

TECHNICAL SPECIFICATION FOR ALKALINE MANGANESE DIOXIDE BUTTON CELL TYPE: LR621H

Document No.	TMMQ/GPTD-BPS103	Effective date	2021-6-15
Version	A00	Pages	Total 5 pages
Prepared by		Approved by	

Guangdong TIANQIU Electronics Technology Co. Ltd.

ADD: 9/F TianQiu Business Building No.16-30, He Yi Rd., San Yuan Li Ave., GuangZhou China

Tel: 8620-36322277 Fax: 8620-36323339 P.C:510410

Website: http://www.tmmq.cn Email: office@tmmq.com

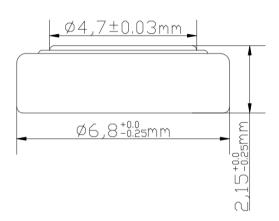
1. Scope

This specification is applicable to the Alkaline Manganese Dioxide Button Cell LR621H supplied by Guangdong TIANQIU Electronics Technology Co. Ltd.

2. Designations

2.1 Defining


Continuously discharge at $20\pm2^{\circ}$ under $6.5k^{\circ}$ to 0.9V


3. Designations and Dimensions

3.1 Designations:

LR621H Alkaline Zinc-Manganese Dioxide Button Cell

3.2 Dimensions

4. Technical Specifications

Item	Characteristic	
Nominal capacity	9mAh	
Nominal voltage	1.5V	
End point voltage	0.9V	
Storage humidity	$60\pm15\%$ RH (no condensate)	
Dimensions	maximum height: 2.1mm maximum diameter:Ф6.8mm	
Approximate weight	0.28g (only for reference)	

5. Performance

5.1 Test conditions

Unless otherwise specified, the test conditions shall be, as a general rule, at the temperature of $20\pm2^{\circ}$ C and the relative humidity of $60\pm15\%$.

5.2 Electrical characteristics

NO.	Item	Test condition	Requirement	
5.2.1	storage characteristics	Sampling plan: MIL-STD-105E, General		
		Inspection Lever $\ \ \mathbb{II} , \text{Single Sampling}, $	Open Circuit Voltage(V) load voltage(V) Initial: ≥1.55 ≥1.50	
		AQL=0.4		
		Remark: Load voltage test method:		
		$47 K\Omega/0.3S,$ The initial samples shall be		
		tested within 30 days after delivery		
		Load resistance:68kΩ;		
		Discharge method:24h/d continuously	Initial≥450hrs 12 months @ RT≥405hrs	
		discharge; End point voltage 1.2V		
		Remark: The initial samples shall be tested		
5.00	O-mi	within 30 days after delivery.		
5.2.2	5.2.2 Service output	Load resistance:6.5k Ω ;		
		Discharge method:24h/d continuously	Initial≥45hrs 12 months @ RT≥40.5hrs	
		discharge; End point voltage 0.9V		
		Remark: The initial samples shall be tested		
		within 30 days after delivery.		
5.2.3	Short circuit test	The battery short circuit test in $20\!\pm\!2^\circ\!\mathrm{C}$	No explosion	
		environment, discharge for 24hrs	N=5, Ac=0, Re=1.	

5.2.2&5.2.3 Acceptance test:

- 1) 9 pieces of battery will be tested for each discharging method.
- 2) The average discharging time from each discharging method shall be equal to or greater than the specified figure, and no more than one battery has a service output less than 80% of the specified figure.
- 3) One retest is allowed to confirm the results if the first test didn't meet the requirements.

5.3 Shelf life

One year after delivery under normal storage conditions. 90% of the initial capacity will be maintained after one year storage.

6. Packing and Marking

Any specific design and packing requirements will be accommodated as required. But as a general, the following markings will be printed, stamped or impressed on the body of the battery:

6.1 Marking

- 1) Designation: LR621H.
- 2) Manufacturer's logo " and/or its name "TIANQIU".
- 3) Polarity Marking:" BUTTON CELL + " on the cathode can.

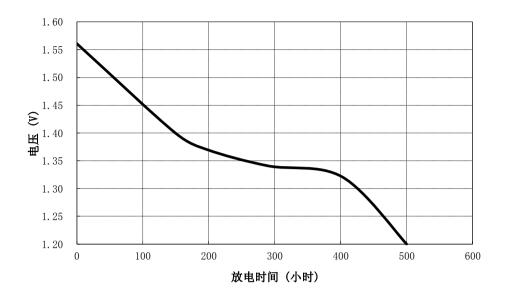
7. Caution for Use

- 1) Since the battery is not designed to be charged, there are risks of electrolyte leakage or causing damage to the device if the battery is charged.
- 2) The battery shall be installed with its "+" and "-" polarity in correct position, otherwise may cause the battery to be charged or over-discharged.
- 3) Short-circuiting, heating, disposing of in fire and disassembling the battery are prohibited.
- 4) Battery cannot be forced discharge, which lead to excess internal gas generation and, may result in bulging, leakage and explosion.
- 5) New and used batteries cannot be mix used at the same time, when replaced batteries, it is recommend to replace all and with the same brand type.
- 6) Exhausted batteries should be removed from compartment to prevent over-discharge, which cause leakage and damage to the device.
- 7) Direct soldering is not allowed, which will damage the battery.
- 8) Keep the battery out of the reach of children to prevent swallow, in case of accident should contact physician at once.
- 9) The battery should not be dismantled and deformed.

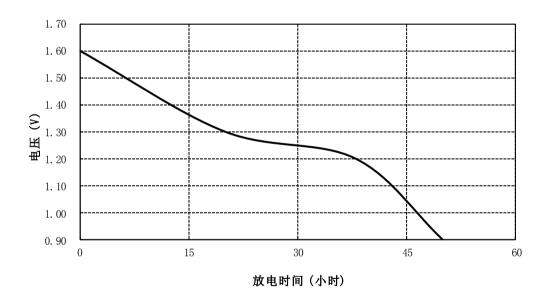
caution:

- If a battery is leakage and materials contact eyes, flush immediately with running water for at least 15 minutes. Consult an ophthalmologist at once.
- If battery emits an odor, fever, discoloration, deformation or any abnormal phenomena appeared in the process of use/storage, removed the battery immediately from the device and dispose of the battery.

8. Referenced Standards


IEC 60086-1:2015 - Primary Batteries - Part 1: General

IEC 60086-2:2015 - Primary Batteries - Part 2: Physical and electrical specifications


IEC 60086-3:2016 - Primary Batteries - Part 3: Watch batteries

IEC 60086-5:2016 - Primary Batteries - Part 5: Safety of batteries with aqueous electrolyte

9. Discharge Curves

Discharge method: $68k\Omega$, 24hours/day, E.V. 1.2V Temperature: $20\pm2^{\circ}$ C

Discharge method: 6.5kΩ, 24hours/day, E.V. 0.9V
Temperature: 20±2℃