

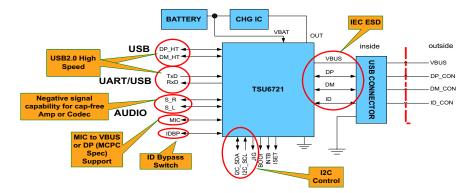
MCPC Compatible USB Port Multimedia Switch Supports USB, UART, Audio, ID, MIC, and Load Switch

Check for Samples: TSU6721YFF

FEATURES

www.ti.com

- Switch Matrix
 - USB and UART Switch support USB 2.0 HS
 - Audio Switch with Negative Signal Capability
 - ID Bypass Switch
 - VBUS to MIC Switch
 - DP to MIC Switch to Support MCPC
- Load Switch
 - 100 mΩ Load Switch
 - OTG Support
 - 28 V VBUS Rating with Over-voltage Protection
 - Programmable Overcurrent Limiter/Protection
- Charger Detection
 - USB BCDv1.2 compliant
 - VBUS Detection
 - Data Contact Detection
 - Primary and Secondary Detection
- Compatible Accessories
 - USB Chargers (DCP, CDP)
 - Apple Charger
 - USB Data Port
 - Audio Headset with MIC and Remote
 - Docking Support
 - Factory Cable


Additional Features

- I2C Interface with Host Processor
- Switches Controlled by Automatic Detection or Manual Control
- Interrupts Generated for Plug/Unplug
- Decoupling FET Switch to VBUS Added to Reduce Degradation on MIC Line
- Support Control Signals used In Manufacturing (JIG, BOOT)
- ESD Performance Tested Per JESD 22
 - 4000-V Human-Body Model (A114-B, Class II)
 - 1500-V Charged-Device Model (C101)
- IEC ESD Performance
 - ±8 kV Contact Discharge (IEC 61000-4-2) for VBUS/DP/DM/ID to GND

APPLICATIONS

- Cell Phones and Smart Phones
- Tablet PCs
- Digital Cameras and Camcorders
- GPS Navigation Systems
- Micro USB Interface with USB/UART/AUDIO

APPLICATION DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCDS345 – JUNE 2013 www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

For package and ordering information, see the Package Option Addendum at the end of this document.

DESCRIPTION

TSU6721 is a high performance USB port multimedia switch featuring automatic switching and accessory detection. The device connects a common USB port to pass audio, USB data, charging, On The Go (OTG) and factory mode signals. The audio path has negative signal capability includes left (mono/stereo), right (stereo) as well as microphone signals. Furthermore, TSU6721 is compatible with the MCPC specification.

TSU6721 features impedance detection which supports the detection of various accessories that are attached through DP, DM and ID pins of the USB connector. The switch is controlled by automatic switching or manually through I²C.

TSU6721 has an integrated low resistive Load Switch that is used to isolate the charger from the external connector. OverVoltage Protection and programmable OverCurrent Limiter/Protection are additional features included to the Load Switch.

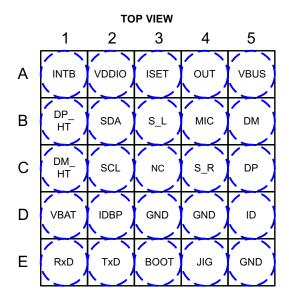
The charger detection satisfies USB charger specification v1.2. In addition to DCP, CDP and SDP, the device also detects Apple Chargers.

Power for this device is supplied through VBAT of the system or through VBUS when attached. TSU6721 supports factory mode testing when a USB/UART JIG cable is used in development and manufacturing.

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

BLOCK DIAGRAM


www.ti.com

SCDS345 – JUNE 2013 www.ti.com

TEXAS INSTRUMENTS

PIN OUT

PIN FUNCTIONS

BALL NO.	PIN NAME	TYPE	DESCRIPTION
D1	VBAT	_	3.0 – 4.4V Battery supply voltage
A2	VDDIO	_	1.8 ~ 3.3V Logic Supply
A5	VBUS	1	USB connector VBUS
A4	OUT	0	Phone charger output
E5, D3, D4	GND	_	Ground
B1	DP_HT	I/O	USB data plus
C1	DM_HT	I/O	USB data minus
D2	IDBP	I/O	USB ID data
E1	RxD	I/O	UART receive data
E2	TxD	I/O	UART transmit data
C3	NC	1	Not connected internally
B4	MIC	I/O	Microphone signal
C4	S_R	I/O	Stereo headset right sound
В3	S_L	I/O	Mono or stereo headset left sound
C2	SCL	I	I2C clock
B2	SDA	I/O	I2C data
C5	DP	I/O	Common USB connector plus I/O port
B5	DM	I/O	Common USB connector minus I/O port
D5	ID	I/O	Common USB connector ID I/O port
A1	INTB	0	Interrupt signal when peripheral is plugged/unplugged. Push-pull output
А3	ISET	0	High current charger detected. Open-drain output
E4	JIG	0	GPIO factory output. Open-drain output
E3	BOOT	0	GPIO factory output. Push-pull output

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
VBUS	Supply voltage from USB	-0.5	28	V	
VBAT	Supply voltage from batte	ry	-0.5	6	V
VDDIO	Logic supply voltage		-0.5	4.6	V
VBUS_OUT	Phone charger output		-0.5	7	V
DP	DP Connector voltage		-0.5	VBAT+0.5	V
DM	DM Connector voltage		-0.5	VBAT+0.5	V
ID	ID Connector voltage		-0.5	VBAT+0.5	V
IDBP	ID Host Side voltage		-0.5	VBAT+0.5	V
VAUDIO		Audio Switch (S_L, S_R)	-1.5	VBAT+0.5	
VMIC	Switch I/O voltage range	Mic Switch (MIC)	-0.5	VBAT+0.5	V
VUSB/VUART		USB/UART Switch	-0.5	VBAT+0.5	
VJIG & VISET	JIG and ISET voltage	-0.5	VBAT+0.5	V	
VLOGIC_O	Voltage applied to logic or	Voltage applied to logic output (SCL, SDA, INTB, BOOT)		VDDIO	V
IDLIO	Peak input current on VBUS pin (12.5% duty cycle)			2.0	
IBUS	Peak input current on VBI		2.5	Α	
IDUIC OUT	Peak input current on VBI	Peak input current on VBUS pin (12.5% duty cycle)			Α
IBUS_OUT	Peak input current on VBI	Peak input current on VBUS pin (3% duty cycle, 4ms on-time)			
I _{ISET} & I _{JIG}	ISET and JIG pins peak of	urrent		50	mA
IK	Analog port diode current		-50	50	mA
ISW-DC	ON-state continuous switch	ch current	-60	60	mA
ISW PEAK	ON-state peak switch curr	rent	-150	150	mA
IIK	Digital logic input clamp current	Digital logic input clamp		-50	mA
ILOGIC_O	Continuous current through	h logic output (SCL, SDA, INTB, BOOT)	-50	50	mA
IGND	Continuous current through	Continuous current through GND			mA
Tstg	Storage temperature rang	е	-65	150	°C

THERMAL IMPEDANCE RATINGS

			VALUE	UNIT
θ_{JA}	Package thermal impedance	YFP package	98.8	°C/W

SUMMARY OF TYPICAL CHARACTERISTICS

AMBIENT TEMPERATURE = 25°C	USB/UART PATH	AUDIO PATH	MIC PATH
Number of channels	2	1	1
ON-state resistance (r _{on})	6 Ω / 7 Ω (USB/UART)	2.5 Ω	40 Ω
ON-state resistance match (Δ _{ron})	0.2 Ω / 1.5 Ω	0.15 Ω	N/A
ON-state resistance flatness (r _{on(flat)})	1.4 Ω / 1.4 Ω	0.15 Ω	N/A
Turn-on/Turn-off time (t _{ON} /t _{OFF})	130 µs/ 100 µs	200 μs/100 μs	260 µs /180 µs
Bandwidth (BW)	510 MHz	450MHz	250 MHz
OFF isolation (O _{ISO})	-26 dB at 250 MHz	-100 dB	−95 dB
Crosstalk (X _{TALK})	-32 dB at 250 MHz	-85 dB	-85 dB
Total Harmonic Distortion (THD)	N/A	0.05%	0.46%
Leakage current (I _{IO(ON)})	50 nA	200 nA	5 nA

Product Folder Links: TSU6721YFF

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

PARAMETER	DESCRIPTION	MIN	MAX	UNITS
V _{BUS}	VBUS voltage	4.0	6.5	V
V_{BAT}	VBAT voltage	3.0	4.4	V
V_{DDIO}	VDDIO voltage	1.65	3.6	V
ID_Cap	ID capacitance		3	nF
USB_I/O	USB path signal range	0	3.6	V
UART_I/O	UART path signal range	0	2.7	V
Audio_I/O	Audio path signal range	-1.5	1.5	V
MIC_I/O	MIC path signal range	0	2.3	V
Temperature	Operating Temperature	-40	85	°C

ELECTRICAL SPECIFICATIONS

DIGITAL SIGNALS - I2C INTERFACE (SCL and SDA)

 $T_A = -40$ °C to 85°C, Typical values are at $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V_{DDIO}	Logic and I/O supply voltage		1.65	3.6	V
V _{IH}	High-level input voltage		VDDIO × 0.7	VDDIO	V
V _{IL}	Low-level input voltage		0	VDDIO × 0.3	V
V_{OH}	SDA High-level output voltage	$I_{OH} = -3 \text{ mA}$	VDDIO × 0.7		V
V_{OL}	SDA Low-level output voltage	I _{OL} = 3 mA	0	0.4	V
f_{SCL}	SCL frequency			400	kHz

JIG AND ISET FAST-MODE CHARGER OUTPUT (OPEN-DRAIN OUTPUT)

 $T_{A} = -40$ °C to 85°C, Typical values are at $T_{A} = 25$ °C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
VOL_JIG	Low-level output voltage	I _{OL} = 10 mA, VBAT = 3.0 V	0	0.5	V
VOL_ISET	Low-level output voltage	$I_{OL} = 10 \text{ mA}, VBAT = 3.0 \text{ V}$	0	0.7	V

INTB AND BOOT (PUSH-PULL OUTPUT)

 $T_{\Delta} = -40^{\circ}$ C to 85°C. Typical values are at $T_{\Delta} = 25^{\circ}$ C (unless otherwise noted)

- A	χ ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·									
PARAMETER		TEST CONDITIONS		MAX	UNIT					
V_{OH}	High-level output voltage	I _{OH} = -4 mA , VDDIO = 1.65 V	1.16	VDDIO	V					
V_{OL}	Low-level output voltage	I _{OL} = 4 mA , VDDIO = 1.65 V	0	0.33	V					

TOTAL SWITCH CURRENT CONSUMPTION

 $T_A = -40$ °C to 85°C, Typical values are at $T_A = 25$ °C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
IBAT(Standby)	VBAT Standby Current Consumption	VBUS = 0 V, Idle state		36	50	μA
IBAT(Operating)	VBAT Operating Current Consumption	VBUS = 0 V, USB switches ON		60	80	μA
IVBUS	VBUS Operating Current Consumption	No load on OUT pin, VBUS = 5 V		135	155	μΑ

VBUS CAP SWITCH CHARACTERISTICS

 $T_A = -40$ °C to 85°C, Typical values are at $T_A = 25$ °C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
RDS-VBUSCAP	VBUS CAP switch resistance	VBUS = 5 V, IOUT = -20 mA		90		Ω

Product Folder Links: TSU6721YFF

VOLTAGE PROTECTION

 $T_A = -40$ °C to 85 °C, Typical values are at $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{VBUS_UVLO}	V _{BUS} under voltage+	Voltage is Rising, device power-up	3.0	3.25	3.6	V
	V _{BUS} under voltage-	Voltage is Falling, device reset	2.7	3	3.3	
V _{VBUS_VALID}	V _{BUS} interrupt threshold	Voltage is Rising		3.6		V
V _{VBAT_UVLO}	V _{BAT} under voltage+	Voltage is Rising, device power-up	2.5	2.8	3.1	V
	V _{BAT} under voltage-	Voltage is Falling, device reset	2.3	2.6	2.9	

LOAD SWITCH CHARACTERISTICS

 $T_A = -40$ °C to 85°C, Typical values are at $T_A = 25$ °C (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
RDS- VBUSSWITCH	VBUS switch resistance	VBUS = 5 V,	VBUS = 5 V, IOUT = 100 mA		90	150	mΩ
t _{ONa}	Turn-ON time automatic mode	RL = 36 Ω, C	L = 400 pF, Vbus rising > 3.6V		175		ms
t _{OFFa}	Turn-OFF time automatic mode	RL = 36 Ω, C	L = 400 pF, Vbus falling < 3.6V		2.5		ms
t _{ONm}	Turn-ON time manual mode	RL = 36 Ω , C bit	L = 400 pF, From receipt of I2C ACK		230		μs
t _{OFFm}	Turn-OFF time manual mode	RL = 36 Ω , C bit	L = 400 pF, From receipt of I2C ACK		180		μs
			I2C reg0x22h, Bit [2:0] = 000	0.8	1.0	1.2	
locp	Programmable overcurrent	.,	I2C reg0x22h, Bit [2:0] = 001 (default)	1.3	1.5	1.7	^
	protection	$V_{BUS} = 5.5V$	I2C reg0x22h, Bit [2:0] = 010		2.0		Α
			I2C reg0x22h, Bit [2:0] = 011		2.0		İ
	Programmable overcurrent limiter	V	I2C reg0x21h, Bit [7:5] = 000	1.25	1.5	1.75	
			I2C reg0x21h, Bit [7:5] = 001 (default)	1.67	2.0	2.33	^
I _{OCL}		$V_{BUS} = 5.5V$	I2C reg0x21h, Bit [7:5] = 010		2.5	A	Α
		I2C reg0x21h, Bit [7:5] = 011			2.5		
VBUS OVERVO	LTAGE PROTECTION (OVP)						
VBUS VOVP	Input overvoltage protection threshold	VBUS increas	sing from 6 V to 8 V	6.8	7	7.2	V
VBUS tOFF(OVP)	OVP delay	Delay from V	BUS > VOVP to Load switch OFF		200		μs
VBUS VHYS-OVP	Hysteresis on OVP	VBUS decrea	asing from 8 V to 6 V		140		mV
VBUS tON(OVP)	Recovery time from input overvoltage condition	Delay from V _{BUS} < VOVP-VHYS, to Load switch ON			9		ms
OTP rOTP	OTP Rising Turn Off	Temperature rising until load switch shut off			130		°C
OTP fOTP	OTP Falling Turn On	Temperature turn on	falling after OTP shutoff until switch		120		°C

AUDIO SWITCH ELECTRICAL CHARACTERISTICS(1)(2)

 $V_{BAT} = 3.0 \text{ V}$ to 4.4 V, $V_{DDIO} = 2.8 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$, Typical values are at $T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG SWI	тсн					,	
V _{AUDIO}	Analog signal range			-1.5		3	V
r _{ON}	ON-state resistance	S_L or	$V_1 = \pm 0.8 \text{ V}, I_0 = -20 \text{ mA}, V_{BAT} = 3.0 \text{ V}$		2.5	5	Ω
Δr_{ON}	ON-state resistance match between channels	S_R , DM or DP	$V_1 = 0.8 \text{ V}, I_1 = -20 \text{ mA}, V_{BAT} = 3.0 \text{ V}$		0.15	0.5	Ω
r _{ON(flat)}	ON-state resistance flatness		$V_1 = \pm 0.8 \text{ V}, I_O = -20 \text{ mA}, V_{BAT} = 3.0 \text{ V}$		0.15	0.5	Ω
I _{IO(OFF)}	V _I or V _O OFF leakage curre	nt	$(V_I = -0.8 \text{ V}, V_O = 0.8 \text{ V}) \text{ or } (V_I = 0.8 \text{ V}, V_O = -0.8 \text{ V}), V_{BAT} = 4.4 \text{ V}, \text{ Switch OFF}$		200	500	nA
I _{IO(ON)}	VO ON leakage current		$V_I = \text{OPEN}, \ V_O = -0.8 \ \text{V} \ \text{or} \ 0.8 \ \text{V}, \ V_{BAT} = 4.4 \ \text{V},$ Switch ON		10	300	nA
DYNAMIC							
t _{ON}	Turn-ON time	From			200		μs
t _{OFF}	Turn-OFF time	receipt of I ² C ACK bit	V_I or $V_O = V_{BAT}$, $R_L = 100 \Omega$, $C_L = 35 pF$		100		
C _{I(OFF)}	VI OFF capacitance	II.	DC hine OV and CV/f dO MULE Cuitab OFF		5.5		pF
C _{O(OFF)}	VO OFF capacitance		DC bias = 0 V or 1.6 V f = 10 MHz, Switch OFF		10		pF
C _{I(ON)} , C _{O(ON)}	VI, VO ON capacitance		DC bias = 0 V or 1.6 V f = 10 MHz, Switch ON		13		pF
BW	Bandwidth		$R_L = 50 \Omega$, Switch ON		450		MHz
O _{ISO}	OFF Isolation		$f = 20 \text{ kHz}, R_L = 50 \Omega, \text{ Switch OFF}$		-100		dB
X _{TALK}	Crosstalk		$f = 20 \text{ kHz}, R_L = 50 \Omega$		-85		dB
THD	Total harmonic distortion		R_L = 16 Ω , C_L = 20 pF, f = 20 Hz–20 kHz , 1.6 Vpp output		0.05		%
			R_L = 16 Ω , C_L = 20 pF, f = 20 Hz–20 kHz , 3 Vpp output		0.1		%

⁽¹⁾ V_1 is equal to the asserted voltage on S_R and S_L pins. V_0 is equal to the asserted voltage on DP and DM pins. I_1 is equal to the current on the S_R and S_L pins. I_0 is equal to the current on the DP and DMpins

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

⁽²⁾ Audio Switch is intended for signals to be asserted on S_R/S_L pins and pass to DM/DP

MIC SWITCH ELECTRICAL CHARACTERISTICS(1)

 $V_{BAT} = 3.0 \text{ V}$ to 4.4 V, $V_{DDIO} = 2.8 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$, Typical values are at $T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG SW	ІТСН						
V _{MICIO}	Analog signal range			0		V_{BAT}	V
r _{ON}	ON-state resistance	MIC, VBUS	$V_{I} = 2.3 \text{ V}, I_{O} = -20 \text{ mA}, V_{BAT} = 3.0 \text{ V}$		40	52	Ω
		MIC, DP	$V_1 = 2.3 \text{ V}, I_1 = -5 \text{ mA}, V_{BAT} = 3.0 \text{ V}$		15	25	Ω
I _{IO(OFF)}	V _I or V _O OFF leakage	current	$V_I = 0.3 \text{ V}, V_O = 2.3 \text{ V} \text{ or } (V_I = 2.3 \text{ V}, V_O = 0.3 \text{ V}), \\ V_{BAT} = 4.4 \text{ V}, \text{ Switch OFF}$		5	500	nA
DYNAMIC				•			
t _{ON}	Turn-ON time	From receipt of	V_I or $V_O = V_{BAT}$, $R_L = 100 \Omega$, $C_L = 35 pF$		260		μs
t _{OFF}	Turn-OFF time	I ² C ACK bit			180		
C _{I(OFF)}	VI OFF capacitance		DC bias = 0 V or 3.6 V, f = 10 MHz, Switch OFF		130		pF
C _{O(OFF)}	VO OFF capacitance				10.5		pF
C _{I(ON)} , C _{O(ON)}	VI, VO ON capacitance	е	DC bias = 0 V or 3.6 V f = 10 MHz, Switch ON		140		pF
BW	Bandwidth, MIC to VB	US	$R_L = 50 \Omega$, Switch ON		40		MHz
	Bandwidth, MIC to DP		$R_L = 50 \Omega$, Switch ON		250		
O _{ISO}	OFF Isolation		$f = 20 \text{ kHz}, R_L = 50 \Omega, \text{ Switch OFF}$		-95		dB
X _{TALK}	Crosstalk		$f = 20 \text{ kHz}, R_L = 50 \Omega$, to audio output		-85		dB
THD	Total harmonic distorti	on	R_L = 600 Ω , C_L = 20 pF, f = 20 Hz–20 kHz , V_{in} = 0.1 Vpp centered at $V_{BAT}/2$		0.05	0.65	%

⁽¹⁾ V_1 is equal to the asserted voltage on VBUS/DP pin. V_0 is equal to the asserted voltage on MIC pin. I_1 is equal to the current on the VBUS/DP pin. I_0 is equal to the current on the MIC pin.

Product Folder Links : TSU6721YFF

USB & UART SWITCH ELECTRICAL CHARACTERISTICS

 $V_{BAT} = 3 \text{ V to } 4.4 \text{ V}, V_{DDIO} = 2.8 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}, \text{Typical values are at } T_A = 25 ^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG SWI	тсн					,	
V _{USBIO}	Analog signal range			0		3.6	V
V _{UARTIO}	Analog signal range			0		2.7	
r _{ON}	ON-state resistance	DM_HT,DM DP_HT,DP	$V_I = 0$ V to 3.6 V, $I_O = -20$ mA, $V_{BAT} = 3.0$ V		6	11	Ω
		TxD, DM RxD, DP	$V_I = 0$ V to 3.6 V, $I_O = -20$ mA, $V_{BAT} = 3.0$ V		7	14.3	
r _{ON}	ON-state resistance	ID, IDBP	V_I = 0 V to 3.6 V, I_O = -20 mA, V_{BAT} = 3.0 V		30		Ω
Δr _{ON}	ON-state resistance match between channels	DM_HT,DM DP_HT,DP	$V_{I} = 0.4 \text{ V}, I_{O} = -20 \text{ mA}, V_{BAT} = 3.0 \text{ V}$		0.2	1	Ω
		TxD, DM RxD, DP	$V_{I} = 0.4 \text{ V}, I_{O} = -20 \text{ mA}, V_{BAT} = 3.0 \text{ V}$		1.5	3	
r _{ON(flat)}	ON-state resistance flatness	DM_HT, DP_HT, TxD, RxD, DM, DP	V_I = 0 V to 3.6 V, I_O = -20 mA, V_{BAT} = 3.0 V		1.4	3.2	Ω
I _{IO(OFF)}	VI or VO OFF leakage current	DM_HT, DP_HT, TxD, RxD, DM, DP	$V_I = 0.3 \text{ V}, V_O = 2.7 \text{ V or } V_I = 2.7 \text{ V}, V_O = 0.3 \text{ V}, V_{BAT} = 4.4 \text{ V}, \text{Switch OFF}$		45	200	nA
I _{IO(ON)}	VO ON leakage current	DM_HT, DP_HT, TxD, RxD, DM, DP	V_I = OPEN, V_O = 0.3 V or 2.7 V, V_{BAT} = 4.4 V, Switch ON		50	200	nA
DYNAMIC			1				
t _{ON}	Turn-ON time	From receipt of I ² C	V_I or $V_O = V_{BAT}$, $R_L = 100 \Omega$, $C_L = 35 pF$		130		μs
t _{OFF}	Turn-OFF time	ACK bit			100		
C _{I(OFF)}	VI OFF capacitance	I	DC bias = 0 V or 1.6 V, f = 10 MHz,		4		pF
C _{O(OFF)}	VO OFF capacitance		Switch OFF		7		pF
C _{I(ON)} , C _{O(ON)}	VI, VO ON capacitance		DC bias = 0 V or 3.6 V f = 10 MHz, Switch ON		9		pF
BW	Bandwidth		$R_L = 50 \Omega$, Switch ON		510		MHz
O _{ISO}	OFF Isolation		$f = 240 \text{ kHz}, R_L = 50 \Omega, \text{ Switch OFF}$		-26		dB
X _{TALK}	Crosstalk		$f = 240 \text{ kHz}, R_L = 50 \Omega$		-32		dB

GENERAL OPERATION

The TSU6721 is a multimedia switch that connects a common USB connector to USB, UART or audio signals. The device also has a MIC switch that connects to either VBUS or DP. It has an integrated load switch to support charging. The load switch has OverVoltage Protection as well as OverCurrent Limiting Protection. In addition, the TSU6721 also has an ID bypass switch to transmit ID signal from the connector to the host. It has an internal FET switch that disconnects the coupling capacitor connected to the VBUS line.

Standby Mode

Standby mode is the default mode upon power up and occurs when no accessory has been detected. During this mode, the VBUS and ID lines are continually monitored through comparators to determine when an accessory is inserted. Power consumption is minimal during standby mode.

Load Switch

The integrated load switch provides both overvoltage/undervoltage and overcurrent limiting protection:

Overvoltage Protection

When the input voltage rises above VOVP, the internal load switch is turned off. The response is very rapid, with the FET turning off in less than 1µs tOFF(OVP). The OVP_EN interrupt bit is set high when an overvoltage condition is detected. When the input voltage returns below VOVP-VHYS_OVP and remains above VUVLO, the VBUS switch is turned on again after a deglitch time of tON(OVP). This deglitch time ensures that the input supply has stabilized before turning the switch on. When the OVP condition is cleared, the OVP_OCP_DIS interrupt bit is set high.

Undervoltage Protection

When VBUS is not present and VBAT is less than 2.5V, VBAT and VBUS voltages are below the undervoltage threshold and TSU6721 is powered off.

Overcurrent Limiting Protection

The TSU6721 also provides overcurrent limiting protection. When current increases beyond the I_{OCP} threshold, a time-out delay is initiated. After the delay has expired, and the current is still greater than I_{OCP} , then load switch is disabled. The maximum current that flows through the load switch is controlled by the I_{OCL} limit. This feature provides control on the VBUS charging current and minimizes the chance of internal circuitry damage caused by overcurrent event. The overcurrent level can be programmed through I2C.

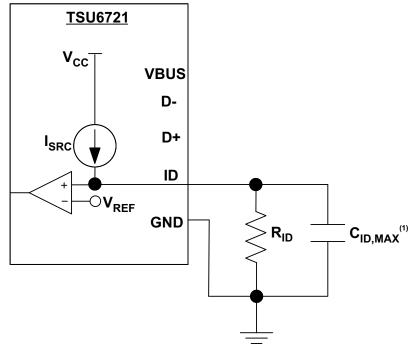
Power Supervisor

TSU6721 uses VBAT as the primary supply voltage. VBUS is the secondary supply. VDDIO is used for I2C communication.

Table 1. Supply Voltage States

VBAT	VBUS	VDDIO	DETECTION	LOAD SWITCH	I2C	COMMENTS			
Yes	No	No	Enabled	Not Enabled	Not Enabled	VBAT is supply			
Yes	Yes	No	Enabled	Enabled	Not enabled	VBAT is supply. LOAD SWITCH controlled by VBUS			
Yes	No	Yes	Enabled	Not Enabled	Enabled	VBAT is supply			
Yes	Yes	Yes	Enabled	Enabled	Enabled	VBAT is supply. LOAD SWITCH controlled by VBUS			
No	Yes	No	Enabled	Enabled	Not Enabled	VBUS is supply. LOAD SWITCH controlled by VBUS			
No	Yes	Yes			Not valid	d			
No	No	Yes		Not valid					
No	No	No		Power Down Reset					

Copyright © 2013, Texas Instruments Incorporated


SCDS345 – JUNE 2013 www.ti.com

TEXAS INSTRUMENTS

ACCESSORY ID DETECTION

If VBUS is high and the attachment is a non-compliant charger (see Table 5), the impedance on the ID pin is then determined. If VBUS is low and an accessory is attached, then an ADC for impedance sensing is used on the ID pin to identify which accessory is attached and/or what kind of remote control key button is pushed.

The TSU6721 features impedance detection for identification of various accessories that might be attached to the micro-USB port. Each accessory is identified by a unique resistor value connected between the ID pin and Ground. During impedance detection a current source is applied to the ID pin. The current source is then applied to the ID pin while an internal voltage reference is incremented till it matches the ID pin voltage. This produces a 5-bit ADC value that corresponds to the ID resistance found. Once an ID resistance is identified, a current source is continuously applied to determine when the resistance is detached.

(1) Maximum ID_Cap capacitance as noted in RECOMMENDED OPERATING CONDITIONS

Figure 1. Impedance Detection Circuitry

Impedance Buckets for Each Accessory and Remote Control Key Button

In order to implement ID detection, each accessory and remote control key button of audio accessory should contain below ID impedance resistor value which is 1% tolerance accuracy.

Switch Matrix

MCPC accessory table is selected only when MCPC mode is enabled in Control Reg02h. VBUS to OUT Load Switch is enabled anytime VBUS is applied to the USB connector.

Table 2. Accessory ID and Switch States

					SI	NITCH STA	TE		ST	ATUS OUT	PUT
ACCESSORY	ID	Res	ADC Value		DP/DM		VBUS	ID			
		(%)	value	USB	UART	Audio	MIC	ID_HT	ISET	JIG	воот
OTG	0	-	00000	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF
Video	75	5%	00000	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
MHL	1K	5%	00000	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Send_End Button	2K	10%	00001	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S1 Button	2.604K	5%	00010	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S2 Button	3.208K	5%	00011	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S3 Button	4.014K	5%	00100	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S4 Button	4.82K	5%	00101	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S5 Button	6.03K	5%	00110	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S6 Button	8.03K	5%	00111	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S7 Button	10.03K	5%	01000	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S8 Button	12.03K	5%	01001	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S9 Button	14.46K	5%	01010	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S10 Button	17.26K	5%	01011	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S11 Button	20.5K	5%	01100	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Stereo Headset RC S12 Button	24.07K	5%	01101	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Audio Device Type 3	28.7K	5%	01110	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
Reserved Accessory #1	34K	5%	01111	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Reserved Accessory #2	40.2K	5%	10000	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Reserved Accessory #3	49.9K	5%	10001	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Reserved Accessory #4	64.9K	5%	10010	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Audio Device Type 2	80.27K	5%	10011	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
Phone Powered Device	102K	5%	10100	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
TTY Converter	121K	5%	10101	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
UART Cable	150K	5%	10110	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
Type 1 Charger	200K	5%	10111	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF
Factory Mode - Boot Off USB	255K	5%	11000	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF
Factory Mode - Boot On USB	301K	5%	11001	ON	OFF	OFF	OFF	OFF	OFF	ON	ON
Audio/Video Cable	365K	5%	11010	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
A/V + VBUS	365K	5%	11010	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
Type 2 Charger	442K	5%	11011	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF
Factory Mode - Boot Off UART	523K	5%	11100	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF
Factory Mode - Boot On UART	619K	5%	11101	OFF	ON	OFF	OFF	OFF	OFF	ON	ON
Sterero Audio Device Type 1	1000.07K	10%	11110	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Mono Audio Device Type 1	1002K	10%	11110	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF

Table 3. Accessory ID and Switch States MCPC Mode

					SWITCH STATE				STA	TUS OU	ГРИТ
ACCESSORY	ID	RES (%)	ADC	DP	P/DM		VBUS	ID			
ACCESSORT	10	KES (70)	VALUE	USB	USB UART A		МІС	ID_HT	ISET	JIG	воот
Cond End CW	47K	5%	10000	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Send_End_SW	4/K	5%	10001	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Send End SW with VBUS	47K	5%	10000	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
Selid_Elid_SW Willi VBOS	4/1	5%	10001	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
Maintanence	180K	5%	10110	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Maintanence	TOUR	5%	10111	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Mode 1 Stereo	47K + 240K	5%	11000	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Wode i Stereo	47K + 240K	5%	11001	OFF	OFF						
Mode 1 Stereo with VBUS	47K + 240K	5%	11000	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
Mode i Stereo With VBOS	47K + 240K	5%	11001	OFF	OFF						
Reserved	390K	5%	11010	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Reserveu	390K	5%	11011	OFF	OFF						
Mode 3 Monaural	47K + 510K	5%	11100	DM to S L	· DD to MI	C	OFF	OFF	OFF	OFF	OFF
Mode 3 Monaurai	4/K + 510K	5%	11101	DIVI to S_L	., DP to ivii	C					
Mode 3 Monaural with VBUS	47K + 510K	5%	11100	DM to S L; DP to MIC		OFF	OFF	OFF	OFF	OFF	
Wide 3 Widhauldi Willi VBUS	4/K + 510K	3%	11101	DIVI to 5_L; DP to IVIIC							
Mode 2 Monaural	47K + 750K	5%	11110	DM to S_L; DP OPEN			ON	OFF	OFF	OFF	OFF
Mode 2 Monaural with VBUS	47K + 750K	5%	11110	DM to S_L	DM to S_L; DP OPEN				OFF	OFF	OFF

SCDS345 - JUNE 2013 www.ti.com

CHARGER DETECTION

Table 4. Chargers Detected and Switch States

					SI	NITCH STA	TE		STA	ATUS OUT	PUT
ACCESSORY	ID	RES (%)	ADC VALUE		DP/DM		VBUS	ID	ISET	JIG	воот
			77.202	USB	UART	AUDIO	MIC	ID_HT	ISEI	JIG	ВООТ
No ID	-	-	11111	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Apple Charger	-	-	11111	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Non-standard Charger	-	-	11111	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
USB Standard Downstream Port	-	-	11111	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF
USB Charging Downstream Port	-	-	11111	ON	OFF	OFF	OFF	ON	ON	OFF	OFF
Dedicated Charging Port	-	-	11111	ON	OFF	OFF	OFF	ON	ON	OFF	OFF

Table 5 lists the configurations of the DP_CON (D+) and DM_CON (D-) that are internal to the various device types.

Table 5. Charger Detection Table

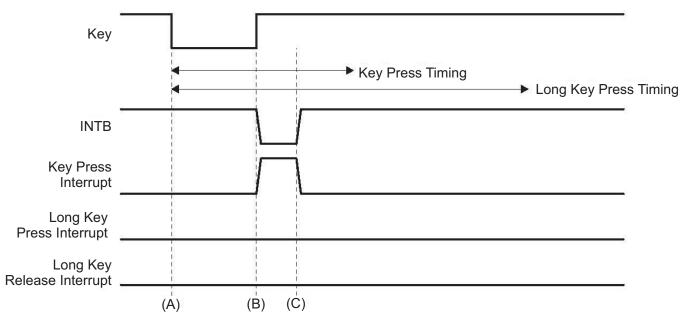
DEVICE TYPE	VBUS	DP_CON (D+)	DM_CON (D-)
Standard Downstream Port	>4 V	Pull-down R 15k to GND	Pull-down R 15k
Charging Downstream Port	>4 V	Pull-down R 15k to GND	$V_{DM_SRC} = 0.6V$
Dedicated Charging Port	>4 V	Short to D-	Short to D+
Apple Charger	>4 V	2.0 < V _{DP} < 2.8	$2.0 < V_{DM} < 2.8$
U200	>4 V	V _{DP} = 1.34	$V_{DM} = 1.34$
Non-compliant USB Charger Any Device	>4 V	Open	Open

Power-On Reset

When power (from 0 V) is applied to V_{BAT} , an internal power-on reset holds the TSU6721 in a reset condition until V_{BAT} has reached V_{PQR} . At that point, the reset condition is released, and the TSU6721 registers and I^2C state machine initialize to their default states.

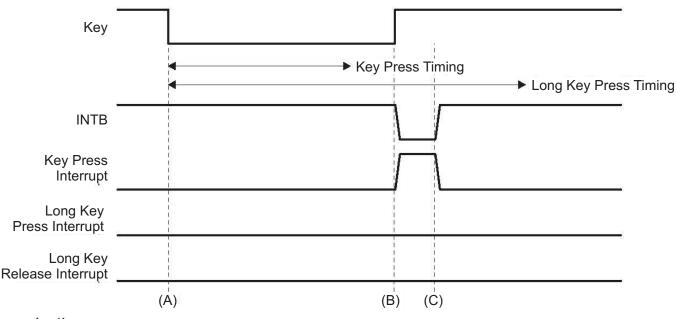
After the initial power-up phase, V_{BAT} must be lowered to below 0.2 V and then back up to the operating voltage (V_{DDIO}) for a power-reset cycle.

Software Reset


The TSU6721 has software a reset feature. Set the reset bit in the I2C register high to reset TSU6721. After resetting, INTB will keep low until INT_Mask bit of Control register (0x02) is cleared.

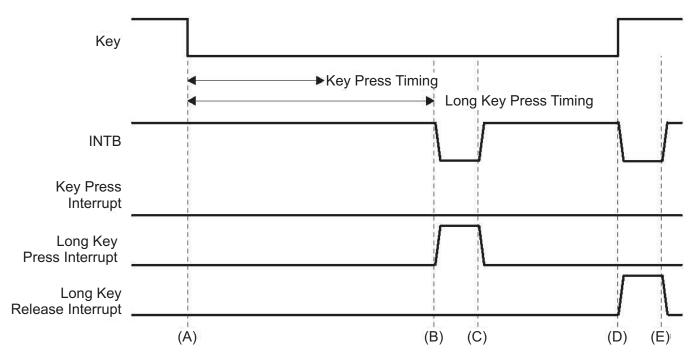
Copyright © 2013, Texas Instruments Incorporated

SCDS345 - JUNE 2013 www.ti.com


STRUMENTS

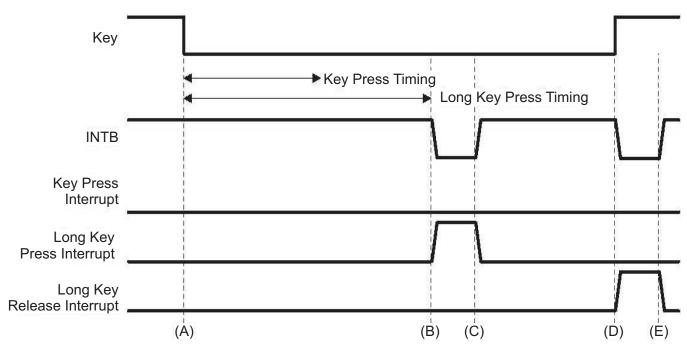
Key Press Identification

- A. Key press
- Released key press → Set KP Interrupt → Set error bit in Button register → INTB pulled low
- C. I^2C read of INT register \rightarrow Clear KP interrupt \rightarrow INTB goes back high


Figure 2. Short Key Press

- A. Key press
- Released key press \rightarrow Set KP Interrupt \rightarrow Set Key (S/E, 1–12) bit in Button register \rightarrow INTB pulled low .
- C. I^2C read of INT register \rightarrow Clear KP interrupt \rightarrow INTB goes back high.

Figure 3. Normal Key Press



- A. Key press
- B. Long key press timing reached → Set LKP interrupt bit → Set Key (S/E, 1–12) bit in Button register → INTB pulled low
- C. I2C read of INT register \rightarrow Clear LKP interrupt bit \rightarrow INTB goes back high
- D. Released key press \rightarrow Set LKR Interrupt bit \rightarrow INTB pulled low
- E. I^2C read of INT register \rightarrow Clear LKR interrupt bit \rightarrow INTB goes back high

Figure 4. Long Key Press

SCDS345 – JUNE 2013 www.ti.com

- A. Key press detected when accessory attached
- B. Long key press timing reached \rightarrow Set SK interrupt bit \rightarrow Set Key (S/E, 1–12) bit in Button register \rightarrow INTB pulled low
- C. I²C read of INT register → Clear SK interrupt bit → INTB goes back high
- D. Released key press detected when accessory ID resistor is 1 M Ω \rightarrow Set SKR Interrupt bit \rightarrow INTB pulled low
- E. I^2C read of INT register \rightarrow Clear SKR interrupt bit \rightarrow INTB goes back high

Figure 5. Stuck Key Press

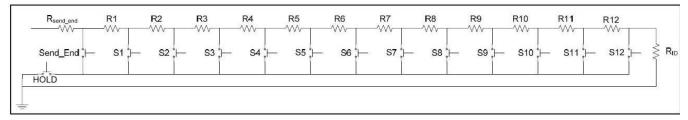


Figure 6. Audio/Remote Controller Accessory

STANDARD I2C INTERFACE DETAILS

The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I²C communication with this device is initiated by the master sending a START condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 7). After the start condition, the device address byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse.

SCDS345 - JUNE 2013 www.ti.com

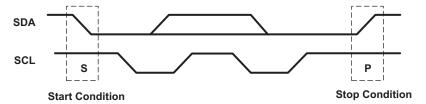


Figure 7. Definition of Start and Stop Conditions

The data byte follows the address ACK. The R/W bit is kept low for transfer from the master to the slave. The data byte is followed by an ACK sent from this device. Data are output only if complete bytes are received and acknowledged. The output data is valid at time (tpv) after the low-to-high transition of SCL, during the clock cycle for the ACK.

On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (START or STOP) (see Figure 8).

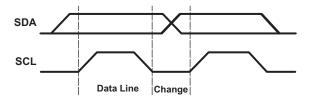


Figure 8. Bit Transfer

A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 7).

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

A slave receiver that is addressed must generate an ACK after the reception of each byte. The device that acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 9). Setup and hold times must be taken into account.

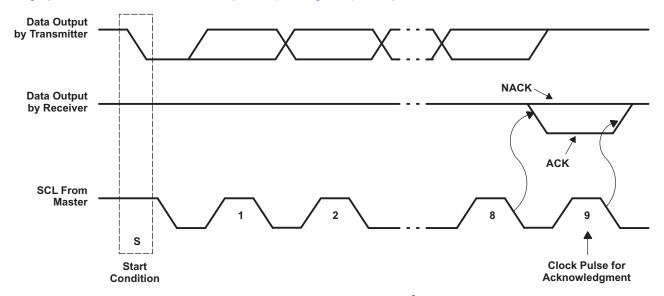


Figure 9. Acknowledgment on I²C Bus

Copyright © 2013, Texas Instruments Incorporated

SCDS345 - JUNE 2013 www.ti.com

NSTRUMENTS

Writes

Data is transmitted to the TSU6721 by sending the device slave address and setting the LSB to a logic 0 (see Figure 10 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte. The next byte is written to the specified register on the rising edge of the ACK clock pulse.

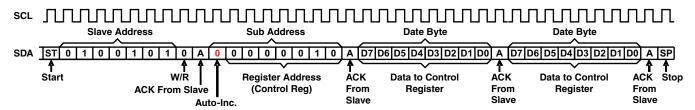


Figure 10. Repeated Data Write to a Single Register

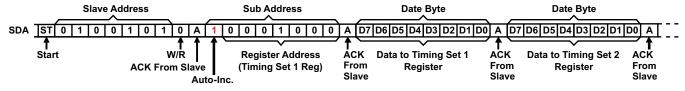


Figure 11. Burst Data Write to Multiple Registers

Reads

The bus master first must send the TSU6721 slave address with the LSB set to logic 0. The command byte is sent after the address and determines which register is accessed. After a restart, the device slave address is sent again but, this time, the LSB is set to logic 1. Data from the register defined by the command byte then is sent by the TSU6721. Data is clocked into the SDA output shift register on the rising edge of the ACK clock pulse. See Figure 12.

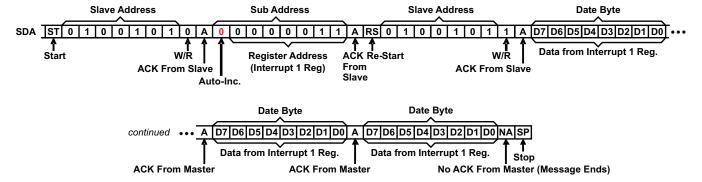


Figure 12. Repeated Data Read from a Single Register - Combined Mode

Product Folder Links: TSU6721YFF

20

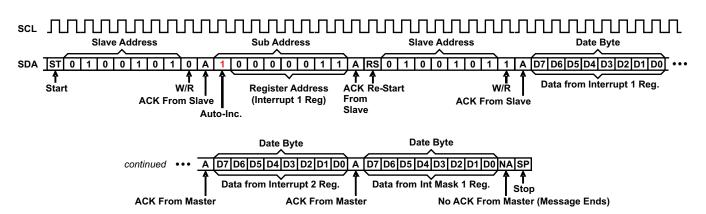


Figure 13. Burst Data Read from Multiple Registers - Combined Mode

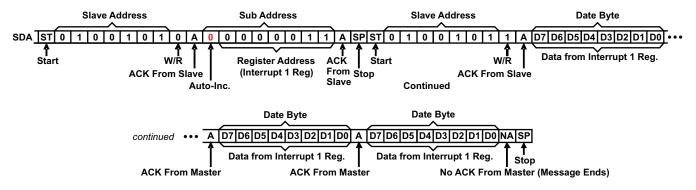


Figure 14. Repeated Data Read from a Single Register - Split Mode

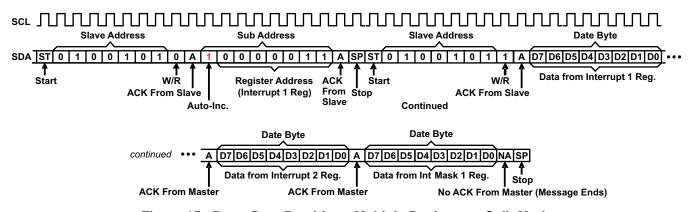


Figure 15. Burst Data Read from Multiple Registers – Split Mode

Notes (Applicable to Figure 10 – Figure 15):

- SDA is pulled low on Ack. from slave or Ack. from master.
- Register writes always require sub-address write before first data byte.
- Repeated data writes to a single register continue indefinitely until Stop or Re-Start.
- Repeated data reads from a single register continue indefinitely until No Ack. from master.
- Burst data writes start at the specified register address, then advance to the next register address, even to
 the read-only registers. For these registers, data write appears to occur, though no data are changed by the
 writes. After register 14h is written, writing resumes to register 01h and continues until Stop or Re-Start.
- Burst data reads start at the specified register address, then advance to the next register address. Once register 14h is read, reading resumes from register 01h and continues until No Ack. from master.

Copyright © 2013, Texas Instruments Incorporated

TEXAS INSTRUMENTS

I²C REGISTER MAP

ADDRESS	REGISTER	TYPE	RESET VALUE	BIT 7	BIT 6	BIT 5	BIT4	BIT 3	BIT 2	BIT1	BIT0
01h	Device ID	R	00010010			Version ID				Vendor ID	
02h	Control	R/W	xx011111		Switch Open	Raw Data	Manual S/W	Wait	INT Mask		
03h	Interrupt 1	R	00000000	OVP_OCP_OTP _DIS	OCP_EN	OVP_EN	LKR	LKP	KP	Detach	Attach
04h	Interrupt 2	R	00000000	VBUS	OTP_EN	CONNECT	Stuck_Key_ RCV	Stuck_Key	ADC_ Change	Reserved_ Attach	A/V_Change
05h	Interrupt Mask 1	R/W	00000000	OVP_OCP_OTP _DIS	OCP_EN	OVP_EN	LKR	LKP	KP	Detach	Attach
06h	Interrupt Mask 2	R/W	00000000	VBUS	OTP_EN	CONNECT	Stuck_Key_ RCV	Stuck_Key	ADC_ Change	Reserved_ Attach	A/V_Change
07h	ADC	R	xxx11111						ADC Value		
08h	Timing Set 1	R/W	00000000		Key Pre	ess			Device	Sleep	
09h	Timing Set 2	R/W	00000000		Switching	Wait			Long Ke	ey Press	
0Ah	Device Type 1	R	00000000	USB OTG	DCP	CDP	Type1/Type 2 Charger	UART	USB	Audio Type2	Audio Type1
0Bh	Device Type 2	R	00000000	Audio Type3	A/V	TTY	PPD	JIG_UART _OFF	JIG_UART _ON	JIG_USB _OFF	JIG_USB_ON
0Ch	Button 1	R	00000000	7	6	5	4	3	2	1	Send_End
0Dh	Button 2	R	x0000000		Unknown	Error	12	11	10	9	8
13h	Manual S/W 1	R/W	00000000		DM Switching			DP Switching		VBUS	Switching
14h	Manual S/W 2	R/W	xxx00000				ISET	воот	JIG	ID Sv	vitching
15h	Device Type 3	R	0000x000	Video	U200 Chg	Apple Chg	A/V VBUS		VBUS non- standard	VBUS Debounce	MHL
1Bh	Reset	W	xxxxxxx0								Reset
20h	Timer Setting	R/W	00010101	ISET Enable Time	Load Switch Enable Time		BCDv1.2 Time	r		ADC Start Tim	е
21h	OCL/OCP Setting 1	R/W	001010x1	OCL Pro	otection Level Se	etting	OCP	Timeout Delay S	etting		BCDv1.2 Enable
22h	OCL/OCP Setting 2	R/W	xxx11001				OC Enable		ОСР	Protection Leve	I Setting
23h	Device Type 4	R/W	xxxxx111						МС	PC ID Resistor	Value

Notes:

- 1. Do not use blank register bits.
- 2. Write "0" to the blank register bits.
- 3. Values read from the blank register bits are not defined and invalid.
- 4. When reading I2C table after an interrupt first read register Interrupt 1 (03h) followed by Interrupt 2 (04h).
- 5. Interrupt 1 (03h) and Interrupt 2 (04h) should not be read when INT Mask = 0.
- 6. I2C should not be accessed within 5 ms of device power-up.

Slave Address

NAME	SIZE				DESC	RIPTION			
NAME	(BITS)	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Slave address	8	0	1	0	0	1	0	1	R/W

Product Folder Links: TSU6721YFF

Device ID Address: 01h

www.ti.com

Reset Value: 00010010

Type: Read

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
2-0	Vendor ID	3	A unique number for vendor 010b for Texas Instruments
7-3	Version ID	5	A unique number for chip version 00010b for TSU6721

Control

Address: 02h

Reset Value: xx011111 Type: Read/Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	INT Mask	1	0: Unmask interrupt 1: Mask interrupt
1	Wait	1	0: Wait until host re-sets this bit(WAIT bit) high 1: Wait until Switching timer is expired defined in Timing Set 2
2	Manual S/W	1	Manual Switching Automatic Switching
3	RAW Data	1	0: Report the status changes on ID to Host 1: Don't report the status changes on ID
4	Switch Open	1	O: Open all Switches (Including load switch) Automatic Switching by accessory status
5	MCPC Mode	1	0: Non-MCPC Mode 1: MCPC Mode
7-6	Unused	2	

Interrupt 1 Address: 03h

Reset Value: 00000000 Type: Read and Clear

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	Attach	1	1: Accessory is attached
1	Detach	1	1: Accessory is detached
2	KP	1	1: Key press
3	LKP	1	1: Long key press
4	LKR	1	1: Long key release
5	OVP_EN	1	1: OVP enabled
6	OCP_EN	1	1: OCP enabled
7	OVP_OCP_OTP_DI S	1	1: OVP_OCP_OTP disabled (device is out of OVP, OCP or OTP)

Interrupt 2 Address: 04h

Reset Value: 00000000 Type: Read and Clear

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION	
0	A/V_Change	1	1: Accessory Change is detected when A/V cable is attached	
1	Reserved_Attach	1	1: Reserved Device is attached	
2	ADC_Change	1	1: ADC value is changed when RAW data is enabled	
3	Stuck_Key	1	1: Stuck Key is detected	
4	Stuck_Key_RCV	1	1: Stuck Key is recovered	
5	Connect	1	1:Switch is connected (closed)	
6	OTP_EN	1	1: Over Temperature Protection enabled	
7	VBUS	1	1: VBUS detected	

24 Submit Do

Interrupt Mask 1

Address: 05h

www.ti.com

Reset Value: 00000000 Type: Read/Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	Attach 1		0: Unmask Attach Interrupt 1: Mask Attach Interrupt
1	Detach	1	0: Unmask Key press Interrupt 1: Mask Detach Interrupt
2	KP 1		0: Unmask Key press Interrupt 1: Mask Key press Interrupt
3	LKP	1	0: Unmask Long key press Interrupt 1: Mask Long key press Interrupt
4	LKR 1		0: Unmask Long key release Interrupt 1: Mask Long key release Interrupt
5	OVP_EN	1	0: Unmask OVP_EN Interrupt 1: Mask OVP_EN Interrupt
6	OCP_EN 1		0: Unmask OCP_EN Interrupt 1: Mask OCP_EN Interrupt
7	OVP_OCP_OTP_DIS 1		0: Unmask OVP_OCP_OTP_DIS Interrupt 1: Mask OVP_OCP_OTP_DIS Interrupt

Interrupt Mask 2 Address: 06h

Reset Value: 00000000

Type: Read/Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	A/V_Change	1	0: Unmask A/V_Change Interrupt 1: Mask A/V_Change Interrupt
1	Reserved_Attach	1	Unmask Reserved_Attach Interrupt Mask Reserved_Attach Interrupt
2	ADC_Change 1		Unmask ADC_Change Interrrupt Mask ADC_Change Interrrupt
3	Stuck_Key 1		0: Unmask Stuck_Key Interrupt 1: Mask Stuck_Key Interrupt
4	Stuck_Key_RCV 1		Unmask Stuck_Key_RCV Interrupt Mask Stuck_Key_RCV Interrupt
5	Connect	1	Unmask Connect Interrupt Mask Connect Interrupt
6	OTP_EN	1	0: Unmask OTP_EN Interrupt 1: Mask OTP_EN Interrupt
7	VBUS	1	0: Unmask VBUS Interrupt 1: Mask VBUS Interrupt

TEXAS INSTRUMENTS

ADC Value

Address: 07h

Reset Value: xxx11111

Type: Read

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
4-0	ADC value	5	ADC value read from ID
7-5	Unused	3	

Timing Set 1 Address: 08h

Reset Value: 00000000 Type: Read/Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
3-0	Device Sleep	4	Device Sleep duration
7-4	Key press	4	Normal key press duration

Timing Set 2 Address: 09h

Reset Value: 00000000 Type: Read/Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
3-0	Long key press	4	Long key press duration
7-4	Switching wait	4	Waiting duration before switching

Time Table

SETTING VALUE	DEVICE SLEEP	KEY PRESS	LONG KEY PRESS	SWITCHING WAIT(1)
0000	50 ms	100 ms	300 ms	10 ms
0001	100 ms	200 ms	400 ms	30 ms
0010	150 ms	300 ms	500 ms	50 ms
0011	200 ms	400 ms	600 ms	70 ms
0100	300 ms	500 ms	700 ms	90 ms
0101	400 ms	600 ms	800 ms	110 ms
0110	500 ms	700 ms	900 ms	130 ms
0111	600 ms	800 ms	1000 ms	150 ms
1000	700 ms	900 ms	1100 ms	170 ms
1001	800 ms	1000 ms	1200 ms	190 ms
1010	900 ms	-	1300 ms	210 ms
1011	1000 ms	=	1400 ms	-
1100	-	-	1500 ms	-
1101	-	-	-	-
1110	-	-	_	_
1111	-	-	-	_

Device Type 1 Address: 0Ah

www.ti.com

Reset Value: 00000000

Type: Read

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	Audio type 1	1	Audio device type 1
1	Audio type 2	1	Audio device type 2
2	USB	1	USB host
3	UART	1	UART
4	Type1/Type2	1	Type1/Type2 Charger
5	CDP	1	Charging Downstream Port (USB Host Hub Charger)
6	DCP	1	Dedicated Charging Port
7	USB OTG	1	USB on-the-go device

Device Type 2

Address: 0Bh

Reset Value: 00000000

Type: Read

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	JIG_USB_ON	1	Factory mode cable
1	JIG_USB_OFF	1	Factory mode cable
2	JIG_UART_ON	1	Factory mode cable
3	JIG_UART_OFF	1	Factory mode cable
4	PPD	1	Phone-powered device
5	TTY	1	TTY converter
6	A/V	1	A/V Cable
7	Audio Type 3	1	Audio device type 3

Button 1 Address: 0Ch

Reset Value: 00000000 Type: Read and Clear

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION		
0	Send_End	1	Send_End key is pressed		
1	1	1	Number 1 key is pressed		
2	2	1	Number 2 key is pressed		
3	3	1	Number 3 key is pressed		
4	4	1	Number 4 key is pressed		
5	5	1	Number 5 key is pressed		
6	6	1	Number 6 key is pressed		
7	7	1	Number 7 key is pressed		

Button 2 Address: 0Dh

Reset Value: x00000000 Type: Read and Clear

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION	
0	8	1	Number 8 key is pressed	
1	9	1	Number 9 key is pressed	
2	10	1	Number 10 key is pressed	
3	11	1	Number 11 key is pressed	
4	12	1	Number 12 key is pressed	
5	Error	1	Error key is pressed	
6	Unknown	1	Unknown key is pressed	
7	Unused	1		

Manual S/W 1 Address: 13h

www.ti.com

Reset Value: 00000000 Type: Read/Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
1-0	V _{BUS} Switching	2	00: Open all switch 01: VBUS is connected to VBUS_OUT (charger) 10: VBUS is connected to MIC
4-2	DP Switching	3	000: Open all switch 001: DP is connected to DP_HT of USB port 010: DP is connected to S_R 011: DP is connected to RxD of UART 100: Reserved 101: DP is connected to MIC 110-111: Reserved
7-5	DM Switching	3	000: Open all switch 001: DM is connected to DM_HT of USB port 010: DM is connected to S_L 011: DM is connected to TxD of UART 100-111: Reserved

Manual S/W 2

Address: 14h

Reset Value: xxx00000 Type: Read/Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
1-0	ID Switching	2	00: Open all switch 01: Reserved 10: ID is connected to IDBP 11: Reserved
2	JIG	1	0: Low (JIG OFF) 1: High (JIG ON)
3	воот	1	0: Low (BOOT OFF) 1: High (BOOT ON)
4	ISET	1	0: Low (ISET OFF) 1: High (ISET ON)
7-5	Unused	3	

Device Type 3 Address: 15h

Reset Value: x000x000

Type: Read

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	MHL	1	MHL device detected
1	VBUS Debounce	1	This bit goes high after the 8ms VBUS debounce time
2	VBUS Non- Standard	1	A non-standard charger device detected. This bit goes high after BCDv1.2 timer expires
3	Unused	1	
4	A/V VBUS	1	A/V Dock with VBUS connected
5	Apple Chg	1	Apple Charger
6	U200 Chg	1	U200 Charger
7	Video	1	75 Ohm video cable

Reset

Address:1Bh

Reset Value: xxxxxxx0

Type: Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	Reset	1	Manual reset on device
7-1	Unused	6	

Submit Documentation Feedback

NSTRUMENTS

Timer Setting Address: 20h

www.ti.com

Reset Value:00010101 Type: Read and Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
2-0	ADC Start Time	3	000: 1ms 001: 2ms 010: 4ms 011: 8ms 100: 12ms 101: 16ms 111: 20ms 111: 24ms
5-3	BCDv1.2 Timer	3	000: 0.6s 001: 1.2s 010: 1.8s 011: 2.4s 100: 3s 101: 3.6s
6	Load Switch Enable Time	1	0: 150ms 1: 450ms
7	ISET Enable Time	1	0: 40ms 1:100ms

OCP Setting 1

Address: 21h

Reset Value:001010x1 Type: Read and Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
0	BCDv1.2 Enable	1	0: disabled 1: enabled
1	Unused	1	
4-2	OCP Timeout Delay	3	000: 1ms 001: 2ms 010: 4ms 011: 8ms 100: 12ms 101: 16ms
7-5	OCL Current Limiter Setting	1	000: 1.5A 001: 2.0A 010: 2.5A 011: 2.5A

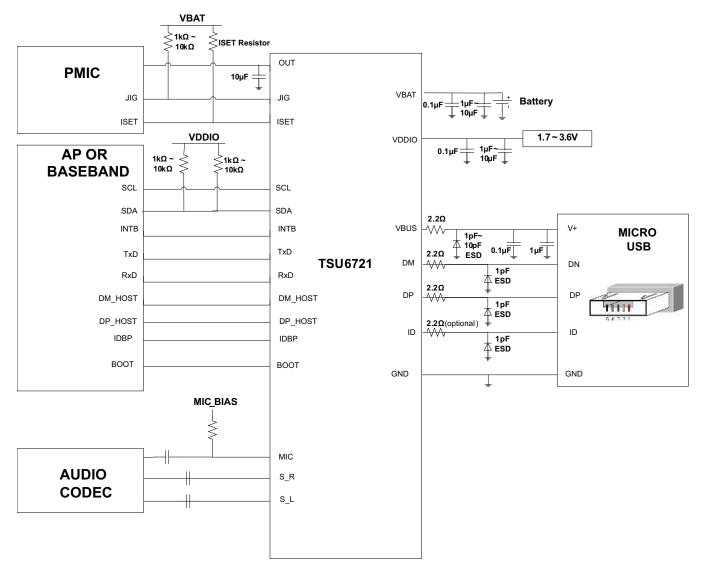
TEXAS INSTRUMENTS

OCP Setting 2 Address: 22h

Reset Value:xxx11001 Type: Read and Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
2-0	OCP Protection Level Setting	3	000: 1.0A 001: 1.5A 010: 2.0A 011: 2.0A
4-3	OC Enable	2	00: OCP & OCL disabled 01: OCP disabled & OCL enabled 10: Unused 11: OCP & OCL enabled
7-5	Unused	3	

Device Type 4


Address: 23h

Reset Value:xxxxx111 Type: Read and Write

BIT NO.	NAME	SIZE (BITS)	DESCRIPTION
2-0	MCPC ID Resistor Value	3	000: 47k ohms 001: 180k ohms 010: 390k ohms 011: 287k ohms (Mode 1) 100: 557k ohms (Mode 3) 101: 797k ohms (Mode 2) 110: Error 111: Reset
7-3	Unused	5	

APPLICATION SCHEMATIC

TEXAS INSTRUMENTS

CRITICAL COMPONENTS

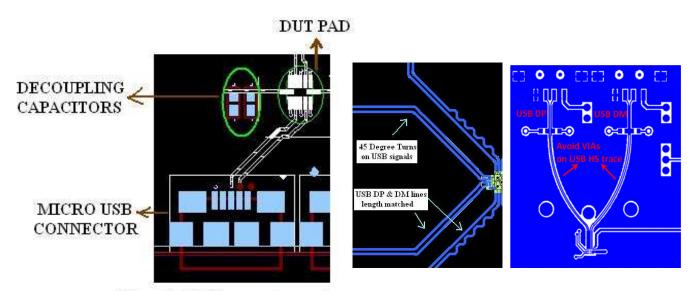
PIN NUMBER	CRITICAL COMPONENT
A5, B5	2.2 Ω
D3	1 μF~10 μF
	0.1 μF
	1 μF~10 μF
C3	Battery
	0.1 μF
E3	1 kΩ~10 kΩ
D2	2.2 kΩ
БЗ	10 μF
A2	Resistor determined by Battery Charger
D4	220 µF ⁽¹⁾
C4	220 µF ⁽¹⁾
A4, B4	10 μF
A1	1 kΩ~10 kΩ
B1	1 kΩ~10 kΩ
CF	2.2 Ω
Co	ESD Protection Diode
D.C.	2.2 Ω
D5	ESD Protection Diode
E.E.	2.2 Ω ⁽¹⁾
E5	ESD Protection Diode
	A5, B5 D3 C3 E3 B3 A2 D4 C4 A4, B4 A1

⁽¹⁾ Optional Components

SCHEMATIC GUIDELINES

- 1. VBUS, VDDIO, and VBAT require decoupling capacitors to reduce noise from circuit elements. The capacitors act as a shunt to block off the noise. The $0.1\mu F$ capacitor smoothes out high frequencies and has a lower series inductance. The $1\mu F\sim 10\mu F$ and $1\mu F$ capacitors smooth out the lower frequencies and have a much higher series inductance. Placing both decoupling capacitors will provide better load regulation across the frequency spectrum.
- 2. OUT requires a 10µF load capacitor to prevent sudden increases of voltage on the pin during charging
- 3. JIG is an open-drain output and therefore requires a $1k\Omega \sim 10k\Omega$ pull-up resistor to VBAT
- 4. ISET is an open drain output. It can be used by the battery charger to set the input current limit with a series resistor (for example 75Ω determined by the charger)
- 5. SCL and SDA require $1k\Omega \sim 10k\Omega$ pull-up resistors to VDDIO to prevent floating inputs
- 6. Depending on the codec used, S_R and S_L may require DC blocking capacitors as high as 220µF. The capacitor might not be needed if the codec has the capability to provide ground centered signals.
- 7. Mic requires a $2.2k\Omega$ pull-up resistor to MIC_BIAS to provide DC bias for the microphone. Additionally the $10\mu F$ capacitor is required to block the DC signals from MIC_BIAS to the Audio Codec
- 8. VBUS, DM and DP are recommended to have an external resistor 2.2Ω to provide extra ballasting to protect the chip and internal circuitry
 - (a) For ID, if there is less stress on the ID pin then the external 2.2 Ω resistor is optional

9. DDM, DP, and ID are rated for 6kV IEC contact discharge protection. To prevent failure in case of an IEC


contact discharge of 8kV or greater, it is recommended to have an external ESD Protection Diode (~1pF of capacitance allowed) rated for greater than 8kV IEC protection. It is also recommended to have an external ESD Protection Diode to prevent DP and DM from failure in the event of EOS related to electrical surge propagated downstream from the AC power supply

10. VBUS is rated for 6kV IEC contact discharge protection. To prevent failure in case of an IEC contact discharge of 8kV or greater, it is recommended to have an external ESD Protection Diode (~1pF of capacitance allowed) rated for greater than 8kV IEC protection. It is also recommended to have an external ESD Protection Diode to prevent VBUS from failure in the event of EOS related to electrical surge propagated downstream from the AC power supply.

PCB ROUTING GUIDELINES

Routing Guidelines for USB Signal Integrity

- 1. All the USB lines DP_CON, DM_CON, DP_HT, DM_HT, TxD and RxD
 - (a) Must have 45Ω single ended characteristic impedance
 - (b) Must have 90Ω differential ended impedance
 - (c) To fulfill USB 2.0 requirements
- 2. TSU6721 location
 - (a) Close to the USB connector as possible
 - (b) The distance between the USB controller and the device less than 1 inch
 - (c) Shorter length of the trace will reduce effect of stray noise and radiate less EMI
- 3. Minimize use of VIAs for USB related signals
 - (a) Differential transmission lines should be matched as close as possible
 - (b) No VIAs for optimum USB2.0 performance

Place the USB connector as close as possible to the DUT

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TSU6721YFFR	ACTIVE	DSBGA	YFF	25	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TSU6721	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

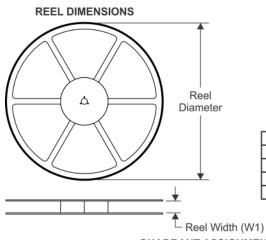
OBSOLETE: TI has discontinued the production of the device.

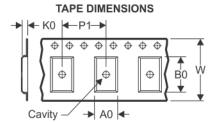
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

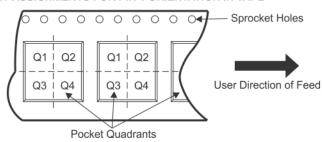
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Jan-2020


TAPE AND REEL INFORMATION

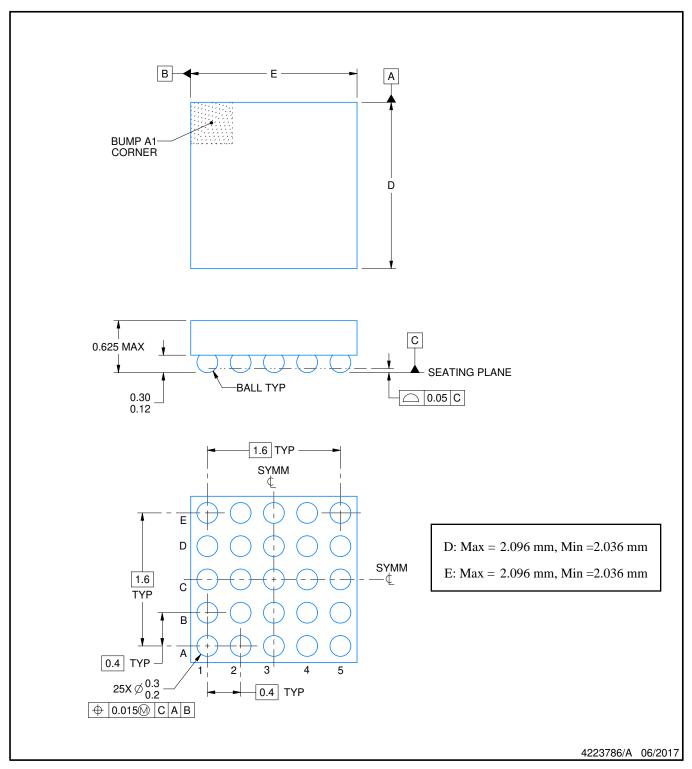
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
1	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TSU6721YFFR	DSBGA	YFF	25	3000	180.0	8.4	2.17	2.17	0.57	4.0	8.0	Q1

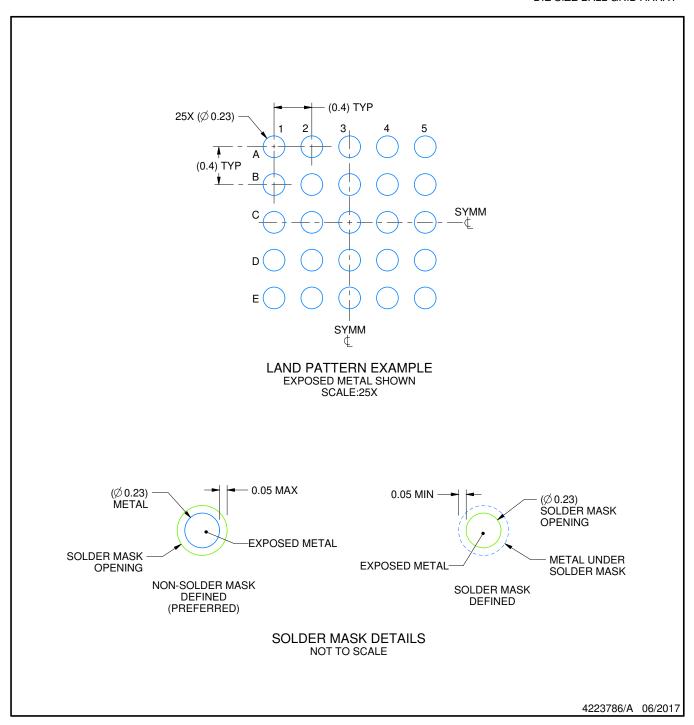
www.ti.com 30-Jan-2020



*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	TSU6721YFFR	DSBGA	YFF	25	3000	182.0	182.0	20.0

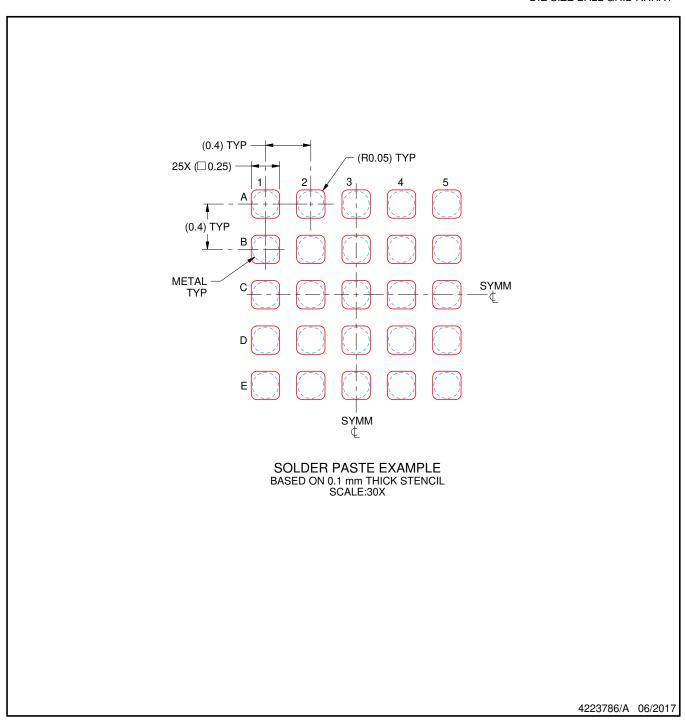
DIE SIZE BALL GRID ARRAY


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated