

© 1999 Fairchild Semiconductor Corporation DS010637.prf

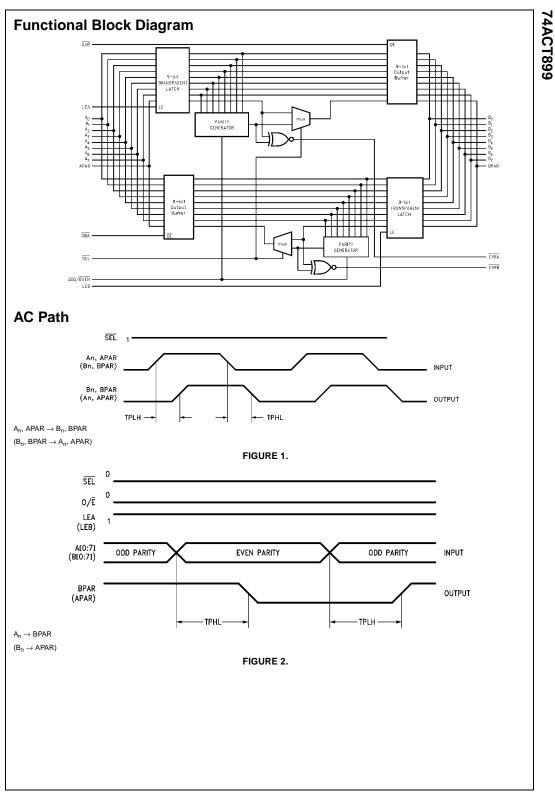
www.fairchildsemi.com

Pin Descriptions

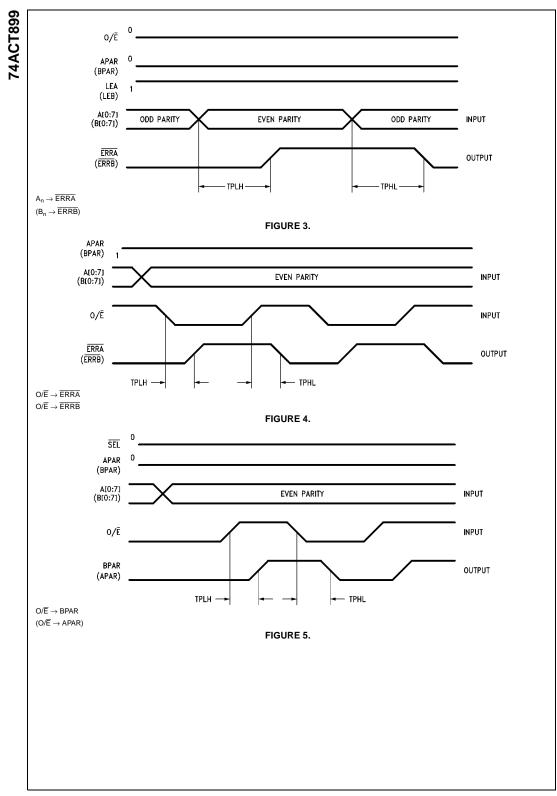
Pin Names	Description
A ₀ -A ₇	A Bus Data Inputs/Data Outputs
B ₀ -B ₇	B Bus Data Inputs/Data Outputs
APAR, BPAR	A and B Bus Parity Inputs
ODD/EVEN	ODD/EVEN Parity Select, Active LOW for EVEN Parity
GBA, GAB	Output Enables for A or B Bus, Active LOW
SEL	Select Pin for Feed-Through or Generate Mode, LOW for Generate Mode
LEA, LEB	Latch Enables for A and B Latches, HIGH for Transparent Mode
ERRA, ERRB	Error Signals for Checking Generated Parity with Parity In, LOW if Error Occurs

Functional Description

The ACT899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B-to-A directions.

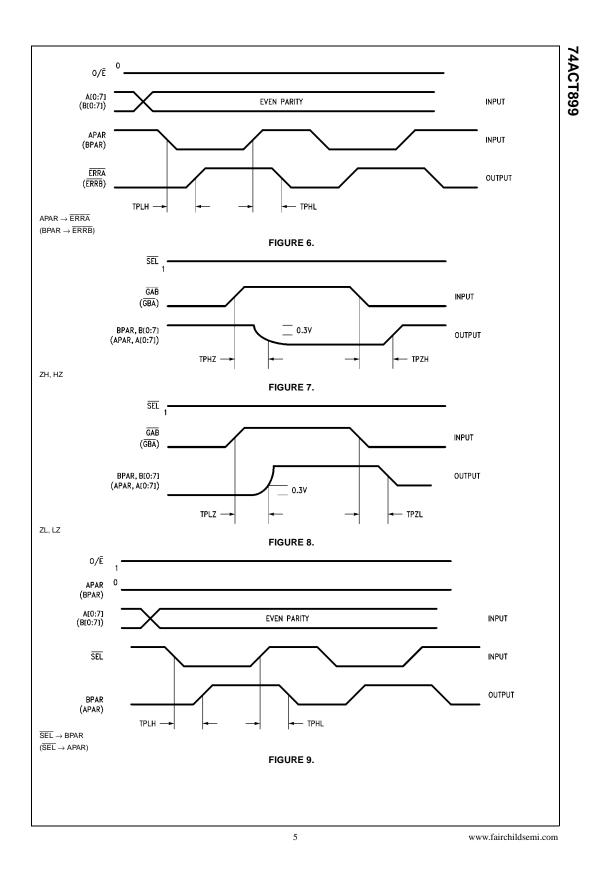

- Bus A (B) communicates to Bus B (A), parity is generated and passed on to the B (A) Bus as BPAR (APAR). If LEB (LEA) is HIGH and the Mode Select (SEL) is LOW, the parity generated from B[0:7] (A[0:7]) can be checked and monitored by ERRB (ERRA).
- Bus A (B) communicates to Bus B (A) in a feed-through mode if <u>SEL</u> is HIGH. Parity is still generated and checked as <u>ERRA</u> and <u>ERRB</u> in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU).
- Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table).

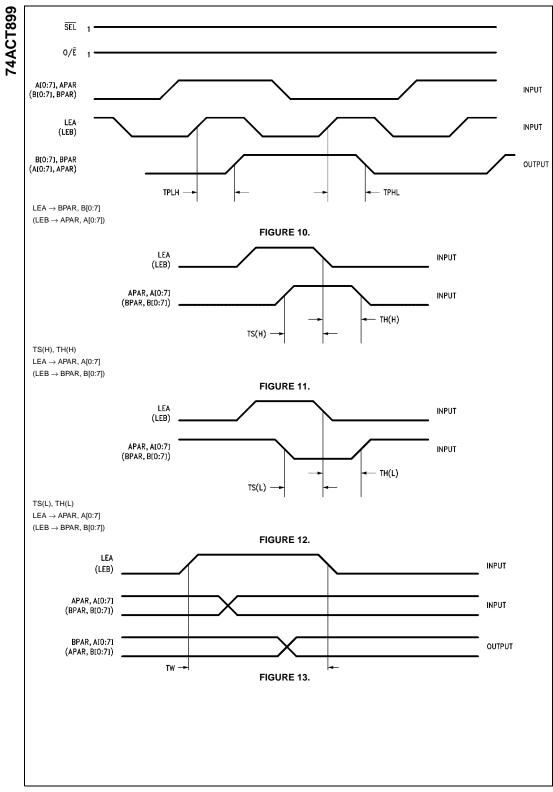
Inputs			i		Operation				
GAB	GBA	SEL	LEA	LEB					
Н	Н	Х	Х	Х	Busses A and B are 3-STATE.				
Η	L	L	L	Н	Generates parity from B[0:7] based on O/E (Note 1). Generated parity \rightarrow APAR. Generated parity checked against BPAR and output as ERRB.				
Η	L	L	Н	Н	Generates parity from B[0:7] based on O/ \overline{E} . Generated parity \rightarrow APAR. Generated parity checked against BPAR and output as \overline{ERRB} . Generated parity also fed back through the A latch for generate/check as \overline{ERRA} .				
Н	L	L	Х	L	Generates parity from B latch data based on O/E. Generated parity \rightarrow APAR. Generated parity checked against latched BPAR and output as ERRB.				
Н	L	Η	Х	Н	BPAR/B[0:7] \rightarrow APAR/A0:7] Feed-through mode. Generated parity checked against BPAR and output as ERRB.				
Н	L	Н	н	н	$BPAR/B[0:7] \to APAR/A[0:7]$				
					Feed-through mode. Generated parity checked against BPAR and output as $\overline{\text{ERRB}}$ Generated parity also fed back through the A latch for generate/check as $\overline{\text{ERRA}}$.				
L	Н	L	Н	L	Generates parity for A[0:7] based on O/\overline{E} . Generated parity \rightarrow BPAR. Generated parity checked against APAR and output as \overline{ERRA} .				
L	Н	L	Н	Н	Generates parity from A[0:7] based on O/E. Generated parity \rightarrow BPAR. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.				
L	Η	L	L	Х	Generates parity from A latch data based on O/E. Generated parity \rightarrow BPAR. Generated parity checked against latched APAR and output as ERRA .				
L	Н	Н	н	L	$APAR/A[0:7] \rightarrow BPAR/B[0:7]$				
					Feed-through mode. Generated parity checked against APAR and output as ERRA				
L	Н	Н	Н	н	$APAR/A[0:7] \rightarrow BPAR/B[0:7]$				
					Feed-through mode. Generated parity checked against APAR and output as $\overline{\text{ERRA}}$ Generated parity also fed back through the B latch for generate/check as $\overline{\text{ERRB}}$.				


H = HIGH Voltage Level L = LOW Voltage Level

L = LOW Voltage Level X = Immaterial

Note 1: O/E = ODD/EVEN




www.fairchildsemi.com

www.fairchildsemi.com

4

www.fairchildsemi.com

6

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V	
DC Input Diode Current (I _{IK})		F
$V_{I} = -0.5V$	–20 mA	(
$V_I = V_{CC} + 0.5V$	+20 mA	
DC Input Voltage (VI)	$-0.5 V$ to $V_{CC} + 0.5 V$	
DC Output Diode Current (I _{OK})		
$V_{O} = -0.5V$	–20 mA	
$V_O = V_{CC} + 0.5V$	+20 mA	
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$	
DC Output Source		
or Sink Current (I _O)	±50 mA	
DC V _{CC} or Ground Current		N to
per Output Pin (I _{CC} or I _{GND})	±50 mA	0
Storage Temperature (T _{STG})	-65°C to +150°C	S
DC Latch-Up Source or		

Sink Current Junction Temperature (T_J)

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate $\Delta V/\Delta t$	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

74ACT899

±300 mA 140°C

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C} \text{ to } +\textbf{85}^{\circ}\textbf{C}$	Units	Conditions	
		(V)	Тур	Gi	uaranteed Limits			
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	2.0	2.0		or $V_{CC} - 0.1V$	
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	0.8	0.8		or $V_{CC} - 0.1V$	
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
	Output Voltage	5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 3)	
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA	
	Output Voltage	5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		0.36	0.44	V	I _{OL} = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 3)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}, GND$	
	Leakage Current							
I _{OZ}	Maximum 3-STATE	5.5		±0.5	±5.0	μA	$V_I = V_{IL}, V_{IH}$	
	Leakage Current						$V_0 = V_{CC}$, GND	
ICCT	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 4)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		8.0	80.0	μA	$V_{IN} = V_{CC}$	
	Supply Current						or GND	

Note 3: Maximum of 9 outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

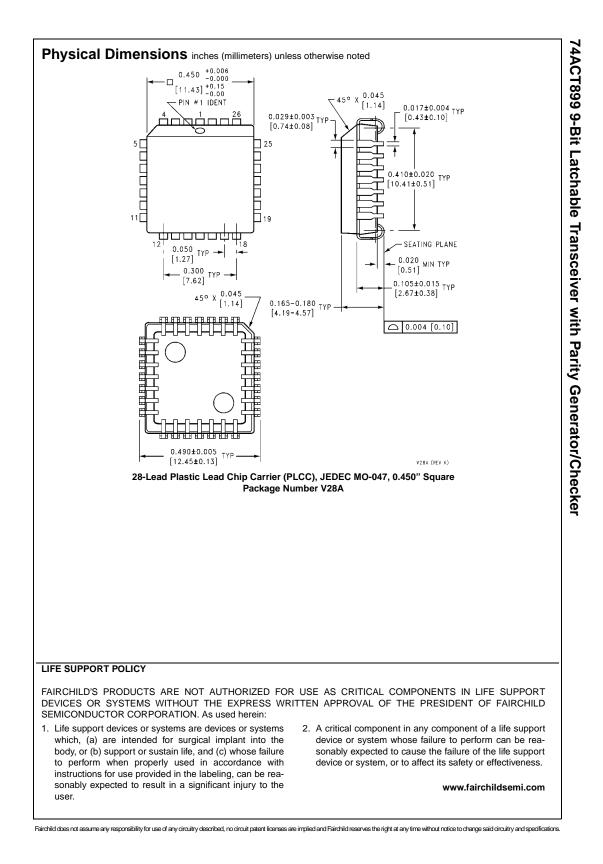
6
õ
ົບ
Ā
74

AC Electrical Characteristics

		V _{cc}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C		
Symbol	Parameter	(V)	C _L = 50 pF			$C_L = 50 \text{ pF}$		Units	Fig. No
		(Note 5)	Min	Тур	Max	Min	Max	-	-
t _{PLH}	Propagation Delay	5.0	2.5	7.5	11.5	2.5	12.0	ns	Figure 1
t _{PHL}	A _n , B _n to B _n , A _n								
t _{PLH}	Propagation Delay	5.0	1.5	6.0	8.5	1.5	9.0	ns	Figure 1
t _{PHL}	APAR, BPAR to BPAR, APAR								
t _{PLH}	Propagation Delay	5.0	2.5	8.5	12.0	2.5	12.5	ns	Figure 2
t _{PHL}	A _n , B _n to BPAR, APAR								
t _{PLH}	Propagation Delay	5.0	2.0	8.0	11.5	2.0	12.0	ns	Figure 3
t _{PHL}	A _n , B _n to ERRA, ERRB								
t _{PLH}	Propagation Delay	5.0	2.0	8.0	11.5	2.0	12.0	ns	Figure 4
t _{PHL}	ODD/EVEN to ERRA, ERRB								
t _{PLH}	Propagation Delay	5.0	2.5	8.0	11.5	2.5	12.0	ns	Figure 5
t _{PHL}	ODD/EVEN to APAR, BPAR								
t _{PLH}	Propagation Delay	5.0	1.5	7.5	10.5	1.5	11.5	ns	Figure 6
t _{PHL}	APAR, BPAR to ERRA, ERRB								
t _{PLH}	Propagation Delay	5.0	1.5	6.5	9.0	1.5	9.5	ns	Figure 9
t _{PHL}	SEL to APAR, BPAR								
t _{PLH}	Propagation Delay	5.0	2.5	7.0	10.5	2.5	11.0	ns	Figure 10
t _{PHL}	LEB to A _n , B _n								Figure 11
t _{PLH}	Propagation Delay	5.0	2.0	8.0	11.5	2.0	12.0	ns	Figure 10
t _{PHL}	LEA to APAR, BPAR								Figure 11
t _{PLH}	Propagation Delay	5.0	2.5	8.0	11.5	2.5	12.0	ns	Figure 12
t _{PHL}	LEA, LEB to ERRA, ERRB								
t _{PZH}	Output Enable Time	5.0	2.5	7.0	10.5	2.5	11.0	ns	Figure 7
t _{PZL}	$\overline{\text{GBA}}$ or $\overline{\text{GAB}}$ to A_n , B_n								Figure 8
t _{PZH}	Output Enable Time	5.0	1.5	6.0	9.0	1.5	9.5	ns	Figure 7
t _{PZL}	GBA or GAB to BPAR or APAR								Figure 8
t _{PHZ}	Output Disable Time	5.0	1.5	6.5	9.5	1.5	9.5	ns	Figure 7
t _{PHL}	$\overline{\text{GBA}}$ or $\overline{\text{GAB}}$ to A_n , B_n								Figure 8
t _{PHZ}	Output Disable Time	5.0	1.5	6.5	9.5	1.5	9.5	ns	Figure 7
t _{PLZ}	GBA or GAB to BPAR, APAR								Figure 8

Note 5: Voltage Range 5.0 is $5.0V \pm 0.5V$.

AC Operating Requirements


Symbol	Parameter	V _{cc} (V)	T _A = +25°C C _L = 50 pF	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$	Units	Fig. No.
		(Note 6)	Guarantee			
t _s	Setup Time, HIGH or LOW	5.0	3.0	3.0	ns	Figure 11
	A _n , B _n , PAR to LEA, LEB					Figure 12
t _H	Hold Time, HIGH or LOW	5.0	1.5	1.5	ns	Figure 11
	A _n , B _n , PAR to LEA, LEB					Figure 12
t _W	Pulse Width for LEB, LEA	5.0	4.0	4.0	ns	Figure 13

Note 6: Voltage Range $5.0 = 5.0V \pm 0.5V$.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	210	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com

