5x7mm Surface Mount Precision TCXO Model T602A

Description:

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com The Connor-Winfield T602A is a 5x7mm, 3.3V LVCMOS, Surface Mount, Temperature Compensated Crystal Oscillator (TCXO) designed for applications requiring $\pm 0.28ppm$ frequency stability over an extended temperature range of -40 to $105^{\circ}C$.

Features:

Model: T602A

- 3.3 Vdc Operation
- Frequency Stability: ± 0.28 ppm
- Temperature Range: -40 to 105°C
- LVCMOS Output Logic
- Ceramic Surface Mount Package
- Tape and Reel Packaging
- RoHS Compliant / Lead Free

Absolute Maximum Ratings

Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	105	°C	
Supply Voltage (Vcc)	-0.5	-	4.6	Vdc	

Operating Specifications						
Parameter	Minimum	Nominal	Maximum	Units	Notes	
Output Frequency (Fo)		10 and 24.576		MHz		
Operating Temperature Range	-40	-	105	°C		
Frequency Calibration @ 25 °C	-1.0	-	1.0	ppm	1	
Frequency Stability Per STRATUM	3 GR-1244-C	ORE				
Frequency vs Temperature	-0.28	-	0.28	ppm	2	
Holdover Stability	-0.32	-	0.32	ppm	3	
Constant Temperature Stabilit	y -40	-	40	ppb	Over 24 Hrs.	
Frequency vs. Load Stability	-0.05	-	0.05	ppm	±5%	
Frequency vs. Voltage Stability	-0.05	-	0.05	ppm	±5%	
Static Temperature Hysteresis	-	-	0.40	ppm	4	
Freq. shift after reflow soldering	-1.0	-	1.0	ppm	5	
Long Term Stability	-1.0	-	1.0	ppm	6	
Aging						
per Life (20 Years)	-3.0	-	3.0	ppm		
per Day	-40	-	40	ppb		
Total Frequency Tolerance	-4.6	-	4.6	ppm	7	
Supply Voltage (Vcc)	3.135	3.30	3.465	Vdc		
Supply Current (Icc)	-	2.1	6.0	mA		
Jitter:						
Period Jitter	-	3.0	5.0	ps RMS		
Integrated Phase Jitter	-	0.3	1.0	ps RMS	8	
Allan Deviation (1s)	-	1.0E-10	-			
Typical SSB Phase Noise (Fo=24.576MHz)						
@ 10 Hz offset		-90		dBc/Hz		
@ 100 Hz offset		-120		dBc/Hz		
@ 1 KHz offset		-140		dBc/Hz		
@ 10 KHz offset		-151		dBc/Hz		
@ 100 KHz offset		-152		dBc/Hz		
@ 1 MHz offset		-154		dBc/Hz		
Start-Up Time	-	-	10	ms		

Bulletin	TX444
Page	1 of 3
Revision	02
Date	20 April 2022

Enable / Disable Input Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Enable Voltage (High)	70%Vcc		-	Vdc	9
Disable Voltage (Low)	-	-	30%Vcc	Vdc	

LVCMOS Output Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load (CL)	-	15	-	pF	10
Voltage (High) (Voh)	90%Vcc	-	-	Vdc	
(Low) (Vol)	-	-	10%Vcc	Vdc	
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time 10% to 90%	_	4	8	ns	

Notes:

1. Initial calibration @ 25°C. ±2°C.

2. Frequency stability vs. change in temperature. [±(Fmax-Fmin)/(2*Fo]).

3. Inclusive of frequency stability, supply voltage change (±1%), aging, for 24 hours. Per STRATUM 3 GR-1244-CORE.

4. Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C

5. Two consecutive solder reflows after 1 hour recovery @ 25°C.

6. Frequency drift over 1 year @ 25°C.

7. Inclusive of calibration @ 25°C, frequency vs. change in temperature, change in supply voltage (±5%), load change (±5%), reflow soldering process and 20 years aging.

8. BW = 12 KHz to 10 MHz

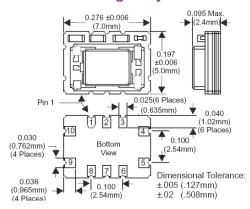
 Leave Pad 8 on the T Series unconnected if enable / disable function is not required. When tri-stated, the output stage is disabled but the oscillator and compensation circuit are still active (current consumption < 1 mA).

10. Attention: To achieve optimal frequency stability, and in some cases to meet the specification stated on this data sheet, it is required that the circuit connected to this TCXO output must have the equivalent input capacitance that is specified by the nominal load capacitance. Deviations from the nominal load capacitance will have a graduated effect on the stability of approximately 20 ppb per pF load difference.

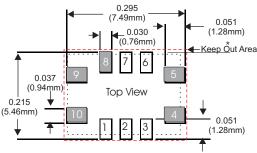
Package Characteristics

Package

Hermetically sealed ceramic package and metal cover


Environmental Characteristics

Vibration:	Vibration per Mil Std 883E Method 2007.3 Test Condition A
Shock:	Mechanical Shock per Mil Std 883E Method 2002.4 Test Condition B.
Soldering Process:	RoHS compliant lead free. See soldering profile on page 3.


Ordering Information

T602A-024.576M T602A-010.0M

Package Layout

Suggested Pad Layout

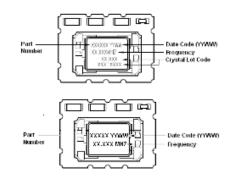
* Do not route any traces in the keep out area. It is recommended the next layer under the keep out area is to be ground plane.

Pad Connections

1:	Do Not Connect
2:	Do Not Connect
3:	Do Not Connect
_4:	Ground
5:	Output
6:	Do Not Connect
_7:	Do Not Connect
8:	Enable / Disable
9:	Supply Voltage Vcc
10:	N/C

Bulletin	TX444
Page	2 of 3
Revision	02
Date	20 April 2022

Specifications subject to change without notification. See Connor-Winfield's website for latest revision. © Copyright 2022 The Connor-Winfield Corporation Not intended for life support applications.


2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040

www.conwin.com

Phase Noise Plot Phase Noise [dBc/Hz] RF Atten 5 dB Top -50 dBc/Hz Spot Noise 10.000 Hz 100.000 Hz 1.000 Hz -93 11 dBo/Hz -121 95 dBo/Hz -144 77 dBo/Hz А 10 000 iiit 155 22 dBo/Hz 100.000 Hz -157 18 dBc/Hz SGL -9'n -110-ЕХТ -130 EL1 EL1 -150

Marking Information

The following are examples of possible marking configurations

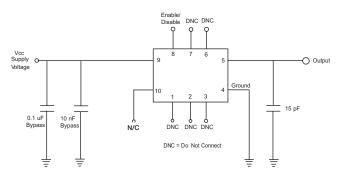
Test Circuit

1.00 kHz

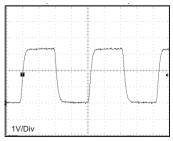
Frequency Offset

10.00 kHz

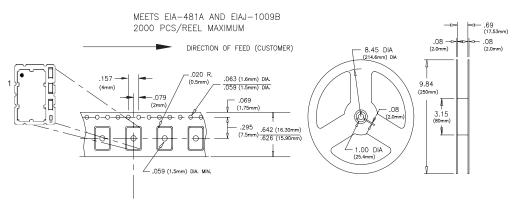
100.00 kHz

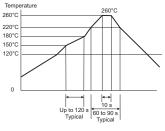

5.00 MHz

LoopBW 100 Hz


100.00 Hz

1.00 Hz


10.00 Hz


Output Waveform

Tape and Reel Information

Solder Profile

Meets IPC/JEDEC J-STD-020C

Bulletin	TX444
Page	3 of 3
Revision	02
Date	20 April 2022

Specifications subject to change without notification. See Connor-Winfield's website for latest revision. © Copyright 2020 The Connor-Winfield Corporation Not intended for life support applications.