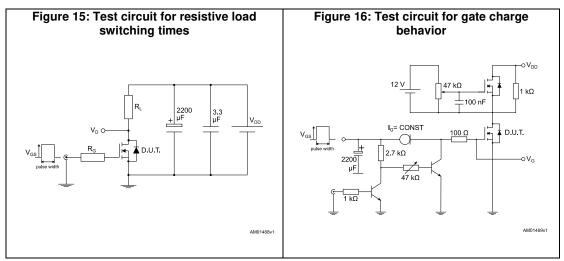


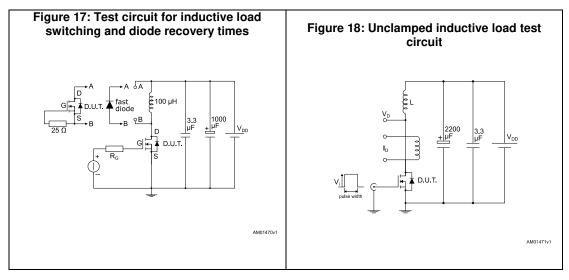
Electrical characteristics

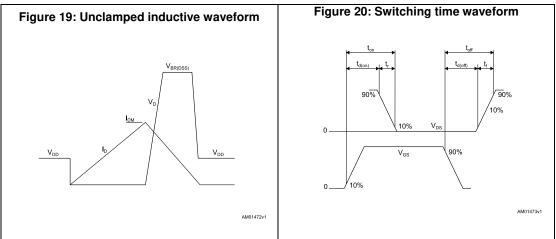


57

DocID028461 Rev 3

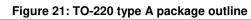

Electrical characteristics

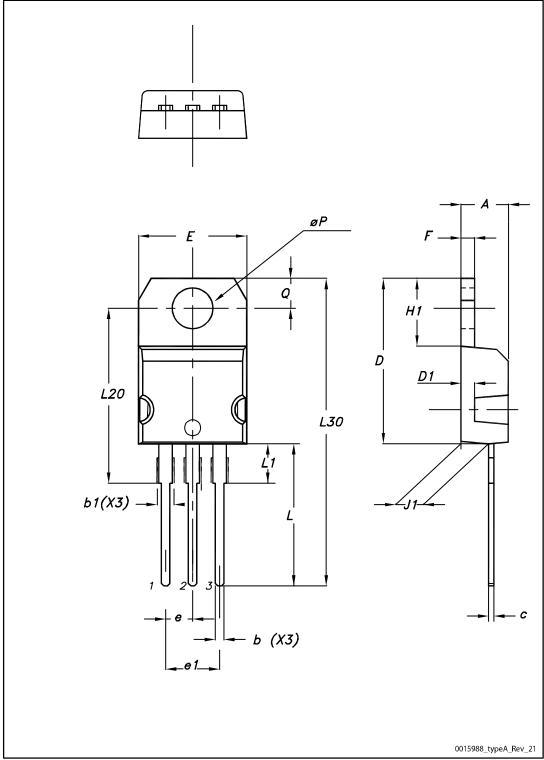

STP9N80K5, STW9N80K5



3 Test circuits

57

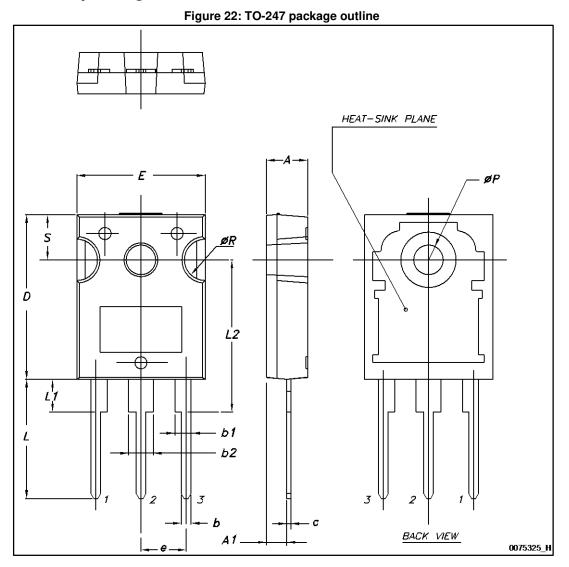

4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

57

4.1 TO-220 type A package information

DocID028461 Rev 3


Package information

STP9N80K5, STW9N80K5

formation STP9N80K5, STW9N80K5					
	Table 10: TO-220 ty	pe A mechanical data			
Dim		mm			
Dim.	Min.	Тур.	Max.		
A	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.55		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10.00		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13.00		14.00		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
øP	3.75		3.85		
Q	2.65		2.95		

4.2 TO-247 package information

Package information

ormation		STP	9N80K5, STW9N80K	
Table 11: TO-247 package mechanical data				
Dim.	mm			
	Min.	Тур.	Max.	
А	4.85		5.15	
A1	2.20		2.60	
b	1.0		1.40	
b1	2.0		2.40	
b2	3.0		3.40	
С	0.40		0.80	
D	19.85		20.15	
E	15.45		15.75	
е	5.30	5.45	5.60	
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
ØP	3.55		3.65	
ØR	4.50		5.50	
S	5.30	5.50	5.70	

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
13-Oct-2015	1	First release.
20-May-2016	Modified: <i>Table 4: "Avalanche characteristics", Table 6: "Dynam Table 7: "Switching times"</i> and <i>Table 8: "Source-drain diode".</i> Minor text changes	
26-Jul-2016	3	Updated features in cover page.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

