<u>AZ DISPLAYS</u>

SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY

	CUSTOMER APP	ROVAL	
※ PART NO.:	AQM1696A-FLW-FBH	H (AZ DISPLAY	S) VER1.0
APPROVAL		COMPANY CHOP	
CUSTOMER			
COMMENTS			

AZ DISPLAYS ENGINEERING APPROVAL						
DESIGNED BY CHECKED BY APPROVED BY						
BOBBY	JAY	GUZHENGHUA				

REVISION RECORD

REVISION	REVISION DATE	PAGE	CONTENTS
VER1.0	16/12-2010		FIRST ISSUE

***** CONTENTS

- 1.0 GENERAL SPECIFICATION
- 2.0 ABSOLUTE MAXIMUM RATINGS
- 3.0 ELECTRICAL CHARACTERISTICS
- 4.0 OPTICAL CHARACTERISTICS
- 5.0 BLOCK DIAGRAM
- 6.0 PIN ASSIGNMENT
- 7.0 POWER SUPPLY
- 8.0 TIMING CHARACTERISTICS
- 9.0 MECHANICAL DIAGRAM
- 10.0 RELIABILITY TEST
- 11.0 INSTRUCTION DESCRIPTION
- 12.0 PRECAUTION FOR USING LCM

1.0 GENERAL SPECS

1. Display Format	160*96 Dot matrix
2. Power Supply	3.0V
3. Module outline dimension	98.48mm(W) x 67.79mm(H) x 9.2mm(D)
4. Viewing Aera(W*H)	74.31mm(W) x 44.87mm(H)
5. Dot Size (W*H)	0.40mm(W) x 0.38mm(H)
6. Dot Pitch (W*H)	0.43mm(W) x 0.41mm(H)
7. Viewing Direction	6:00 O'Clock
8. Driving Method	1/96 Duty,1/11Bias
9. Control IC	ST7528 or compatible
10. Display Mode	FSTN/Positive/Transflective
11. Backlight Options	White LED /Side
12. Operating temperature	-20°C ~ 70°C
13. Storage temperature	-30°C ~ 80°C
14. ROHS	ROHS compliant

2.0 ABSOLUTE MAXIMUM RATINGS

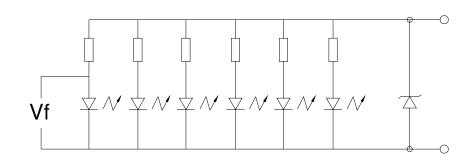
Item	Symbol	Min	Тур	Max	Unit
Operating temperature	Тор	-20	-	70	∘C
Storage temperature	Tst	-30	-	80	∘C
Input voltage	Vin	-0.5	-	Vdd+0.5	V
Supply voltage for logic	Vdd- Vss	-0.5	-	3.6	V
Supply voltage for LCD driving	Vout-Vss	-0.5		20	V

3.0 ELECTRICAL CHARACTERISTICS

3.1 Electrical Characteristics Of LCM

Item	Symbol	Condition	Min	Тур	Max	Unit
Power Supply Voltage	VDD	Ta=25ºC	2.8	3.0	3.2	V
Power Supply Current	ldd	Vdd=3.0V		1.4	2.0	mA
Input voltage (high)	Vih	H level	0.7*VDD		VDD	V
Input voltage (low)	Vil	L level	VSS		0.3*VDD	V
		-20ºC	12.8	13.0	13.2	
Recommended LC Driving Voltage	V0-Vss	25ºC	12.3	12.5	12.7	V
		70ºC	11.8	12.0	12.2	

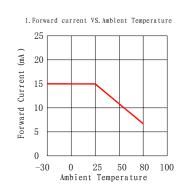
3.2 The Characteristics Of Backlight

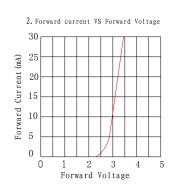

3.2.1 Electrical-Optical Characteristics Of LED Backlight (Ta=25°C)

Item	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage ⁽¹⁾	Vf	If=90mA	2.9	3.1	3.3	V
Reverse Voltage	Vr	-			5	V
Luminance ⁽²⁾	Lv	If=90mA	200	240		cd/m²
Uniformity ⁽³⁾	Δ	(Lvmin/Lvmax)%	70%			-
Peak wave length	λр	-				nm
Chroma coordinate	x	If=90mA	0.29		0.34	um
Omoma coordinate	у	If=90mA	0.29		0.34	um
Lifetime ⁽⁴⁾	-	If=90mA	-	20000	-	Hours

NOTE:

- (1) Forward voltage means voltage applied directly to the LED
- (2) The luminance is the average value of 5 points, The measurement instrument is BM-7 luminance colorimeter. The diameter of aperture is Φ 5mm
 - (3) Luminance means the backlight brightness without LCD.
 - (4) Backlight lifetime means luminance value larger than half of the original after 20000 hours' continuous working.

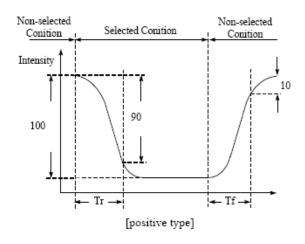

3.2.2 Backlight Control Circuit FOR LCM (1x6=6 pcs LED)

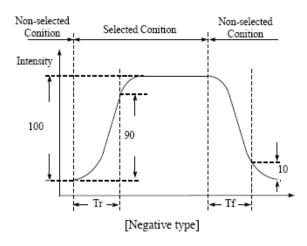


A:Vin=5.0V If=90mA(TYPE.)

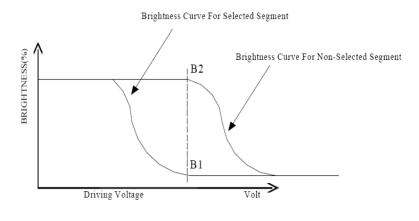
K:0V

3.2.3 LED Characteristics Curves (for single led)

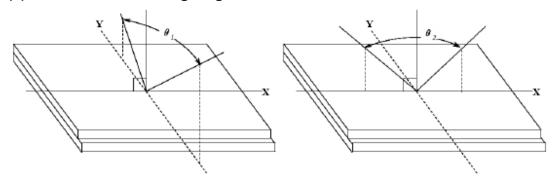




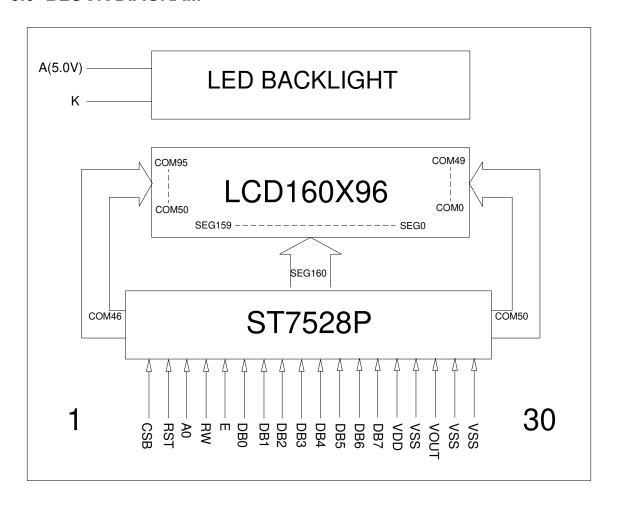
4.0 OPTICAL CHARACTERISTICS


Item	Symbol	Condition	Min	Тур	Max	Unit
Viewing angle (Left - right)	θ2	Cr ≥ 2.0	-35	-	35	deg
Viewing angle (Up-down)	θ1	Cr ≥ 2.0	-25	-	40	deg
Contrast Ratio	Cr	θ1=0°, θ2=0°	-	6	-	
Response time (rise)	Tr	θ1=0°, θ2=0°	-	180	300	ms
Response time (fall)	Tf	θ1=0°, θ2=0°	-	150	250	ms

(1). Definition of Optical Response Time

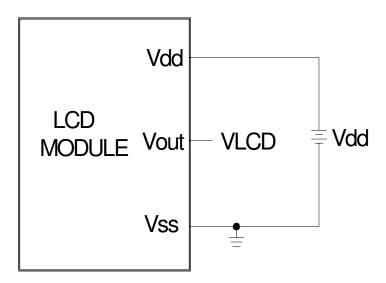


(2). Definition of Contrast Ratio



Cr= Brightness of Non-selected Segment(B2)
Brightness of selected Segment(B1)

(3). Definition of Viewing Angle θ 2 and θ 1


5.0 BLOCK DIAGRAM

6.0 PIN ASSIGNMENT

Pin No.	Symbol	Function
1	CSB	Chip select signal
2	RST	Reset signal
3	A0	Display/Control data select signal
4	RW	Write- Read signal
5	E	Enable signal
6	DB0	Data bit0
7	DB1	Data bit1
8	DB2	Data bit2
9	DB3	Data bit3
10	DB4	Data bit4
11	DB5	Data bit5
12	DB6	Data bit6
13	DB7	Data bit7
14	VDD	Logic power supply
15	VSS	Ground
16	VOUT	LCD power supply
17	VSS	Ground
18	VSS	Ground

7.0 POWER SUPPLY

8.0 TIMING CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)

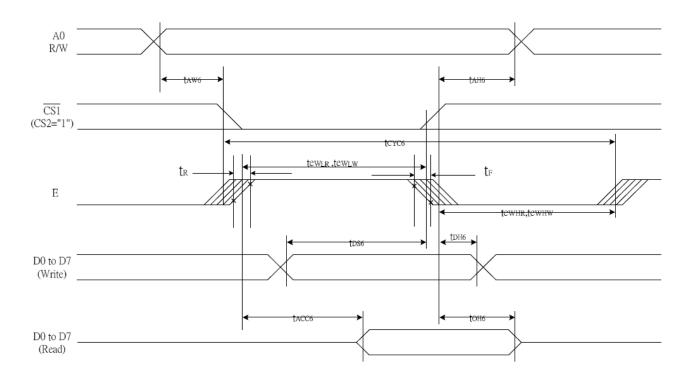


Figure 30

(VDD = 3.3 V,Ta = -30~85°C)

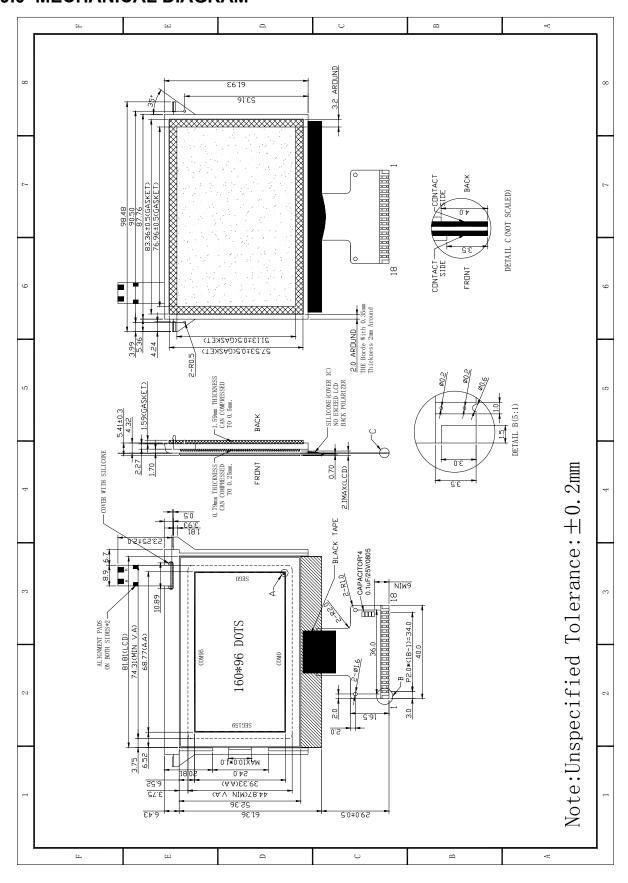
14	Oi mar al	O. mah ad	O a w diki a w	Rat	ing	I I mida
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	_	
Address setup time	A0	tAW6		0	_	
System cycle time	1	tCYC6		240	_	
Enable L pulse width (WRITE)	E_WR	tEWLW		80	_	
Enable H pulse width (WRITE)		tEWHW		80	_	1
Enable L pulse width (READ)		tEWLR		80	_]
Enable H pulse width (READ)	E_RD	tEWHR		140		ns
WRITE Data setup time		tDS6		40	_	1
WRITE Data hold time	D0 to D7	tDH6		10	_	
READ access time	D0 to D7	tACC6	CL = 100 pF	_	70	1
READ Output disable time		tOH6	CL = 100 pF	5	50	1
tF				_	10	
tR				_	10	

(VDD = 2.7V,Ta =-30~85°C)

14	6 ;	0 b. a.!	A = = 1111 = =	Rating		TT
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	_	
Address setup time	A0	tAW6		0	_	
System cycle time		tCYC6		400	_	
Enable L pulse width (WRITE)	WR	tEWLW		220	_	
Enable H pulse width (WRITE)	- VVR	tEWHW		180	_	
Enable L pulse width (READ)	RD	tEWLR		220	_	
Enable H pulse width (READ)	_ KD	tEWHR		180	_	ns
WRITE Data setup time		tDS6		40	_	
WRITE Data hold time	D0 to D7	tDH6		15	_	1
READ access time	D0 to D7	tACC6	CL = 100 pF	_	140	
READ Output disable time		tOH6	CL = 100 pF	10	100	
tF				_	10	
tR				_	10	7

(VDD =1.8V,Ta =-30~85°C)

Item	Cianal	Symbol	Condition	Rating	Linita		
item	Signal	Symbol	Condition	Min.	Max.	Units	
Address hold time		tAH6		0	_		
Address setup time	A0	tAW6		0	_		
System cycle time		tCYC6		640	_		
Enable L pulse width (WRITE)	WR	tEWLW		360	_		
Enable H pulse width (WRITE)	VVIX	tEWHW		280	_		
Enable L pulse width (READ)	RD	tEWLR		360	_		
Enable H pulse width (READ)	- KD	tEWHR		280	_	ns	
WRITE Data setup time		tDS6		80	_		
WRITE Data hold time	D0 to D7	tDH6		30	_		
READ access time		tACC6	CL = 100 pF	_	240		
READ Output disable time		tOH6	CL = 100 pF	10	200		
tF				_	10		
tR				_	10		


^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) \leq (tCYC6 - tEWLW - tEWHW) for (tr + tf) \leq (tCYC6 - tEWLR - tEWHR) are specified.

For more details, please refer to IC specification.

 $^{^{\}ast}2$ All timing is specified using 20% and 80% of VDD as the reference.

 $^{^{\}star}3$ tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

9.0 MECHANICAL DIAGRAM

10.0 RELIABILITY TEST

NO	Te	st Item	Description	Test Condition	Remark
1		High temperature storage	Applying the high storage temperature Under normal humidity for a long time Check normal performance	80 °C 96hrs	
2		Low temperature storage	Applying the low storage temperature Under normal humidity for a long time Check normal performance	-30°C 96hrs	
3		High temperature Operation	Apply the electric stress(Voltage and current) Under high temperature for a long time	70 ° C 96hrs	Note1
4	Environmental	Low temperature Operation	Apply the electric stress Under low temperature for a long time	-20°C 96hrs	Note1 Note2
5	Test	High temperature/High Humidity Storage	Apply high temperature and high humidity storage for a long time	90% RH 40°C 96hrs	Note2
6		Temperature Cycle	Apply the low and high temperature cycle -30°C<>25°C<>80°C<>25°C 30min 10min 30min 10min 1 cycle Check normal performance	-30°C/80°C 10 cycle	
7	Mechanical Test	Vibration test(Package state)	Applying vibration to product check normal performance	Freq:10~55~10H z Amplitude:0.75m m 1cycle time:1min X.Y.Z every direction for 15 cycles	
8		Shock test(package state)	Applying shock to product check normal performance	Drop them through 70cm height to strike horizontal plane	
9	Other			'	

Remark

Note1:Normal operations condition (25°C±5°C).

Note2:Pay attention to keep dewdrops from the module during this test.

11.0 DISPLAY CONTROL INSTRUCTION

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
	0	0	0	0	1	1 1	0	0	0	2-byte instruction to set	
Mode Set	0	0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	Mode and FR(Frame frequency control) BE(Booster efficiency control)
EXT=0											
Read display data 1 1		1				Read data into DDRAM					
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y 9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y 5	Y4	Y 3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	x'	x'	2-byte instruction to specify the initial display line to realize
. , , ,	0	0	x'	S6	S5	S4	S3	S2	S1	S0	vertical scrolling
Set initial COM0 register	0	0	0	1	0	0	0	1	x'	x'	2-byte instruction to specify the initial COM0 to realize
oot miliai oomo registor	0	0	x'	C6	C5	C4	C3	C2	C1	C0	window scrolling
Select partial display line	0	0	0	1	0	0	1	0	x'	x'	2-byte instruction to set partial
Select partial display lifte	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display ratio
	0	0	0	1	0	0	1	1	x'	x'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	x'	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Ext=0											
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor
Select electronic volumn	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify
register	0	0	x'	x'	EV5	EV4	EV3	EV2	EV1	EV0	the reference voltage
Select LCD bias	0	0	0	1	0	1	0	B2	B1	В0	Select LCD bias
Set Bias Power Save Mode	0	0	1	1	1	1	0	0	1	1	Bias Power save
Set bias Power Save Mode	0	0	0	0	0	0	0	0	0	0	Save the Bias current consumption
Release Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save release
Mode	0	0	0	0	0	0	0	1	0	0	set the Bias power to normal
SHL select	0	0	1	1	0	0	SHL	x'	x'	x'	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection ADC=0: normal direction ADC=1: reverse direction
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P=0: normal mode P=1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function
Set data direction &	x'	x'	1	1	1	0	1	0	0	0	2-byte instruction to specify
display data length(DDL)	x'	x'	D7	D6	D5	D4	D3	D2	D1	D0	the number of data bytes. (SPI mode)
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWM0	FRC(1:3FRC, 0:4FRC) PWM1 PWM0 0 0 45PWM 0 1 45 PWM 1 0 60PWM 1 1
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test Instruction	0	0	1	1	1	1	x'	x'	x'	x'	Don't use this instruction

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	
EXT=1												
Set white mode and 1st frame,	0	0	1	0	0	0	0	0	0	0	-Set white mode and 1st fram	
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00		
Set white mode and 2 nd frame,	0	0	1	0	0	0	0	0	0	1	Set white mode and 2nd frame	
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00		
Set white mode and 3 rd frame,	0	0	1	0	0	0	0	0	1	0	Set white mode and 3rd frame	
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00		
Set white mode and 4 th frame,	0	0	1	0	0	0	0	0	1	1	Set white mode and 4th	
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	frame	
Set gray level 1 mode	0	0			84	1H~87H	H (4 b	ytes)		-	Set gray level1	
Set gray level 2 mode	0	0			88	3H~8BI	H (4 b	ytes)			Set gray level2	
Set gray level 3 mode	0	0			80	CH∼8F	H (4b	ytes)			Set gray level3	
Set gray level 4 mode	0	0		90H~93H (4bytes)							Set gray level4	
Set gray level 5 mode	0	0	94H~97H (4bytes)							Set gray level5		
Set gray level 6 mode	0	0	98H~9BH (4 bytes)							Set gray level6		
Set gray level 7 mode	0	0	9CH~9FH (4 bytes)								Set gray level7	
Set gray level 8 mode	0	0	A0H~A3H (4 bytes)							Set gray level8		
Set gray level 9 mode	0	0			Α	1H~A7I	H (4 b	ytes)			Set gray level9	
Set gray level 10 mode	0	0			A8	BH~AB	H (4 b	ytes)			Set gray level10	
Set gray level 11mode	0	0			AC	CH~AF	H (4 b	ytes)			Set gray level11	
Set gray level 12 mode	0	0			В)H~B3I	H (4 b	ytes)			Set gray level12	
Set gray level 13 mode	0	0	B4H~B7H (4 bytes)						Set gray level13			
Set gray level 14 mode	0	0	B8H~BBH (4 bytes)							Set gray level14		
Set Dark mode and 1st frame,	0	0	1 0 1 1 1 1 0 0						Set Dark mode and 1st			
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width	
Set Dark mode and 2nd frame,	0	0	1	0	1	1	1	1	0	1	Set Dark mode and 2nd	
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width	
Set Dark mode and 3rd frame,	0	0	1	0	1	1	1	1	1	0	Set Dark mode and 3rd	
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width	
Set Dark mode and 4th frame,	0	0	1	0	1	1	1	1	1	1	Set Dark mode and 4th	
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width	

For more details, please refer to IC specification.

12.0 PRECAUTION FOR USING LCM

- 1. When design the product with this LCD Module, make sure the viewing angle matches to its purpose of usage.
- 2. As LCD panel is made of glass substrate, Dropping the LCD module or banging it against hard objects may cause cracking or fragmentation. Especially at corners and edges.
- 3. Although the polarizer of this LCD Module has the anti-glare coating, always be careful not to scratch its surface. Use of a plastic cover is recommended to protect the surface of polarizer.
- 4. If the LCD module is stored at below specified temperature, the LC material may freeze and be deteriorated. If it is stored at above specified temperature, the molecular orientation of the LC material may change to Liquid state and it may not revert to its original state. Excessive temperature and humidity could cause polarizer peel off or bubble. Therefore, the LCD module should always be stored within specified temperature range.
- 5. Saliva or water droplets must be wiped off immediately as those may leave stains or cause color changes if remained for a long time. Water vapor will cause corrosion of ITO electrodes.
- 6. If the surface of LCD panel needs to be cleaned, wipe it swiftly with cotton or other soft cloth. If it is not still clean enough, blow a breath on the surface and wipe again.
- 7. The module should be driven according to the specified ratings to avoid malfunction and permanent damage. Applying DC voltage cause a rapid deterioration of LC material. Make sure to apply alternating waveform by continuous application of the M signal. Especially the power ON/OFF sequence should be kept to avoid latchup of driver LSIs and DC charge up to LCD panel.
- 8. Mechanical Considerations
 - a) LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.
 - b) Do not tamper in any way with the tabs on the metal frame.
 - c) Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
 - d) Do not touch the elastomer connector; especially insert a backlight panel (for example, EL).
 - e) When mounting a LCM makes sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
 - f) Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.
 - 9. Static Electricity
 - a) Operator

Ware the electrostatics shielded clothes because human body may be statically charged if not ware shielded clothes. Never touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.

b) Equipment

There is a possibility that the static electricity is charged to the equipment, which has a function of peeling or friction action (ex: conveyer, soldering iron, working table). Earth the equipment through proper resistance (electrostatic earth: 1x108 ohm).

Only properly grounded soldering irons should be used.

If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.

c) Floor

Floor is the important part to drain static electricity, which is generated by operators or equipment.

There is a possibility that charged static electricity is not properly drained in case of insulating floor. Set the electrostatic earth (electrostatic earth: 1x108 ohm).

d) Humidity

Proper humidity helps in reducing the chance of generating electrostatic charges. Humidity should be kept over 50%RH.

e) Transportation/storage

The storage materials also need to be anti-static treated because there is a possibility that the human body or storage materials such as containers may be statically charged by friction or peeling.

The modules should be kept in antistatic bags or other containers resistant to static for storage.

f) Soldering

Solder only to the I/O terminals. Use only soldering irons with proper grounding and no leakage.

Soldering temperature : 280 $^{\circ}$ C \pm 10 $^{\circ}$ C

Soldering time: 3 to 4 sec.

Use eutectic solder with resin flux fill.

If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed afterwards.

g) Others

The laminator (protective film) is attached on the surface of LCD panel to prevent it from scratches or stains. It should be peeled off slowly using static eliminator.

Static eliminator should also be installed to the workbench to prevent LCD module from static charge.

10. Operation

- a) Driving voltage should be kept within specified range; excess voltage shortens display life.
- b) Response time increases with decrease in temperature.
- c) Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- d) Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".
- 11. If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. The toxicity is extremely low but caution should be exercised at all the time.
- 12. Disassembling the LCD module can cause permanent damage and it should be strictly avoided.
- 13. LCD retains the display pattern when it is applied for long time (Image retention). To prevent image retention, do not apply the fixed pattern for a long time. Image retention is not a deterioration of LCD. It will be removed after display pattern is changed.
- 14. Do not use any materials, which emit gas from epoxy resin (hardener for amine) and silicone adhesive agent

(dealcohol or deoxym) to prevent discoloration of polarizer due to gas.

- 15. Avoid the exposure of the module to the direct sunlight or strong ultraviolet light for a long time.
- 16. The brightness of LCD module may be affected by the routing of CCFL cables due to leakage to the chassis through coupling effect. The inverter circuit needs to be designed taking the level of leakage current into consideration. Thorough evaluation is needed for LCD module and inverter built into its host equipment to ensure specified brightness.