

Technical documentation

Support & training

[DRV10982-Q1](https://www.ti.com/product/DRV10982-Q1) [SLVSF30A](https://www.ti.com/lit/pdf/SLVSF30) – OCTOBER 2019 – REVISED OCTOBER 2021

DRV10982-Q1 Automotive, Three-Phase, Sensorless BLDC Motor Driver

1 Features

- Qualified for automotive applications
- AEC-Q100 qualified with the following results:
	- Device temperature grade 1: -40° C to 125 $^{\circ}$ C ambient operating temperature range
	- Device HBM ESD classification level 1C
	- Device CDM ESD classification level C4A
- Operation voltage range:
	- Motor operation, 6.2 V to 28 V
	- Register setting preserved, 4.5 V to 45 V
- Supports load dump voltage up to 45 V
- Total driver $H + L r_{DS(on)}$
	- 300 mΩ at T_A = 25°C
	- 400 mΩ at T_A = 125°C
- Drive current: 2-A continuous winding current (3-A Peak)
- Configurable output PWM slew rate and frequency for EMI management
- Sensorless proprietary Back Electromotive Force (BEMF) control scheme (no need of hall sensors)
- Continuous sinusoidal 180° commutation
- Initial position-detect algorithm to avoid back spin during start-up
- No external sense resistor required
- Flexible user interface options:
	- $-$ I²C interface: access registers for command and feedback
	- Dedicated SPEED pin: accepts either analog or PWM input
	- Dedicated FG pin: provides TACH feedback
	- Spin-up profile can be customized with EEPROM
	- Forward-reverse control with DIR pin
- Integrated buck converter to efficiently provide 5‑V and 3.3-V LDOs for internal and external circuits
- Supply current 8.5 mA with standby version (DRV10982SQ)
- Supply current of 48 μA with sleep version (DRV10982Q)
- Protection features
	- Overcurrent protection (protection for phase-tophase, phase-to-GND and phase-to- v_{CC} shorts
	- Lock detection
	- Anti-Voltage Surge (AVS) protection
	- UVLO protection
	- Thermal shutdown protection
- Thermally enhanced package

2 Applications

- [Small automotive pumps](https://www.ti.com/solution/automotive-pump) and [fans](https://www.ti.com/solution/engine-fan)
- [Seat ventilation fans](https://www.ti.com/solution/engine-fan)
- [Motorcycle fuel pumps](https://www.ti.com/solution/automotive-pump)
- **[HEV battery cooling fans](https://www.ti.com/solution/engine-fan)**

3 Description

The DRV10982-Q1 device is a 3-phase sensorless motor driver with integrated power MOSFETs, which can provide continuous drive current up to 2 A. The device is specifically designed for cost-sensitive, lownoise, low-external-component-count fan and pump applications.

The DRV10982-Q1 device preserves register setting down to 4.5 V and delivers current to the motor with supply voltage as low as 6.2 V. If the power supply voltage is higher than 28 V, the device stops driving the motor and protects the DRV10982-Q1 circuitry. This function is able to handle a load dump condition up to 45 V.

TI provides [DRV10983-Q1 tuning Guide](https://www.ti.com/lit/pdf/SLVUAV9) for quick setup and tuning of the device for optimal performance.

Device Options:

- DRV10982Q: Sleep Version
- DRV10982SQ: Standby Version

Device Information (1)

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2017, Texas Instruments Incorporated

Application Schematic

Table of Contents

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

5 Description (Continued)

The DRV10982-Q1 device uses a proprietary sensorless control scheme to provide continuous sinusoidal drive, which significantly reduces the pure tone acoustics that typically occur as a result of commutation. The interface to the device is designed to be simple and flexible. The motor can be controlled directly through PWM, analog, or 1^2 C inputs. Motor speed feedback is available through both the FG pin and the I²C interface simultaneously.

The DRV10982-Q1 device features an integrated buck regulator to step down the supply voltage efficiently to 5 V for powering both internal and external circuits. The 3.3-V LDO also may be used to provide power for external circuits. The device is available in either a sleep mode or a standby mode version to conserve power when the motor is not running. The standby mode (8.5 mA) version (DRV10982SQ) leaves the regulator running and the sleep mode (48 μA) version (DRV10982Q) shuts the regulator off. Use the standby mode version in applications where the regulator is used to power an external microcontroller. Throughout this data sheet, the DRV10982-Q1 part number is used for both devices for example DRV10982Q (sleep version) and DRV10982SQ (standby version), except for specific discussions of sleep vs standby functionality.

An I^2C interface allows the user to reprogram specific motor parameters in registers and to program the EEPROM to help optimize the performance for a given application. The DRV10982-Q1 device is available in a thermally-efficient HTSSOP, 24-pin package with an exposed thermal pad. The operating ambient temperature is specified from –40°C to 125°C.

\bigcirc 1VCP 24 VCC 2CPP 23 VCC 3CPN 22 W 4SW 21 W 5SWGND 20 V 6VREG 19 V Thermal 7V1P8 18 U Pad 8GND 17 U 9V3P3 16 PGND SCL 10 PGND 2001 15 PGND 11SDA 14 DIR 12FG 13 SPEED Not to scale

6 Pin Configuration and Functions

Figure 6-1. PWP PowerPAD™ Package 24-Pin HTSSOP With Exposed Thermal Pad Top View

Table 6-1. Pin Functions

Copyright © 2021 Texas Instruments Incorporated *[Submit Document Feedback](https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVSF30A&partnum=DRV10982-Q1)* 3

Table 6-1. Pin Functions (continued)

(1) $I = Input$, $O = Output$, $I/O = Input/output$, $NC = No$ connect, $P = Power$

7 Specifications

7.1 Absolute Maximum Ratings

over operating ambient temperature range (1)

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the ground terminal (GND) unless otherwise noted.

7.2 ESD Ratings

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

7.4 Thermal Information

(1) For more information about traditional and new thermal metrics, see the *[Semiconductor and IC Package Thermal Metrics](https://www.ti.com/lit/pdf/spra953)* application report.

7.5 Electrical Characteristics

[DRV10982-Q1](https://www.ti.com/product/DRV10982-Q1)

[DRV10982-Q1](https://www.ti.com/product/DRV10982-Q1)

[SLVSF30A](https://www.ti.com/lit/pdf/SLVSF30) – OCTOBER 2019 – REVISED OCTOBER 2021 **www.ti.com**

Figure 7-1. DRV10982Q Analog Mode Timing

Figure 7-4. DRV10982SQ PWM Mode Timing

7.6 Typical Characteristics

8 Detailed Description

8.1 Overview

The DRV10982-Q1 device is a three-phase sensorless motor driver with integrated power MOSFETs that provides drive-current capability up to 2 A continuously. The device is specifically designed for low-noise, lowexternal-component-count motor-drive applications. The device is configurable through a simple I²C interface to accommodate different motor parameters and spin-up profiles for different customer applications.

A 180° sensorless control scheme provides continuous sinusoidal output voltages to the motor phases to enable ultra-quiet motor operation by keeping the electrically induced torque ripple small.

The DRV10982-Q1 device features extensive protection and fault-detection mechanisms to ensure reliable operation. Voltage surge protection prevents the input V_{CC} capacitor from overcharging, which is typical during motor deceleration. The device provides overcurrent protection without the need for an external current-sense resistor. Rotor-lock detection is available through several methods. These methods can be configured with register settings to ensure reliable operation. The device provides additional protection for undervoltage lockout (UVLO) and for thermal shutdown.

The commutation control algorithm continuously measures the motor phase current and periodically measures the V_{CC} supply voltage. The device uses this information for BEMF estimation, and the information is also provided through the I²C register interface for debug and diagnostic use in the system, if desired.

A buck step-down regulator efficiently steps down the supply voltage. The output of this regulator provides power for the internal circuits and can also be used to provide power for an external circuit such as a microcontroller. If providing power for an external circuit is not necessary (and to reduce system cost), configure the buck step-down regulator as a linear regulator by replacing the inductor with a resistor.

The DRV10982-Q1 device has a flexible interface, capable of supporting both analog and digital inputs. In addition to the I²C interface, the device has FG, DIR, and SPEED pins. SPEED is the speed command input pin. DIR is the direction control input pin. FG is the speed indicator output, which shows the frequency of the motor commutation.

EEPROM is integrated in the DRV10982-Q1 device as memory for the motor parameter and operation settings. EEPROM data transfers to the registers after power-on and exit from sleep mode.

The DRV10982-Q1 device can also operate in register mode. If the system includes a microcontroller communicating through the I^2C interface, the device can dynamically update the motor parameters and operation settings by writing to the registers. In this configuration, the EEPROM data is bypassed by the register settings.

8.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Regulators

8.3.1.1 Step-Down Regulator

The DRV10982-Q1 device includes a step-down hysteretic voltage regulator that can be operated as either a switching buck regulator using an external inductor or as a linear regulator using an external resistor. The best efficiency is achieved when the step-down regulator is in buck mode (see [Figure 8-1](#page-14-0)). The regulator output voltage is 5 V. When the regulated voltage drops by the hysteresis level, the high-side FET turns on to raise the regulated voltage back to the target of 5 V. The switching frequency of the hysteretic regulator is not constant and changes with load.

If the step-down regulator is configured in buck mode, see $I_{REG_{MAX}}$ in [Section 7.5](#page-6-0) to determine the amount of current provided for external load. If the step-down regulator is configured in linear mode, see $I_{REG_MAX_R}$ in [Section 7.5](#page-6-0) to determine the amount of current provided for external load. Active current I_{CC} is higher in buck mode compared to linear mode.

Figure 8-1. Step-Down Regulator Configurations

8.3.1.2 3.3-V and 1.8-V LDO

The DRV10982-Q1 device includes a 3.3-V LDO and a 1.8-V LDO. The 3.3-V LDO is powered by Vreg and 1.8-V LDO is powered by 3.3-V LDO. The 1.8-V LDO is for internal circuits only. The 3.3-V LDO is mainly for internal circuits, but can also drive external loads not to exceed I_{V3P3} MAX. For example, it can work as a pullup voltage for the FG, DIR, SDA, and SCL interface.

Both the V1P8 and V3P3 capacitors must be connected to GND.

8.3.2 Protection Circuits

8.3.2.1 Thermal Shutdown

The DRV10982-Q1 device has a built-in thermal shutdown function, which shuts down the device when the junction temperature is more than $T_{SDN}^{\circ}C$ and recovers operating conditions when the junction temperature falls to $T_{SDN} - T_{SDN HYS}°C$.

The OverTemp status bit (address 0x00, bit 15) is set during thermal shutdown. In addition to the thermal shutdown function there is a warning bit that is set whenever the device exceeds T_{WARN} and is indicated by the TempWarning bit of the FaultReg register (address 0x00, bit 14).

8.3.2.2 Undervoltage Lockout (UVLO)

The DRV10982-Q1 device has a built-in UVLO function block. The device is locked out when V_{CC} is below V_{UVLO F} and is unlocked when V_{CC} is above V_{UVLOR}. The hysteresis of the UVLO threshold is V_{UVLO HYS}. In addition to the main supply, the step-down regulator, charge pump, and 3.3-V LDO all have undervoltage lockout monitors.

8.3.2.3 Overcurrent Protection

The overcurrent protection function acts to protect the device if the current, as measured from the FETs, exceeds the $I_{OC-limit}$ threshold. It protects the device in the event of a short-circuit condition on the motor phases. This includes phase shorts to GND, phase shorts to phase, or phase shorts to V_{CC} . The DRV10982-Q1 device places the output drivers into a high-impedance state until the lock time $t_{\text{Lock OFF}}$ has expired. The OverCurr status bit of the FaultReg register (address 0x00, bit 11) is set.

The DRV10982-Q1 device also provides acceleration current-limit and lock-detection current-limit functions to protect the device and motor (see *[Section 8.4.7](#page-36-0)* and *[Section 8.4.8](#page-37-0)*).

8.3.2.4 Lock

When the motor is blocked or stopped by an external force, lock protection is triggered, and the device stops driving the motor immediately. After the lock release time $t_{\text{LOCK_OFF}}$, the DRV10982-Q1 device resumes driving the motor again. If the lock condition is still present, it enters the next lock protection cycle, and repeats until the lock condition is removed. With this lock protection, the motor and device do not overheat or become damaged due to the motor being locked (see *[Section 8.4.8](#page-37-0)*).

During a lock condition the Status register indicates which of the locks has occurred.

8.3.3 Motor Speed Control

The DRV10982-Q1 device offers four methods for indirectly controlling the speed of the motor by adjusting the output voltage amplitude. This can be accomplished by varying the supply voltage (V_{CC}) or by controlling the speed command. The speed command can be controlled in one of three ways. The user can set the speed command by adjusting either the PWM input (PWM in) or the analog input (Analog) or by writing the speed command directly through the I^2C serial port (I^2C). The speed command is used to determine the PWM duty cycle output (PWM_DCO) (see [Figure 8-3](#page-16-0)).

The input PWM input (PWM in) can have a minimum duty cycle limit applied. DutyCycleLimit[1:0], accessible through the $I²C$ interface, allows the user to configure the minimum duty cycle behavior. This behavior is illustrated in Figure 8-2.

Figure 8-2. Duty Cycle Profile

The speed command may not always be equal to the PWM_DCO because the DRV10982-Q1 device has the AVS function (see *[Section 8.4.9](#page-40-0)*), the acceleration current-limit function (see *[Section 8.4.7.1](#page-36-0)*), and the closed-loop accelerate function (see *[Section 8.4.6.5](#page-34-0)*) to optimize the control performance. These functions can limit the PWM DCO, which affects the output amplitude (see [Figure 8-3](#page-16-0)).

Figure 8-3. Multiplexing the Speed Command to the Output Amplitude Applied to the Motor

The output voltage amplitude applied to the motor is developed through sine wave modulation so that the phase-to-phase voltage is sinusoidal.

When any phase is measured with respect to ground, the waveform is sinusoidally coupled with third-order harmonics. This encoding technique permits one phase to be held at ground while the other two phases are pulse-width modulated. Figure 8-4 and Figure 8-5 show the sinusoidal encoding technique used in the DRV10982-Q1 device.

Figure 8-5. Representing Sinusoidal Voltages With Third-Order Harmonic Output

The output amplitude is determined by the magnitude of V_{CC} and the PWM duty cycle output (PWM_DCO). The PWM_DCO represents the peak duty cycle that is applied in one electrical cycle. The maximum amplitude is reached when PWM_DCO is at 100%. The peak output amplitude is V_{CC} . When the PWM_DCO is at 50%, the peak amplitude is V_{CC} / 2 (see [Figure 8-6](#page-17-0)).

Figure 8-6. Output Voltage Amplitude Adjustment

Motor speed is controlled indirectly by controlling the output amplitude, which is achieved by either controlling V_{CC} , or controlling the PWM_DCO. The DRV10982-Q1 device provides different options for the user to control the PWM_DCO:

- Analog input (SPEED pin)
- PWM encoded digital input (SPEED pin)
- ²C serial interface.

See the *[Section 8.4.6](#page-33-0)* section for more information.

8.3.4 Load Dump Handling

The recommended operation voltage of the DRV10982-Q1 device is from 6.2 V to 28 V. The device is able to drive the motor within this V_{CC} range.

In the load dump condition, V_{CC} can rise up to 45 V. Once the DRV10982-Q1 device detects that V_{CC} is higher than V_{OV, R}, it stops driving the motor and protects its own circuitry. When V_{CC} drops below V_{OV, F}, the DRV10982-Q1 device continues to operate the motor based on the user's command.

8.3.5 Sleep or Standby Condition

The DRV10982-Q1 device is available in either a sleep mode (DRV10982Q) or standby mode version (DRV10982SQ). The DRV10982-Q1 device enters either sleep or standby to conserve energy. When the device enters either sleep or standby, the device stops driving the motor. The step-down regulator is disabled in the sleep mode version to conserve more energy. The I²C interface is disabled and any register data not stored in EEPROM is reset for the sleep mode version. The step-down regulator remains active in the standby mode version. The register data is maintained, and the I2C interface remains active for standby mode version.

For different speed command modes, Table 8-1 shows the timing and command to enter the sleep or standby condition.

Table 8-1. Conditions to Enter or Exit Sleep or Standby Condition

Speed pin in DRV10983SQ (Standby version) and DRV10983Q (sleep version) should be in known state (pulled high or low) when the speed is controlled via ${}^{12}C$.

Note that when using the analog speed command, a higher voltage is required to exit from the sleep condition than from the standby condition. The $I²C$ speed command cannot take the device out of the sleep condition because $1²C$ communication is disabled during the sleep condition.

Table 8-2. Minimum PWM Duty Cycle Requirement for Different PWM Frequency to Exit Sleep Condition

8.3.5.1 Required Sequence to Enter Sleep Mode

In I²C speed command mode, either of two sequence options can be used to enter sleep mode.

8.3.5.1.1 Option 1

- 1. Provide a non-zero value to the speed control register. For example, write 100 to register 0x30, speedCtrl[8:0].
- 2. Set the I²C OverRide bit to 1. That is, write 1 to register 0x30, speedCtrl[15].
- 3. In analog mode, be sure SPEED pin voltage is less than V_{EN-SL} for t_{EN-SL} _{ANA}. In PWM mode, make sure SPEED pin is low (V < $V_{DIG IL}$) for $t_{EN SL}$ pwm.
- 4. Provide the value of zero to the speed control register to enter sleep mode. That is, write 0 to register 0x30, speedCtrl[8:0].

8.3.5.1.2 Option 2

- 1. Set the motor disable bit to 1. That is, write 1 to register 0x60, EECtrl[15].
- 2. Set the I²C OverRide bit to 1. That is, write 1 to register 0x30, speedCtrl[15].
- 3. Set the motor disable bit to 0. That is, write 0 to register 0x60, EECtrl[15].
- 4. Provide the value of zero to the speed control register to enter sleep mode. That is, write 0 to register 0x30, speedCtrl[8:0].

8.3.6 EEPROM Access

The DRV10982-Q1 device has 112 bits (7 registers with 16-bit width) of EEPROM data, which are used to program the motor parameters as described in the *[Section 8.5.1](#page-46-0)*.

The procedure for programming the EEPROM is as follows. TI recommends to perform the EEPROM programming without the motor spinning, cycle the power after the EEPROM write, and read back the EEPROM to verify the programming is successful.

- 1. Power up with any voltage within operating voltage range (6.2 V to 28 V)
- 2. (DRV10982Q only) Exit from sleep condition
- 3. Wait 10 ms
- 4. Write register 0x60 to set MTR_DIS = 1; this disables the motor driver.
- 5. Write register 0x31 with 0x0000 to clear the EEPROM access code
- 6. Write register 0x31 with 0xC0DE to enable access to EEPROM
- 7. Read register 0x32 for eeReadyStatus = 1
- 8. Case-A: Mass Write
	- a. Write all individual shadow registers
		- i. Write register 0x90 (CONFIG1) with CONFIG1 data
		- ii. ...
		- iii. Write register 0x96 (CONFIG7) with CONFIG7 data
	- b. Write the following to register 0x35
		- i. Shadow $\text{ReqEn} = 0$
		- ii. ee Refresh = 0
		- iii. eeWRnEn = 1

- iv. EEPROM Access Mode = 10
- c. Wait for register 0x32 eeReadyStatus = 1 EEPROM is now updated with the contents of the shadow registers.
- 9. Case-B: Mass Read
	- a. Write the following to register 0x35
		- i. Shadow $RegEn = 0$
		- ii. ee R efresh = 0
		- iii. eeWRnEn = 0
		- iv. eeAccMode = 10
	- b. Internally, the device starts reading the EEPROM and storing it in the shadow registers.
	- c. Wait for register 0x32 eeReadyStatus = 1 shadow registers now contain the EEPROM values
- 10. Write register 0x60 to set MTR_DIS = 0; this re-enables the motor driver

8.4 Device Functional Modes

This section includes the logic required to be able to reliably start and drive the motor. It describes the processes used in the logic core and provides the information needed to configure the parameters effectively to work over a wide range of applications.

8.4.1 Motor Parameters

See the *[DRV10983-Q1 Tuning Guide](https://www.ti.com/lit/pdf/SLVUAV9)* for the motor parameter measurement.

The motor phase resistance and BEMF constants are two important parameters used to characterize a BLDC motor. The DRV10982-Q1 device requires these parameters to be configured in the register. The motor phase resistance is programmed by writing the values for Rm[6:0] (combination of RMShift[2:0] and RMValue[3:0]) in the Config1 register. The BEMF constant is programmed by writing the values for Kt[6:0] (combination of KTShift[2:0] and KTValue[3:0]) in the Config2 register.

8.4.1.1 Motor Phase Resistance

For a wye-connected motor, the motor phase resistance refers to the resistance from the phase output to the center tap, R_{PH-CT} (denoted as R_{PH-CT} in Figure 8-7).

Figure 8-7. Wye-Connected Motor Phase Resistance

For a delta-connected motor, the motor phase resistance refers to the equivalent phase to center tap in the wye configuration. In Figure 8-8, it is denoted as R_Y . $R_{PH-CT} = R_Y$.

For both the delta-connected motor and the wye-connected motor, the easy way to get the equivalent $R_{PH\ CT}$ is to measure the resistance between two phase terminals (R_{PH_PH}), and then divide this value by two, R_{PH_CT} = $\frac{1}{2}$ R_{PH} $_{PH}$.

Figure 8-8. Delta-Connected Motor and the Equivalent Wye Connections

Copyright © 2021 Texas Instruments Incorporated *[Submit Document Feedback](https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVSF30A&partnum=DRV10982-Q1)* 21

The motor phase resistance (R_{PH_CT}) must be converted to a 7-bit digital register value Rm[6:0] to program the motor phase resistance value. The digital register value can be determined as follows:

- 1. Convert the motor phase resistance ($R_{PH\ C T}$) to a digital value where the LSB is weighted to represent 9.67 mΩ: Rmdig = R_{PH CT} / 0.00967.
- 2. Encode the digital value such that Rmdig = RMValue[3:0] << RMShift[2:0].

The maximum resistor value, R_{PH CT}, that can be programmed for the DRV10982-Q1 device is 18.5 Ω , which represents Rmdig = 1920 and an encoded Rm[6:0] value of 0x7Fh. The minimum resistor the DRV10982-Q1 device supports is 0.029 Ω, R_{PH_CT}, which represents Rmdig = 3.

For convenience, the encoded value for Rm[6:0] can also be obtained from Table 8-3.

RM[6:0] {RMShift[2:0], RMValue[3:0]}		$R_{PH_CT}(\Omega)$	<u>1996 0-9. MOIOL LIIGSE RESISTATICE LOOK-OP TADIC</u> RM[6:0] {RMShift[2:0], RMValue[3:0]}		$R_{PH_CT}(\Omega)$	RM[6:0] {RMShift[2:0], RMValue[3:0]}		$R_{PH_CT}(\Omega)$
BINARY	HEX		BINARY	HEX		BINARY	HEX	
000 0000	0x00	0	0101000	0x28	0.3104	1011000	0x58	2.4832
000 0001	0x01	0.0097	010 1001	0x29	0.3492	101 1001	0x59	2.7936
000 0010	0x02	0.0194	010 1010	0x2A	0.388	101 1010	0x5A	3.104
000 0011	0x03	0.0291	010 1011	0x2B	0.4268	101 1011	0x5B	3.4144
000 0100	0x04	0.0388	010 1100	0x2C	0.4656	101 1100	0x5C	3.7248
000 0101	0x05	0.0485	010 1101	0x2D	0.5044	101 1101	0x5D	4.0352
000 0110	0x06	0.0582	010 1110	0x2E	0.5432	101 1110	0x5E	4.3456
000 0111	0x07	0.0679	010 1111	0x2F	0.582	101 1111	0x5F	4.656
000 1000	0x08	0.0776	011 1000	0x38	0.6208	110 1000	0x68	4.9664
000 1001	0x09	0.0873	011 1001	0x39	0.6984	110 1001	0x69	5.5872
000 1010	0x0A	0.097	011 1010	0x3A	0.776	110 1010	0x6A	6.208
000 1011	0x0B	0.1067	011 1011	0x3B	0.8536	110 1011	0x6B	6.8288
000 1100	0x0C	0.1164	011 1100	0x3C	0.9312	110 1100	0x6C	7.4496
000 1101	0x0D	0.1261	011 1101	0x3D	1.0088	110 1101	0x6D	8.0704
000 1110	0x0E	0.1358	011 1110	0x3E	1.0864	110 1110	0x6E	8.6912
000 1111	0x0F	0.1455	011 1111	0x3F	1.164	110 1111	0x6F	9.312
001 1000	0x18	0.1552	100 1000	0x48	1.2416	111 1000	0x78	9.9328
001 1001	0x19	0.1746	100 1001	0x49	1.3968	111 1001	0x79	11.1744
001 1010	0x1A	0.194	100 1010	0x4A	1.552	111 1010	0x7A	12.416
001 1011	0x1B	0.2134	100 1011	0x4B	1.7072	111 1011	0x7B	13.6576
001 1100	0x1C	0.2328	100 1100	0x4C	1.8624	111 1100	0x7C	14.8992
001 1101	0x1D	0.2522	100 1101	0x4D	2.0176	111 1101	0x7D	16.1408
001 1110	0x1E	0.2716	100 1110	0x4E	2.1728	111 1110	0x7E	17.3824
001 1111	0x1F	0.291	100 1111	0x4F	2.328	111 1111	0x7F	18.624

Table 8-3. Motor Phase Resistance Look-Up Table

8.4.1.2 BEMF Constant

The BEMF constant, Kt[6:0] describes the phase-to-phase BEMF voltage of the motor as a function of the motor velocity.

Figure 8-9 shows the measurement technique for this constant as used in the DRV10982-Q1 device.

Figure 8-9. Kt_{PH} Definition

With the motor coasting, use an oscilloscope to capture the differential voltage waveform between any two phases. Derive the BEMF constant used by the DRV10982-Q1 device as shown in Equation 1.

$$
Kt_{PH} = E_p \times t_e \tag{1}
$$

where

- E_p is $\frac{1}{2}$ the peak-to-peak amplitude of the measured voltage
- t_e is the electrical period

The measured BEMF constant (Kt_{PH}) must be converted to a 7-bit digital register value Kt[6:0] (combination of KtShift[2:0] and KtValue[3:0]) to program the BEMF constant value. The digital register value can be determined as follows:

- 1. Convert the measured Kt_{PH} to a weighted digital value: Kt_{ph_dig} = 1090 × Kt_{PH}
- 2. Encode the digital value such that $K_{ph-dig} = KtValue[3:0] \ll KtShift[2:0]$.

The maximum Kt_{PH} that can be programmed is 1760 mV/Hz. This represents a digital value of 1920 and an encoded Kt[6:0] value of 0x7Fh. The minimum Kt_{PH} that can be programmed is 0.92 mV/Hz, which represents a digital value of 1 and an encoded Kt[6:0] value of 0x01h.

For convenience, the encoded value of Kt[6:0] may also be obtained from [Table 8-4](#page-23-0).

[DRV10982-Q1](https://www.ti.com/product/DRV10982-Q1) [SLVSF30A](https://www.ti.com/lit/pdf/SLVSF30) – OCTOBER 2019 – REVISED OCTOBER 2021 **www.ti.com**

Table 8-4. BEMF Constant Look-Up Table

8.4.2 Starting the Motor Under Different Initial Conditions

The motor can be in one of three states when the DRV10982-Q1 device attempts to begin the start-up process. The motor may be stationary, or spinning in the forward or reverse directions. The DRV10982-Q1 device includes a number of features to allow for reliable motor start under all of these conditions. [Figure 8-10](#page-24-0) shows the motor start-up flow for each of the three initial motor states.

8.4.2.1 Case 1 – Motor is Stationary

If the motor is stationary, the commutation logic must be initialized to be in phase with the position of the motor. The DRV10982-Q1 device provides for two options to initialize the commutation logic to the motor position. Initial position detect (IPD) determines the position of the motor based on the deterministic inductance variation, which is often present in BLDC motors. The *align-and-go* technique forces the motor into alignment by applying a voltage across a particular motor phase to force the motor to rotate in alignment with this phase.

8.4.2.2 Case 2 – Motor is Spinning in the Forward Direction

If the motor is spinning forward with enough velocity, the DRV10982-Q1 device may be configured to go directly into closed loop. By resynchronizing to the spinning motor, the user achieves the fastest possible start-up time for this initial condition.

8.4.2.3 Case 3 – Motor is Spinning in the Reverse Direction

If the motor is spinning in the reverse direction, the DRV10982-Q1 device provides several methods to convert it back to the forward direction.

NSTRUMENTS

One method, reverse drive, allows the motor to be driven so that it accelerates through zero velocity. The motor achieves the shortest possible spin-up time in systems where the motor is spinning in the reverse direction.

If this feature is not selected, then the DRV10982-Q1 device may be configured either to wait for the motor to stop spinning or to brake the motor. After the motor has stopped spinning, the motor start-up sequence proceeds as it would for a motor which is stationary.

Take care when using the reverse-drive or brake feature to ensure that the current is limited to an acceptable level and that the supply voltage does not surge as a result of energy being returned to the power supply.

Figure 8-10. Start the Motor Under Different Initial Conditions

8.4.3 Motor Start Sequence

Figure 8-11 shows the motor-start sequence implemented in the DRV10982-Q1 device.

Figure 8-11. Motor Starting-Up Flow

8.4.3.1 Initial Speed Detect

The ISD function is used to identify the initial condition of the motor. If the function is disabled, the DRV10982-Q1 device does not perform the initial speed detect function and treats the motor as if it is stationary.

Phase-to-phase comparators are used to detect the zero crossings of the motor's BEMF voltage while it is coasting (motor phase outputs are in the high-impedance state). [Figure 8-12](#page-27-0) shows the configuration of the comparators.

Figure 8-12. Initial Speed Detect Function

If the UW comparator output is lagging the UV comparator by 60°, the motor is spinning forward. If the UW comparator output is leading the UV comparator by 60°, the motor is spinning in reverse.

The motor speed is determined by measuring the time between two rising edges of either of the comparators.

If neither of the comparator outputs toggles for a given amount of time, the condition is defined as stationary. The amount of time can be programmed by setting the register bits ISDThr[1:0].

8.4.3.2 Motor Resynchronization

The resynchronize function works when the ISD function is enabled and determines that the initial state of the motor is spinning in the forward direction. The speed and position information measured during ISD are used to initialize the drive state of the DRV10982-Q1 device, which can transition directly into the closed-loop running state without needing to stop the motor.

8.4.3.3 Reverse Drive

The ISD function measures the initial speed and the initial position; the DRV10982-Q1 reverse drive function acts to reverse accelerate the motor through zero speed and to continue accelerating until the closed loop threshold is reached (see Figure 8-13). If the reverse speed is greater than the threshold configured in RvsDrThr[1:0], then the DRV10982-Q1 device waits until the motor coasts to a speed that is less than the threshold before driving the motor to reverse accelerate.

Figure 8-13. Reverse Drive Function

Reverse drive is suitable for applications where the load condition is light at low speed and relatively constant and where the reverse speed is low (that is, a fan motor with little friction). For other load conditions, the motor

brake function provides a method for helping force a motor which is spinning in the reverse direction to stop spinning before a normal start-up sequence.

8.4.3.4 Motor Brake

The motor brake function can be used to stop the spinning motor before attempting to start the motor. The brake is applied by turning on all three of the low-side driver FETs.

Brake is enabled by configuring a non-zero BrkDoneThr[2:0]. Brake is applied for a time configured by BrkDoneThr[2:0] (forward or reverse). After the motor is stopped, the motor position is unknown. To proceed with restarting in the correct direction, the IPD or align-and-go algorithm must be implemented. The motor start sequence is the same as it would be for a motor starting in the stationary condition.

The motor brake function can be disabled. The motor skips the brake state and attempts to spin the motor as if it were stationary. If this happens while the motor is spinning in either direction, the start-up sequence may not be successful.

8.4.3.5 Motor Initialization

8.4.3.5.1 Align

The DRV10982-Q1 device aligns a motor by injecting dc current through a particular phase pattern which is current flowing into phase V, flowing out from phase W for a certain time (configured by AlignTime[2:0]). The current magnitude is determined by OpenLCurr[1:0]. The motor should be aligned at the known position.

The time of align affects the start-up timing (see *[Section 8.4.3.6](#page-31-0)*). A bigger-inertia motor requires longer align time.

8.4.3.5.2 Initial Position Detect (IPD)

The inductive sense method is used to determine the initial position of the motor when IPD is enabled. IPD is enabled by selecting IPDCurrThr[3:0] to any value other than 0000.

IPD can be used in applications where reverse rotation of the motor is unacceptable. Because IPD is not required to wait for the motor to align with the commutation, it can allow for a faster motor start sequence. IPD works well when the inductance of the motor varies as a function of position. Because it works by pulsing current to the motor, it can generate acoustics which must be taken into account when determining the best start method for a particular application.

8.4.3.5.2.1 IPD Operation

The IPD operates by sequentially applying voltage across two of the three motor phases according to the following sequence: VW WV UV VU WU UW (see [Figure 8-14\)](#page-29-0). When the current reaches the threshold configured in IPDCurrThr[3:0], the voltage across the motor is stopped. The DRV10982-Q1 device measures the time it takes from when the voltage is applied until the current threshold is reached. The time varies as a function of the inductance in the motor windings. The state with the shortest time represents the state with the minimum inductance. The minimum inductance is because of the alignment of the north pole of the motor with this particular driving state.

8.4.3.5.2.2 IPD Release Mode

Two options are available for stopping the voltage applied to the motor when the current threshold is reached. If IPDRlsMd = 0, the recirculate mode is selected. The low-side (S6) MOSFET remains on to allow the current to recirculate between the MOSFET (S6) and body diode (S2) (see Figure 8-15). If IPDRIsMd = 1, the highimpedance (Hi-Z) mode is selected. Both the high-side (S1) and low-side (S6) MOSFETs are turned off and the current flies back across the body diodes into the power supply (see Figure 8-16).

In the high-impedance state, the phase current has a faster settle-down time, but that could result in a surge on V_{CC} . Manage this with appropriate selection of either a clamp circuit or by providing sufficient capacitance between V_{CC} and GND. If the voltage surge cannot be contained and if it is unacceptable for the application, then select the recirculate mode. When selecting the recirculate mode, select the IPDClk[1:0] bits to give the current in the motor windings enough time to decay to 0.

8.4.3.5.2.3 IPD Advance Angle

After the initial position is detected, the DRV10982-Q1 device begins driving the motor at an angle specified by IPDAdvcAgl[1:0].

Advancing the drive angle anywhere from 0° to 180° results in positive torque. Advancing the drive angle by 90° results in maximum initial torque. Applying maximum initial torque could result in uneven acceleration to the rotor. Select the IPDAdvcAgl[1:0] to allow for smooth acceleration in the application (see Figure 8-17).

8.4.3.5.3 Motor Start

After it is determined that the motor is stationary and after completing the motor initialization with either align or IPD, the DRV10982-Q1 device begins to accelerate the motor. This acceleration is accomplished by applying a voltage determined by the open-loop current setting (OpenLCurr[1:0]) to the appropriate drive state and by increasing the rate of commutation without regard to the real position of the motor (referred to as open-loop operation). The function of the open-loop operation is to drive the motor to a minimum speed so that the motor generates sufficient BEMF to allow the commutation control logic to accurately drive the motor.

[Table 8-5](#page-31-0) lists the configuration options that can be set in register to optimize the initial motor acceleration stage for different applications.

Speed

Speed = $A1 \times t + 0.5 A2 \times t$

AlignTime

8.4.3.6 Start-Up Timing

Start-up timing is determined by the align and accelerate time. The align time can be set by AlignTime[2:0]. The accelerate time is defined by the open-to-closed loop threshold Op2ClsThr[4:0] along with the first-order StAccel[2:0](A1) and second-order StAccel2[2:0](A2) acceleration coefficients. Figure 8-18 shows the motor start-up process.

Close loop

Op2ClsThr

Figure 8-18. Motor Start-Up Process

Select the first-order and second-order acceleration coefficients to allow the motor to reliably accelerate from zero velocity up to the closed-loop threshold in the shortest time possible. Using a slow acceleration coefficient during the first order accelerate stage can help improve reliability in applications where it is difficult to accurately initialize the motor with either align or IPD.

Select the open-to-closed loop threshold to allow the motor to accelerate to a speed that generates sufficient BEMF for closed-loop control. This is determined by the velocity constant of the motor based on the relationship described in Equation 2.

$$
BEMF = Kt_{PH} \times speed (Hz)
$$
 (2)

8.4.4 Align Current

During the align state, the measured align current is dependent on actual motor phase resistance and r_{DS(on)} of the internal FETs. The relationship between measured align current and configured align current is derived from actual motor phase resistance, configured motor phase resistance and $r_{DS(on)}$.

$$
AlignCurrent_Measured = Alignment_Configured \times \left[\frac{R_m}{R_{motor} + r_{DS(on)}}\right]
$$
\n(3)

where

- AlignCurrent Measured is the actual align current measured during the align state
- AlignCurrent_Configured is the align current configured by OpenLCurr[1:0]
- R_{motor} is the actual motor phase resistance

- $r_{DS(on)}$ is the resistance between the drain and source of the FETs during the on-state
- R_m is configured by Rm[6:0]

8.4.5 Start-Up Current Setting

The start-up current setting is to control the peak start-up during open loop. During open-loop operation, it is desirable to control the magnitude of drive current applied to the motor. This is helpful in controlling and optimizing the rate of acceleration. The limit takes effect during reverse drive, align, and acceleration.

The start current is set by programming the OpenLCurr[1:0] bits. The current should be selected to allow the motor to reliably accelerate to the handoff threshold. Heavier loads may require a higher current setting, but it should be noted that the rate of acceleration is limited by the acceleration rate (StAccel[2:0], StAccel2[2:0]). If the motor is started with more current than necessary to reliably reach the handoff threshold, it results in higher power consumption.

The start current is controlled based on the relationship shown in Equation 4 and Figure 8-19. The duty cycle applied to the motor is derived from the calculated value for U_{Limit} and the magnitude of the supply voltage, V_{CC} , as well as the drive state of the motor.

$$
U_{Limit} = I_{Limit} \times Rm + Speed (Hz) \times Kt
$$
\n(4)

where

- I_{Limit} is configured by OpenLCurr[1:0]
- Rm is configured by Rm[6:0]
- Speed is variable based motor's open loop acceleration profile
- Kt is configured by Kt[6:0]

Figure 8-19. Motor Start-Up Current

8.4.5.1 Start-Up Current Ramp-Up

A fast change in the applied drive current may result in a sudden change in the driving torque. In some applications, this could result in acoustic noise. To avoid this, the DRV10982-Q1 device allows the option of limiting the rate at which the current is applied to the motor. OpLCurrRt[2:0] sets the maximum voltage ramp-up rate that is applied to the motor. The waveforms in Figure 8-20 show how this feature can be used to gradually ramp the current applied to the motor.

Start driving with fast current ramp Start driving with slow current ramp

Figure 8-20. Motor Start-Up Current Ramp

8.4.6 Closed Loop

In closed loop operation, the DRV10982-Q1 device continuously samples the current in the U phase of the motor and uses this information to estimate the BEMF voltage that is present. The drive state of the motor is controlled based on the estimated BEMF voltage.

8.4.6.1 Half-Cycle Control and Full-Cycle Control

The estimated BEMF used to control the drive state of the motor has two zero-crosses every electrical cycle. The DRV10982-Q1 device can be configured to update the drive state either once every electrical cycle or twice for every electrical cycle. When AdjMode is programmed to 1, half-cycle adjustment is applied. The control logic is triggered at both the rising edge and falling edge. When AdjMode is programmed to 0, full-cycle adjustment is applied. The control logic is triggered only at the rising edge (see Figure 8-21).

Half-cycle adjustment provides a faster response when compared with full-cycle adjustment. Use half-cycle adjustment whenever the application requires operation over large dynamic loading conditions. Use the full-cycle adjustment for low-current (<1 A) applications because it offers more tolerance for current-measurement offset errors.

Figure 8-21. Closed-Loop Control Commutation-Adjustment Mode

8.4.6.2 Analog-Mode Speed Control

The SPEED input pin can be configured to operate as an analog input (SpdCtrlMd = 0).

When configured for analog mode, the voltage range on the SPEED pin can be varied from 0 to V3P3. If SPEED > V_{ANA FS}, the speed command is maximum. If V_{ANA ZS} \leq SPEED < V_{ANA FS} the speed command changes linearly according to the magnitude of the voltage applied at the SPEED pin. If SPEED < V_{ANA} zs the speed command is to stop the motor. Figure 8-22 shows the speed command when operating in analog mode.

Figure 8-22. Analog-Mode Speed Command

8.4.6.3 Digital PWM-Input-Mode Speed Control

If SpdCtrlMd = 1, the SPEED input pin is configured to operate as a PWM-encoded digital input. The PWM duty cycle applied to the SPEED pin can be varied from 0 to 100%. The speed command is proportional to the PWM

input duty cycle. The speed command stops the motor when the PWM input keeps at 0 for $t_{EN-SL-SB}$ (see Figure 8-23).

The frequency of the PWM input signal applied to the SPEED pin is defined as f_{PWM} . This is the frequency the device can accept to control motor speed. It does not correspond to the PWM output frequency that is applied to the motor phase. The PWM output frequency can be configured to be either 25 kHz when the PWMFreq bit is set to 0 or to 50 kHz when PWMFreq bit is set to 1.

Figure 8-23. PWM-Mode Speed Command

8.4.6.4 I2C-Mode Speed Control

The DRV10982-Q1 device can also command the speed through the I^2C serial interface. To enable this feature, the OverRide bit is set to 1. When the DRV10982-Q1 device is configured to operate in I²C mode, it ignores the signal applied to the SPEED pin.

The speed command can be set by writing the SpdCtrl[8:0] bits. The 9-bit SpdCtrl [8:0] located in the SpeedCtrl registers is used to set the peak amplitude voltage applied to the motor. The maximum speed command is set when SpdCtrl [8:0] is set to 0x1FF (511).

8.4.6.5 Closed-Loop Accelerate

To prevent sudden changes in the torque applied to the motor which could result in acoustic noise, the DRV10982-Q1 device provides the option of limiting the maximum rate at which the speed command changes. ClsLpAccel[2:0] can be programmed to set the maximum rate at which the speed command changes (shown in Figure 8-24).

Figure 8-24. Closed Loop Accelerate

8.4.6.6 Control Coefficient

The DRV10982-Q1 device continuously measures the motor current and uses this information to control the drive state of the motor when operating in closed-loop mode. In applications where noise makes it difficult to control the commutation optimally, the CtrlCoef[1:0] can be used to attenuate the feedback used for closed-loop control. The loop is less reactive to the noise on the feedback and provides for a smoother output.

8.4.6.7 Commutation Control Advance Angle

To achieve the best efficiency, it is often desirable to control the drive state of the motor so that the motor phase current is aligned with the motor BEMF voltage.

BEMF.

achieved.

Figure 8-25. Advance Time (tadv) Definition

Mode 0: t_{adv} is maintained to be a fixed time relative to the estimated BEMF zero cross as determined by Equation 5.

 $t_{\text{adv}} = t_{\text{SETTING}}$ (5)

Mode 1: t_{adv} is maintained to be a variable time relative to the estimated BEMF zero cross as determined by Equation 6.

$$
t_{\text{adv}} = t_{\text{SETTING}} \times (U - \text{BEMF}) / U. \tag{6}
$$

where

- U is the phase voltage amplitude
- BEMF is phase BEMF amplitude

t_{SETTING} (in µs) is determined by the configuration of the TCtrlAdvShift [2:0] and TCtrlAdvValue [3:0] bits as defined in Equation 7. For convenience, the available $t_{SETTING}$ values are provided in [Table 8-6](#page-36-0).

$$
t_{\text{SETTING}} = 2.5 \text{ }\mu\text{s} \times \text{[TCtrlAdvValue[3:0]]} << \text{TCtrlAdvShift[2:0]}
$$
\n
$$
\tag{7}
$$

To align the motor phase current with the motor BEMF voltage, consider the inductive effect of the motor. The voltage applied to the motor should be applied in advance of the motor BEMF voltage (see Figure 8-25). The DRV10982-Q1 device provides configuration bits for controlling the time (t_{adv}) between the driving voltage and

Table 8-6. Configuring Commutation Advance Timing by Adjusting t

8.4.7 Current Limit

The DRV10982-Q1 device has several current-limit modes to help ensure optimal control of the motor and to ensure safe operation. The various current-limit modes are listed in Table 8-7. Acceleration current limit is used to provide a means of controlling the amount of current delivered to the motor. This is useful when the system needs to limit the amount of current pulled from the power supply during motor start-up. The lock-detection current limit is a configurable threshold that can be used to limit the current applied to the motor. Overcurrent protection is used to protect the device; therefore, it cannot be disabled or configured to a different threshold. The current-limit modes are described in the following sections.

Table 8-7. DRV10982-Q1 Current-Limit Modes

8.4.7.1 Acceleration Current Limit

The acceleration current limit limits the voltage applied to the motor to prevent the current from exceeding the programmed threshold. The acceleration current limit threshold is configured by writing the SWiLimitThr[3:0] bits to select I_{LIMIT}. The acceleration current limit does not use a direct measurement of current. It uses the

programmed motor phase resistance, R_{PH CT}, and programmed BEMF constant, Kt, to limit the voltage applied to the motor, U, as shown in Figure 8-26 and Equation 8.

When the acceleration current limit is active, it does not stop the motor from spinning nor does it trigger a fault. The functionality of the acceleration current limit is only available in closed-loop control.

Figure 8-26. Acceleration Current Limit

 $U_{LIMIT} = I_{LIMIT} \times R_{PHCT} + Speed \times Kt$ (8)

8.4.8 Lock Detect and Fault Handling

The DRV10982-Q1 device provides several options for determining if the motor becomes locked as a result of some external torque. Five lock-detect schemes work together to ensure the lock condition is detected quickly and reliably. [Figure 8-27](#page-38-0) shows the logic which integrates the various lock-detect schemes. When a lock condition is detected, the DRV10982-Q1 device takes action to prevent continuously driving the motor in order to prevent damage to the system or the motor.

In addition to detecting if there is a locked motor condition, the DRV10982-Q1 device also identifies and takes action if there is no motor connected to the system.

Each of the five lock-detect schemes and the no-motor detection can be disabled by respective register bits LockEn[5:0].

When a lock condition is detected, the FaultReg register provides an indication of which of the six different conditions was detected on Lock5 to Lock0. These bits are reset when the motor restarts. The bits in the FaultReg register are set even if the lock detect scheme is disabled.

The DRV10982-Q1 device reacts to either locked-rotor or no-motor-connected conditions by putting the output drivers into a high-impedance state. To prevent the energy in the motor from pumping the supply voltage, the DRV10982-Q1 device incorporates an anti-voltage-surge (AVS) process whenever the output stages transition into the high-impedance state. The AVS function is described in *[Section 8.4.9](#page-40-0)*. After entering the high-impedance state as a result of a fault condition, the system tries to restart after $t_{\text{LOCK-OFF}}$.

Copyright © 2017, Texas Instruments Incorporated

Figure 8-27. Lock Detect and Fault Diagnose

8.4.8.1 Lock0: Lock-Detection Current Limit Triggered

The lock-detection current-limit function provides a configurable threshold for limiting the current to prevent damage to the system. This is often tripped in the event of a sudden locked-rotor condition. The DRV10982-Q1 device continuously monitors the current in the low-side drivers as shown in Figure 8-28. If the current goes higher than the threshold configured by the HWiLimitThr[2:0] bits, then the DRV10982-Q1 device stops driving the motor by placing the output phases into a high-impedance state. The Lock0 bit is set and a lock condition is reported. It retries after t_{LOCK} OFF.

Set the lock-detection current limit to a higher value than the acceleration current limit.

Figure 8-28. Lock-Detection Current Limit

8.4.8.2 Lock1: Abnormal Speed

If the motor is operating normally, the motor BEMF should always be less than the output amplitude. The DRV10982-Q1 device uses two methods of monitoring the BEMF in the system. The U phase current is monitored to maintain an estimate of BEMF based on the setting for Rm[6:0] {RmShift[2:0],RmValue[3:0]}. In addition, the BEMF is estimated based on the operation speed of the motor and the setting for Kt[6:0] {KtShift[2:0],KtValue[3:0]}. [Figure 8-29](#page-39-0) shows the method for using this information to detect a lock condition. If the motor BEMF is much higher than the output amplitude for a certain period of time, t_{LCKETR} , it means the estimated speed is wrong, and the motor has gotten out of phase.

Lock Detected If BEMF2 $>$ V_U Copyright © 2017, Texas Instruments Incorporated

Figure 8-29. Lock Detection 1

8.4.8.3 Lock2: Abnormal Kt

For any given motor, the integrated value of BEMF during half of an electrical cycle is constant. The value is determined by the BEMF constant (Kt_{PH}) (see Figure 8-30). The BEMF constant is the same regardless of whether the motor is running fast or slow. This constant value is continuously monitored by calculation and used as a criterion to determine the motor lock condition, and is referred to as Ktc.

Based on the Kt_{PH} value programmed, create a range from Kt_low to Kt_high. If Ktc goes beyond the range for a certain period of time, t_{LCK ETR}, lock is detected. Kt_low and Kt_high are determined by KtLckThr[1:0] (see Figure 8-31).

Figure 8-31. Abnormal-Kt Lock Detect

8.4.8.4 Lock3 (Fault3): No-Motor Fault

The phase U current is checked after transitioning from open loop to closed loop. If phase U current is not greater than 140 mA then the motor is not connected as shown in [Figure 8-32](#page-40-0). This condition is treated and reported as a fault.

Figure 8-32. No Motor Error

8.4.8.5 Lock4: Open-Loop Motor-Stuck Lock

Lock4 is used to detect locked-motor conditions while the motor start sequence is in open loop.

For a successful startup, motor speed should be equal to the open-to-closed-loop handoff threshold when the motor is transitioning into closed loop. However, if the motor is locked, the motor speed is not able to match the open-loop drive rate.

If the motor BEMF is not detected for one electrical cycle after the open-loop drive rate exceeds the threshold, then the open loop was unsuccessful as a result of a locked-rotor condition.

8.4.8.6 Lock5: Closed Loop Motor Stuck Lock

If the motor suddenly becomes locked, motor speed and Ktc are not able to be refreshed because the BEMF zero cross of the motor may not appear after the lock. In this condition, lock can also be detected by the following scheme: if the current commutation period is 2× longer than the previous period.

8.4.9 Anti Voltage Suppression Function

When a motor is driven, energy is transferred from the power supply into the motor. Some of this energy is stored in the form of inductive energy or as mechanical energy. The DRV10982-Q1 device includes circuits to prevent this energy from being returned to the power supply, which could result in pumping up the V_{CC} voltage. This function is referred to as the AVS and acts to protect the DRV10982-Q1 device as well as other circuits that share the same V_{CC} connection. Two forms of AVS protection are used to prevent both the mechanical energy and the inductive energy from being returned to the supply. Each of these modes can be independently disabled through the register configuration bits AVSMEn and AVSIndEn.

8.4.9.1 Mechanical AVS Function

If the speed command suddenly drops such that the BEMF voltage generated by the motor is greater than the voltage that is applied to the motor, then the mechanical energy of the motor is returned to the power supply and the V_{CC} voltage surges. The mechanical AVS function works to prevent this from happening. The DRV10982-Q1 device buffers the speed command value and limits the resulting output voltage, U_{MIN} , so that it is not less than the BEMF voltage of the motor. The BEMF voltage in the mechanical AVS function is determined using the programmed value for the motor Kt (Kt[6:0]) along with the speed. Figure 8-33 shows the criteria used by the mechanical AVS function.

 $V_{\text{U}~\text{MIN}}$ = BEMF + I_{MIN} \times Rm = BEMF Copyright © 2017, Texas Instruments Incorporated

Figure 8-33. Mechanical AVS

The mechanical AVS function can operate in one of two modes, which can be configured by the register bit AVSMMd:

AVSMMd = $0 -$ AVS mode is always active to prevent the applied voltage from being less than the BEMF voltage.

AVSMMd = 1 – AVS mode becomes active when V_{CC} reaches 24 V. The motor acts as a generator and returns energy into the power supply until V_{CC} reaches 24 V. This mode can be used to enable faster deceleration of the motor in applications where returning energy to the power supply is allowed.

8.4.9.2 Inductive AVS Function

When the DRV10982-Q1 device transitions from driving the motor into a high-impedance state, the inductive current in the motor windings continues to flow and the energy returns to the power supply through the intrinsic body diodes in the FET output stage (see Figure 8-34).

Figure 8-34. Inductive-Mode Voltage Surge

To prevent the inductive energy from being returned to the power supply, the DRV10982-Q1 system transitions from driving to a high-impedance state by first turning OFF the active high-side drivers, and turning ON all lowside drivers. The DRV10982-Q1 device monitors phase current after entering the BRAKE state and transitions into the high-impedance state when the amplitude of the phase current is less than BrkCurThrSel for a fixed period of time (BrkDoneThr[2:0])(see Figure 8-35).

Figure 8-35. Inductive AVS

In this example, current is applied to the motor through the high-side driver on phase U (S1) and returned through the low-side driver on phase W (S6). The high-side driver on phase U is turned off and after a period of time (to allow the inductive energy in the resulting LR circuit to decay) the low-side driver on phase W is turned off. If BrkDoneThr[2:0] = 000, no brake will be applied and the device will not protect from inductive energy even with the inductive AVS feature enabled.

8.4.10 PWM Output

The DRV10982-Q1 device has 32 options for PWM dead time. These options can be used to configure the time between one of the bridge FETs turning off and the complementary FET turning on. Deadtime[4:0] can be used to configure dead times between 40 and 1280 ns. Take care that the dead time is long enough to prevent the bridge FETs from shooting through.

The DRV10982-Q1 device offers two options for PWM switching frequency. When the configuration bit PWMFreq is set to 0, the output PWM frequency is 25 kHz, and when PWMFreq is set to 1, the output PWM frequency is 50 kHz.

8.4.11 FG Customized Configuration

The DRV10982-Q1 device provides information about the motor speed through the *frequency generate* (FG) pin. FG also provides information about the driving state of the DRV10982-Q1 device.

8.4.11.1 FG Output Frequency

The FG output frequency can be configured by FGcycle[3:0]. The default FG toggles once every electrical cycle (FGcycle = 0000). Many applications configure the FG output so that it provides two pulses for every mechanical rotation of the motor. The configuration bits provided in the DRV10982-Q1 device can accomplish this for 2-pole,

4-pole, 6-pole, and 8-pole motors up to 32-pole motors. This is illustrated in Figure 8-36 for 2, 4, 6, and 8-pole motors.

Figure 8-36 shows the DRV10982-Q1 device has been configured to provide FG pulses once every electrical cycle (4 poles), twice every three electrical cycles (6 poles), once every two electrical cycles (8 poles), and once every three electrical cycles (12 poles).

Note that when it is set to two FG pulses every three electrical cycles, the FG output is not 50% duty cycle. Motor speed is able to be measured by monitoring the rising edge of the FG output.

Figure 8-36. FG Frequency Divider

8.4.11.2 FG Open Loop and Lock Behavior

Note that the FG output reflects the driving state of the motor. During normal closed-loop behavior, the driving state and the actual state of the motor are synchronized. During open-loop acceleration, however, this may not reflect the actual motor speed. During a locked-motor condition, the FG output is driven high.

The DRV10982-Q1 device provides three options for controlling the FG output during open loop, as shown in [Figure 8-37.](#page-43-0) The selection of these options is determined by the FGOLSel[1:0] setting.

- Option0: Open-loop, FG output based on driving frequency
- Option1: Open-loop, no FG output (keep high)
- Option2: FG output based on driving frequency at the first power-on startup, and no FG output (keep high) for any subsequent restarts

Figure 8-37. FG Behavior During Open Loop

8.4.12 Diagnostics and Visibility

The DRV10982-Q1 device offers extensive visibility into the motor system operation conditions stored in internal registers. This information can be monitored through the I2C interface. Information can be monitored relating to the device status, motor speed, supply voltage, speed command, motor phase-voltage amplitude, fault status, and others. The data is updated on the fly.

8.4.12.1 Motor-Status Readback

The motor FaultReg register provides information on overtemperature (OverTemp), overcurrent (OverCurr), and locked rotor (Lock0–Lock5).

8.4.12.2 Motor-Speed Readback

The motor operation speed is automatically updated in register MotorSpeed while the motor is spinning. The value is determined by the period for calculated BEMF zero crossings on phase U. The electrical speed of the motor is denoted as *Velocity (Hz)* and is calculated as shown in Equation 9.

 $\text{Velocity (Hz)} = \{\text{MotorSpeed}\}\ \text{/ 10}\tag{9}$

As an example consider the following:

MotorSpeed = 0x01FF;

Velocity = 512 (0x01FF) / 10 = 51 Hz

For a 4-pole motor, this translates to: 51 $\frac{e\text{cycles}}{\text{second}} \times \frac{1}{2} \frac{\text{mechcycle}}{\text{cycle}} \times 60 \frac{\text{second}}{\text{minute}} = 1530 \text{ RPM}$ $x - \frac{60}{x} \times 60$

8.4.12.3 Motor Electrical-Period Readback

The motor-operation electrical period is automatically updated in register MotorPeriod while the motor is spinning. The electrical period is measured as the time between calculated BEMF zero crossings for phase U. The electrical period of the motor is denoted as $t_{ELE-PERIOD}$ (µs) and is calculated as shown in Equation 10.

 $t_{\text{ELE PERIOD}}$ (µs) = {MotorPeriod} × 10 (10)

As an example consider the following:

MotorPeriod = 0x01FF;

 $t_{\text{FI F}}$ p_{ERIOD} = 512 (0x01FF) × 10 = 5120 µs

The motor electrical period and motor speed satisfies the condition of Equation 11.

 t_{ELE} ϵ_{ERIOD} (s) × Velocity (Hz) = 1 (11)

8.4.12.4 BEMF Constant Read Back

For any given motor, the integrated value of BEMF during half of an electronic cycle is a constant, Ktc (see *[Section 8.4.8.3](#page-39-0)*).

The integration of the motor BEMF is processed periodically (updated every electrical cycle) while the motor is spinning. The result is stored in register MotorKt.

The relationship is shown in Equation 12.

Ktc (V/Hz) = {MotorKt} / 2 / 1090 (12)

8.4.12.5 Motor Estimated Position by IPD

After inductive sense is executed, the rotor position is detected within 60 electrical degrees of resolution. The position is stored in register IPDPosition.

The value stored in IPDPosition corresponds to one of the six motor positions plus the IPD advance angle as shown in Table 8-8. For more information about IPD, see *[Section 8.4.3.5.2](#page-28-0)*.

Table 8-8. IPD Position Read Back

8.4.12.6 Supply-Voltage Readback

The power supply is monitored periodically during motor operation. This information is available in register SupplyVoltage. The power supply voltage is recorded as shown in Equation 13.

 $V_{\text{POWERSUPPLY}}(V) = \text{Supply Voltage} \times 30 \text{ V} / 256$ (13)

8.4.12.7 Speed-Command Readback

The DRV10982-Q1 device converts the various types of speed command into a speed command value (SpeedCmd) as shown in Figure 8-38. By reading SpeedCmd, the user can observe PWM input duty (PWM digital mode), analog voltage (analog mode), or l^2C data (l^2C mode). This value is calculated as shown in Equation 14.

Equation 14 shows how the speed command as a percentage can be calculated and set in SpeedCmd.

 $Duty_{SPEED}$ (%) = SpeedCmd × 100 / 255 (14)

where

- Duty $_{SPFFD}$ = Speed command as a percentage
- SpeedCmd = Register value

8.4.12.8 Speed-Command Buffer Readback

If acceleration current limit and AVS are enabled, the PWM duty cycle output (read back at spdCmdBuffer) may not always match the input command (read back at SpeedCmd) shown in Figure 8-38. See *[Section 8.4.9](#page-40-0)* and *[Section 8.4.7](#page-36-0)*.

By reading the value of spdCmdBuffer, the user can observe buffered speed command (output PWM duty cycle) to the motor.

Equation 15 shows how the buffered speed is calculated.

$$
DutyOUTPUT (%) = spdCmdBuffer × 100 / 255
$$
\n(15)

where

- Duty_{OUTPUT} = The maximum duty cycle of the output PWM, which represents the output amplitude in percentage.
- spdCmdBuffer = Register value

Figure 8-38. SpeedCmd and spdCmdBuffer Registers

8.4.12.9 Fault Diagnostics

See *[Section 8.4.8](#page-37-0)*.

8.5 Register Maps

8.5.1 I2C Serial Interface

The DRV10982-Q1 device provides an 1^2C slave interface with slave address 101 0010. TI recommends a pullup resistor of 4.7 kΩ to 3.3 V for I²C interface ports SCL and SDA. The protocol for the I²C interface is given in Figure 8-39.

Figure 8-39. I2C Protocol

Seven read/write registers (0x30:0x36) are used to set motor speed and control device registers and EEPROM. Device operation status can be read back through nine read-only registers (0x0:0x08). Another seven EEPROM registers (0x90:0x96) can be accessed to program motor parameters and optimize the spin-up profile for the application.

8.5.2 Register Map

[DRV10982-Q1](https://www.ti.com/product/DRV10982-Q1)

(1) Read only
(2) Fault Regis
(3) R/W
(4) EEPROM (2) Fault Register requires 0xFF to be written to the register to clear the bits.

(3) R/W

EEPROM

Table 8-9. Default EEPROM Values

8.5.3 Register Descriptions

Table 8-10. Access Type Codes

8.5.3.1 FaultReg Register (address = 0x00) [reset = 0x00]

Figure 8-37. FaultReg Register

Table 8-11. FaultReg Register Field Descriptions

Table 8-11. FaultReg Register Field Descriptions (continued)

8.5.3.2 MotorSpeed Register (address = 0x01) [reset = 0x00]

Figure 8-38. MotorSpeed Register

Table 8-12. MotorSpeed Register Field Descriptions

8.5.3.3 MotorPeriod Register (address = 0x02) [reset = 0x00]

Figure 8-39. MotorPeriod Register

Table 8-13. MotorPeriod Register Field Descriptions

8.5.3.4 MotorKt Register (address = 0x03) [reset = 0x00]

Table 8-14. MotorKt Register Field Descriptions

8.5.3.5 MotorCurrent Register (address = 0x04) [reset = 0x00]

Figure 8-41. MotorCurrent Register

Table 8-15. MotorCurrent Register Field Descriptions

8.5.3.6 IPDPosition–SupplyVoltage Register (address = 0x05) [reset = 0x00]

Figure 8-42. IPDPosition–SupplyVoltage Register

Table 8-16. IPDPosition–SupplyVoltage Register Field Descriptions

Table 8-16. IPDPosition–SupplyVoltage Register Field Descriptions (continued)

8.5.3.7 SpeedCmd–spdCmdBuffer Register (address = 0x06) [reset = 0x00]

Figure 8-43. SpeedCmd–spdCmdBuffer Register

Table 8-17. SpeedCmd–spdCmdBuffer Register Field Descriptions

8.5.3.8 AnalogInLvl Register (address = 0x07) [reset = 0x00]

Figure 8-44. AnalogInLvl Register

Table 8-18. AnalogInLvl Register Field Descriptions

8.5.3.9 DeviceID–RevisionID Register (address = 0x08) [reset = 0x00]

0000 0001 \rightarrow REV B

8.5.3.10 DeviceID–RevisionID Register (address = 0x08) [reset = 0x00]

Table 8-20. DeviceID–RevisionID Register Field Descriptions

8.5.3.11 Unused Registers (addresses = 0x011 Through 0x2F)

Registers 0x09 through 0x2F are not used.

8.5.3.12 SpeedCtrl Register (address = 0x30) [reset = 0x00]

Figure 8-47. SpeedCtrl Register

Table 8-21. SpeedCtrl Register Field Descriptions

8.5.3.13 EEPROM Programming1 Register (address = 0x31) [reset = 0x00]

Table 8-22. EEPROM Programming1 Register Field Descriptions

8.5.3.14 EEPROM Programming2 Register (address = 0x32) [reset = 0x00]

Figure 8-49. EEPROM Programming2 Register

Table 8-23. EEPROM Programming2 Register Field Descriptions

8.5.3.15 EEPROM Programming3 Register (address = 0x33) [reset = 0x00]

Figure 8-50. EEPROM Programming3 Register

Table 8-24. EEPROM Programming3 Register Field Descriptions

Table 8-24. EEPROM Programming3 Register Field Descriptions (continued)

8.5.3.16 EEPROM Programming4 Register (address = 0x34) [reset = 0x00]

Figure 8-51. EEPROM Programming4 Register

Table 8-25. EEPROM Programming4 Register Field Descriptions

8.5.3.17 EEPROM Programming5 Register (address = 0x35) [reset = 0x00]

Figure 8-52. EEPROM Programming5 Register

Table 8-26. EEPROM Programming5 Register Field Descriptions

Table 8-26. EEPROM Programming5 Register Field Descriptions (continued)

8.5.3.18 EEPROM Programming6 Register (address = 0x36) [reset = 0x00]

Figure 8-53. EEPROM Programming6 Register

Table 8-27. EEPROM Programming6 Register Field Descriptions

8.5.3.19 Unused Registers (addresses = 0x37 Through 0x5F)

Registers 0x37 through 0x5F are not used.

8.5.3.20 EECTRL Register (address = 0x60) [reset = 0x00]

Figure 8-54. EECTRL Register

Table 8-28. EECTRL Register Field Descriptions

8.5.3.21 Unused Registers (addresses = 0x61 Through 0x8F)

Registers 0x61 through 0x8F are not used.

8.5.3.22 CONFIG1 Register (address = 0x90) [reset = 0x00]

Table 8-29. CONFIG1 Register Field Descriptions

8.5.3.23 CONFIG2 Register (address = 0x91) [reset = 0x00]

Figure 8-56. CONFIG2 Register

Texas **NSTRUMENTS**

Table 8-30. CONFIG2 Register Field Descriptions

8.5.3.24 CONFIG3 Register (address = 0x92) [reset = 0x00]

Figure 8-57. CONFIG3 Register

Table 8-31. CONFIG3 Register Field Descriptions

Table 8-31. CONFIG3 Register Field Descriptions (continued)

8.5.3.25 CONFIG4 Register (address = 0x93) [reset = 0x00]

Figure 8-58. CONFIG4 Register

[DRV10982-Q1](https://www.ti.com/product/DRV10982-Q1)

Table 8-32. CONFIG4 Register Field Descriptions

8.5.3.26 CONFIG5 Register (address = 0x94) [reset = 0x00]

Table 8-33. CONFIG5 Register Field Descriptions

8.5.3.27 CONFIG6 Register (address = 0x95) [reset = 0x00]

Table 8-34. CONFIG6 Register Field Descriptions

8.5.3.28 CONFIG7 Register (address = 0x96) [reset = 0x00]

Table 8-35. CONFIG7 Register Field Descriptions

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The DRV10982-Q1 device is used in sensorless 3-phase BLDC motor control. The driver provides a highperformance, high-reliability, flexible, and simple solution for appliance fan, pump, and HVAC applications. The following design shows a common application of the DRV10982-Q1 device.

9.2 Typical Application

Figure 9-1. Typical Application Schematic

9.2.1 Design Requirements

[Table 9-1](#page-64-0) provides design input parameters and motor parameters for system design.

Table 9-1. Recommended Application Range

Table 9-2. External Components

9.2.2 Detailed Design Procedure

- 1. See the *[Section 9.2.1](#page-63-0)* section and make sure your system meets the recommended application range.
- 2. See the *[DRV10983-Q1 Tuning Guide](https://www.ti.com/lit/pdf/SLVUAV9)* and measure the motor parameters.
- 3. See the *[DRV10983-Q1 Tuning Guide](https://www.ti.com/lit/pdf/SLVUAV9)*. Configure the parameters using the DRV10983-Q1 GUI, and optimize the motor operation. The *Tuning Guide* takes the user through all the configurations step by step, including: start-up operation, closed-loop operation, current control, initial positioning, lock detection, and anti-voltage surge.
- 4. Build your hardware based on *[Section 11.1](#page-66-0)* .
- 5. Connect the device into a system and validate your system solution.

9.2.3 Application Curves

10 Power Supply Recommendations

The DRV10982-Q1 device is designed to operate from an input voltage supply, V_{CC} , in a range between 8 V and 28 V. The user must place a 10-µF ceramic capacitor rated for V_{CC} as close as possible to the V_{CC} and GND pins.

If the power supply ripple is more than 200 mV, in addition to the local decoupling capacitors, a bulk capacitance is required and must be sized according to the application requirements. If the bulk capacitance is implemented in the application, the user can reduce the value of the local ceramic capacitor to $1 \mu F$.

11 Layout

11.1 Layout Guidelines

- Place the V_{CC}, GND, U, V, and W pins with thick traces because high current passes through these traces.
• Place the 10-UE capacitor between V_{oo} and GND, and as close to the Voo and GND pins as possible
- Place the 10-µF capacitor between V_{CC} and GND, and as close to the V_{CC} and GND pins as possible.
• Place the capacitor between CPP and CPN, and as close to the CPP and CPN pins as possible.
- Place the capacitor between CPP and CPN, and as close to the CPP and CPN pins as possible.
- Connect the GND, PGND, and SWGND under the thermal pad.
- Keep the thermal pad connection as large as possible, on both the bottom side and top sides. It should be one piece of copper without any gaps.
- If EEPROM is programmed, it is okay to leave SCL and SDA floating.

11.2 Layout Example

Figure 11-1. Layout Diagram

12 Device and Documentation Support

12.1 Trademarks

PowerPAD™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

PACKAGE OUTLINE

PWP0024J PowerPAD™TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
_ exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.
5. Features may differ or may n

-
-

EXAMPLE BOARD LAYOUT

PWP0024J PowerPAD™TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
-
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments liter
-
- 9. Size of metal pad may vary due to creepage requirement. 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

PWP0024J PowerPAD™TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 12. Board assembly site may have different recommendations for stencil design.

13.1 Package Option Addendum

PACKAGING INFORMATION

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures. "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 12-Nov-2021

PACKAGE MATERIALS INFORMATION

TEXAS NSTRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

PACKAGE MATERIALS INFORMATION

www.ti.com 13-Nov-2021

*All dimensions are nominal

GENERIC PACKAGE VIEW

PWP 24 PWP 24 PowerPAD[™] TSSOP - 1.2 mm max height

4.4 x 7.6, 0.65 mm pitch PLASTIC SMALL OUTLINE

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PACKAGE OUTLINE

PWP0024J PowerPAD[™] TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. Reference JEDEC registration MO-153.
- 5. Features may differ or may not be present.

EXAMPLE BOARD LAYOUT

PWP0024J PowerPAD[™] TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

PWP0024J PowerPAD[™] TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on [ti.com](https://www.ti.com) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated