

Data sheet acquired from Harris Semiconductor SCHS065C – Revised November 2004

CD4098B Types

CMOS Dual Monostable Multivibrator

High-Voltage Types (20-Volt Rating)

■ CD4098B dual monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application.

An external resistor (Rx) and an external capacitor (CX) control the timing for the circuit. Adjustment of RX and CX provides a wide range of output pulse widths from the Q and Q terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of Rx and CX.

Leading-edge-triggering (+TR) and trailing-edge-triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to VSS. An unused -TR input should be tied to VDD. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the CD4098B is not used, its RESET should be tied to VSS. See Table I.

In normal operation the circuit triggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, Q is connected to -TR when leading-edge triggering (+TR) is used or Q is connected to +TR when trailing-edge triggering (-TR) is used.

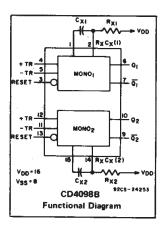
The time period (T) for this multivibrator can be approximated by: $T_X=\frac{1}{2}R_XC_X$ for $C_X \ge$ 0.01 µF. Time periods as a function of Rx for values of CX and VDD are given in Fig. 8. Values of T vary from unit to unit and as a function of voltage, temperature, and RXCX.

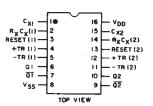
The minimum value of external resistance, R_X , is 5 k Ω . The maximum value of external capacitance, C_X , is 100 μF . Fig. 9 shows time periods as a function of C_X for values of R_X and VDD.

The output pulse width has variations of ±2.5% typically, over the temperature range of -55°C to 125°C for Cx=1000 pF and $R_X=100 k\Omega$.

For power supply variations of ±5%, the output pulse width has variations of ±0.5% typically, for VDD=10 V and 15 V and ±1% typically, for VDD=5 V at Cx=1000 pF and $R_X=5 k\Omega$.

These types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix). 16-lead small-outline packages (M, M96, and MT suffixes), and 16-lead thin shrink smalloutline packages (PW and PWR suffixes).


The CD4098B is similar to type MC14528.


Features:

- Retriggerable/resettable capability
- Trigger and reset propagation delays independent of R_X, C_X
- Triggering from leading or trailing edge
- Q and Q buffered outputs available
- Separate resets
- Wide range of output-pulse widths
- 100% tested for maximum quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range): 1 V at V_{DD}= 5 V 2 V at V_{DD}=10 V 2.5 V at V_{DD}=15 V 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices."

Applications:

- Pulse delay and timing
- Pulse shaping
- Astable multivibrator

TERMINALS 1,8,15 ARE ELECTRICALLY CONNECTED INTERNALLY

92CS-24848RI

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

	DC SUPPLY-VOLINGE RANGE, (VDD)
0.5V to +20V	Voltages referenced to VSS Terminal)
	INPUT VOLTAGE RANGE, ALL INPUTS
±10mA	
	POWER DISSIPATION PER PACKAGE
	For $T_A = -55^{\circ}C$ to $+100^{\circ}C$
Derate Linearity at 12mW/OC to 200mW	For TA = +100°C to +125°C
	DEVICE DISSIPATION PER OUTPUT TE
TURE RANGE (All Package Types) 100mW	FOR TA = FULL PACKAGE-TEMPERA
a)55°C to +125°C	OPERATING-TEMPERATURE RANGE (1
)65°C to +150°C	STORAGE TEMPERATURE RANGE (Tsto
	LEAD TEMPERATURE (DURING SOLDE
79mm) from case for 10s max +265°C	At distance $1/16 \pm 1/32$ inch (1.59 ± 0)

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIN	IITS	
CHARACTERISTIC	V	MIN	MAX.	UNITS
Supply-Voltage Range (For TA = Full Package-Temperature Range)	_	3	18	V
Trigger Pulse Width t _W (TR)	5 10 15	140 60 40	-	ns
Reset Pulse Width tw(R) (This is a function of C _X)		So Dynami Chart Fig.	and	-
Trigger Rise or Fall Time t _r (TR), t _f (TR)	5 - 15	-	100	μs

CD4098B Types

TABLE I
CD4098B FUNCTIONAL TERMINAL CONNECTIONS

FUNCTION		TO 1. NO.		TO M. NO.	l -	PULSE RM. NO.	OTHER CONNECTIONS		
	MONO ₁	MONO ₂							
Leading-Edge Trigger/ Retriggerable	3, 5	11, 13			4	12			
Leading-Edge Trigger/ Non-retriggerable	3	13			4	12	5-7	11.9	
Trailing-Edge Trigger/ Retriggerable	3.	13	4	12	5	11			
Trailing-Edge Trigger/ Non-retriggerable	3	13	:		5	11	4-6	12-10	
Unused Section	5	11	3, 4	12, 13					

NOTES:

- 1. A RETRIGGERABLE ONE SHOT MULTI-VIBRATOR HAS AN OUTPUT PULSE WIDTH WHICH IS EXTENDED ONE FULL TIME PERIOD (T_X) AFTER APPLICATION OF THE LAST TRIGGER PULSE.
 - The minimum time between retriggering edges (or trigger and retrigger edges) is 40 per cent of (T_X).
- 2. A NON-RETRIGGERABLE ONE-SHOT MULTIVIBRATOR HAS A TIME PERIOD TX REFERENCED FROM THE APPLICATION OF THE FIRST TRIGGER PULSE.

INPUT PULSE TRAIN

RETRIGGERABLE MODE PULSE WIDTH

(+TR MODE)

NON-RETRIGGERABLE MODE PULSE

WIDTH

(+TR MODE)

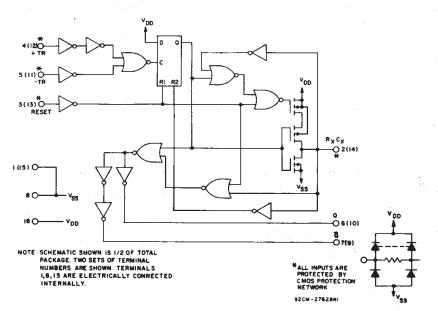


Fig. 4 — CD4098B logic diagram.

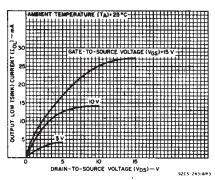


Fig. 1 — Typical output low (sink) current characteristics.

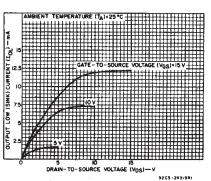


Fig. 2 — Minimum output low (sink) current characteristics.

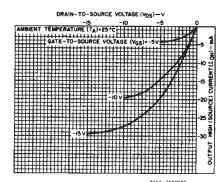


Fig. 3 — Typical output high (source) current characteristics.

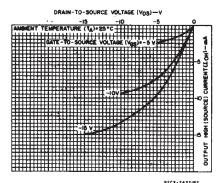


Fig. 5 - Minimum output high (source) current characteristics.

Copyright © 2004, Texas Instruments Incorporated

CD4098B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARAC-	CON	DITIO	NC.	LIME	re at i	NDICAT	EN TEL	4DEDA	TURES (200	
TERISTIC	V _O	VIN	V _{DD}			T T		FERA	+25	- ()	UNITS
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Typ.	Max.	1.00
Quiescent		0,5	5	- 1	1	30	30	_	0.02	1	-
Device	_	0,10	10	2	2	60	60	_	0.02	2	1
Current	_	0,15	15	4	4	120	120	=	0.02	4	μА
IDD Max.		0,20	20	20	20	600	600	 -	0.04	20	
Output Low				-				 		+	
(Sink)	0.4	0,5	5 -	0.64	0.61	0.42	0.36	0.51	1	l _	
Current,	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	 	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	 	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36		-1	 	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6		
I _{OH} Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Volt-				1			L	<u> </u>	-	1	-
age:		0,5	5		0.0)5		_	0	0.05	
Low-Level,	_	0,10	10		0.0)5			0	0.05	
VOL Max.	-	0,15	15		0.0)5			0	0.05	
Output Volt-			,							1	V
age:		0,5	5		4.9	95		4.95	5	l <u> </u>	*
High-Level,	_	0,10	10	-	9.9			9.95	10		
VOH Min.	_	0,15	15		14.	95		14.95	.15	_	
Input Low	0.5,4.5		5		1.	5			_	1.5	
Voltage,	1,9		10		3			_	_	3	i
VIL Max.	1.5,13.5	-	15		4			_	_	4	
Input High	0.5,4.5	- 1	- 5	٠.	3.5				_		V
Voltage,	1,9	_	10	3.5 3.5 _							
V _{IH} Min.	1.5,13.5	.c. —	15	11 11						_	
Input Current, I _{IN} Max.	; -	0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μΑ

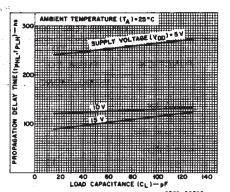


Fig. 6 - Typical propagation delay time vs.
load capacitance, trigger into Q
out. (All values of C_X and R_X.)

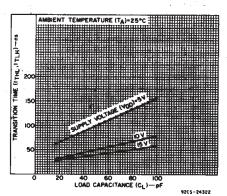


Fig. 7 – Transition time vs. load capacitance for R_X = 5 k Ω -10000 k Ω and C_X = 15 pF-10000 pF.

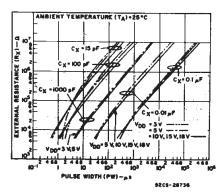


Fig. 8 — Typical external resistance vs. pulse width.

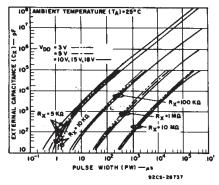


Fig. 9 – Typical external capacitance vs. pulse width.



Fig. 10 — Typical minimum reset pulse width vs. external capacitance.

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}C$; Input $t_r, t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

CHARACTERISTIC	TEST	CONDITI	ONS	LIM	ITS	LIAUTO
CHARACTERISTIC	R _X (kΩ)	C _X (pF)	V _{DD} (V)	Тур.	Max.	UNITS
Trigger Propagation Delay Time	5 to		5	250	500	
+TR, −TR to Q, Q	10,000	≥15	- 10	125	250	ns
^t PHL ^{, t} PLH	10,000		15	100	200	
Minimum Trigger Pulse Width,	5 to		5	70	140	
* *	10,000	≥15	10	30	60	ns
t _{WH} , t _{WL}	10,000		15	20	40	
Transition Time,	5 to		- 5	100	200	
^t TLH	10,000	≥15	10	50	100	
	10,000		15	40	80	
• .	5 to	15 to	5	100	200	
	10,000	10,000	10	50	100	
			15	40	80	
	5 to	0.01 μF	5	150	300	ns
^t THL	10,000	to	10	75	150	
		0.1 μF	15	65	130	
	5 to	0.1 μF	5	250	500	
	10,000	to	10	150	300	
		1 μF	15	80	160	
Reset Propagation Delay Time,	5 to		5	225	450	1
T _{PHL} , T _{PLH}	10,000	≥15	10	125	250	ns
riit, rtii			15	75	150	
			5	100	200	
		15	10	40	80	
			15	30	60	ns
Minimum Reset Pulse Width.			5	600	1200	
t _W R	100	1000	10	300	600	
**			15	250	500	
			5	25	50	
		0.1 μF	10	15	30	μs
			15	10	20	
Trigger Rise or Fall Time	_	_	5 to	_	100	μs
t _r (TR), t _f (TR)		See Sec.	15			
Pulse Width Match		'n	5	5	10	1
Between Circuits in	10	10,000	10	7.5	15	. %
Same Package			15	7.5	15	4,
Input Capacitance, C _{IN}		Any Input		5	7.5	ρF

TEST CIRCUITS

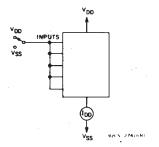


Fig. 12 — Quiescent-device-current test circuits.

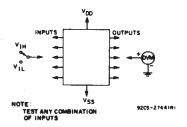


Fig. 13 - Input-voltage test circuit.

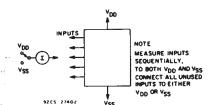


Fig. 14 — Input leakage current test circuit.

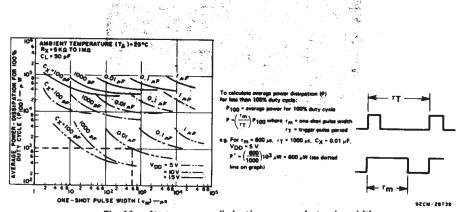


Fig. 11 - Average power dissipation vs. one-short pulse width.

CD4098B Types

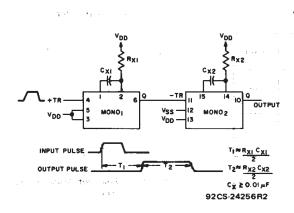


Fig. 15 - Pulse delay.

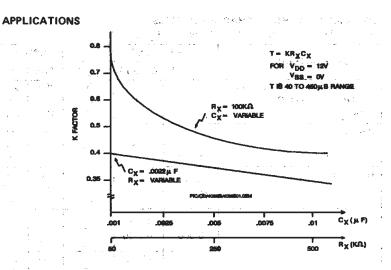


Fig. 17 - K-Factor for $V_{DD} = 12V$.

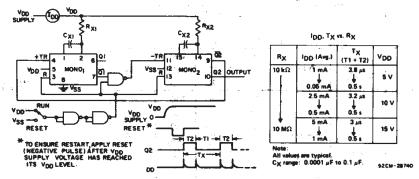
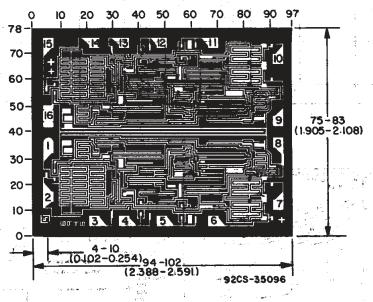



Fig. 16 - Astable multivibrator with restart after reset capability.

Dimensions and Pad Layout for CD4098BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

www.ti.com 11-May-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD4098BE	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4098BE	Samples
CD4098BEE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4098BE	Samples
CD4098BF	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD4098BF	Samples
CD4098BF3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD4098BF3A	Samples
CD4098BM96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4098BM	Samples
CD4098BM96G4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4098BM	Samples
CD4098BPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM098B	Samples
CD4098BPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM098B	Samples
JM38510/17504BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 17504BEA	Samples
M38510/17504BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 17504BEA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet J\$709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 11-May-2023

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

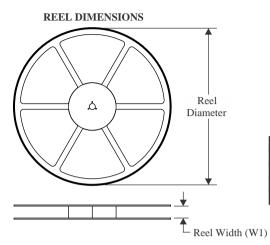
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

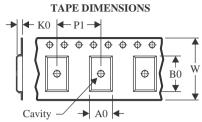
OTHER QUALIFIED VERSIONS OF CD4098B, CD4098B-MIL:

Catalog: CD4098B

Military: CD4098B-MIL

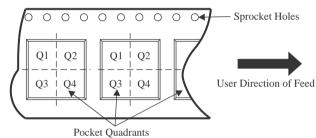
NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product


• Military - QML certified for Military and Defense Applications

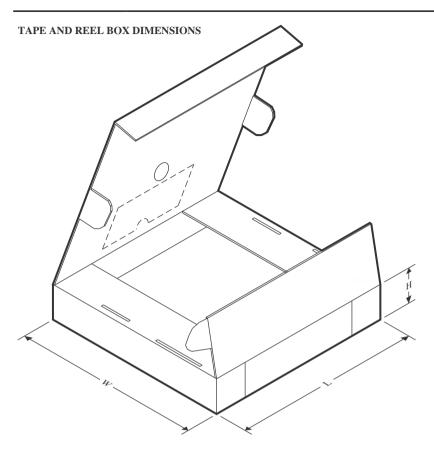
PACKAGE MATERIALS INFORMATION

www.ti.com 1-Jul-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

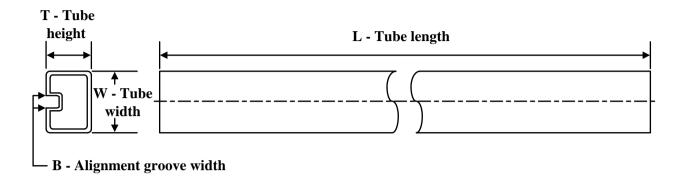


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4098BM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4098BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Jul-2023

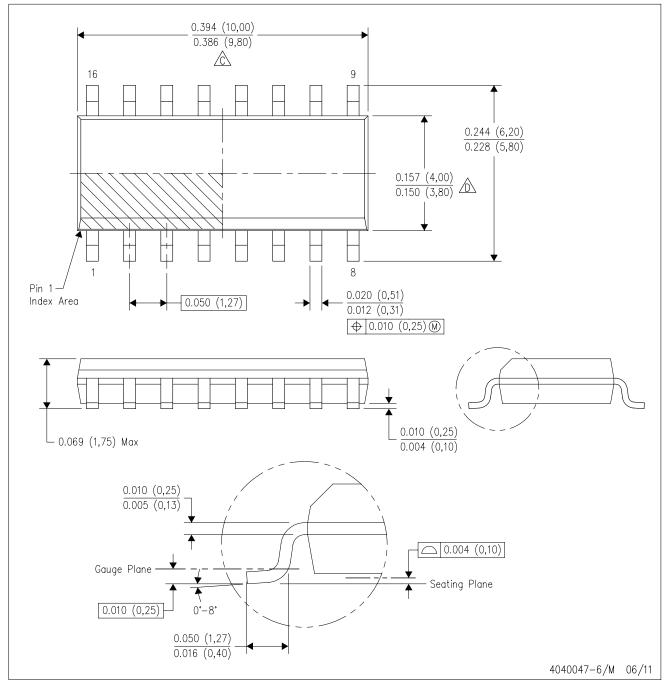

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4098BM96	SOIC	D	16	2500	340.5	336.1	32.0
CD4098BPWR	TSSOP	PW	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Jul-2023

TUBE

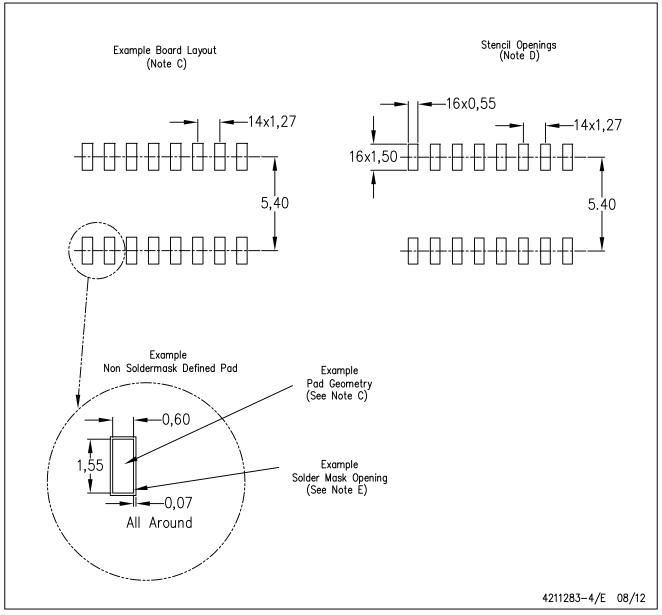


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD4098BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4098BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4098BEE4	N	PDIP	16	25	506	13.97	11230	4.32
CD4098BEE4	N	PDIP	16	25	506	13.97	11230	4.32
CD4098BPW	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDS0-G16)

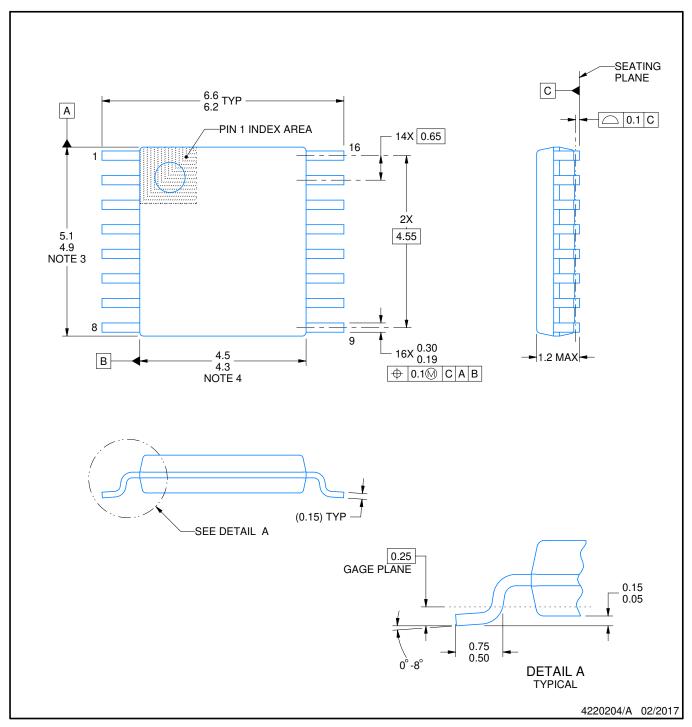
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

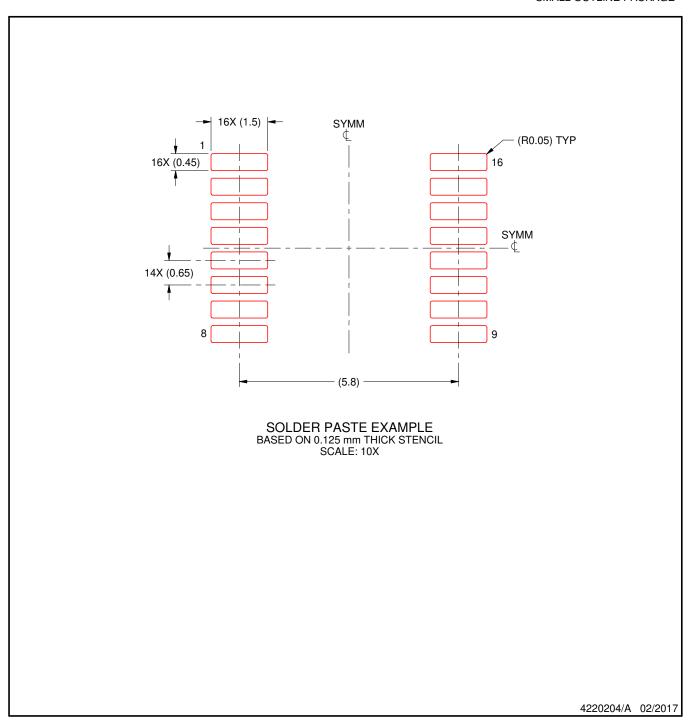
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

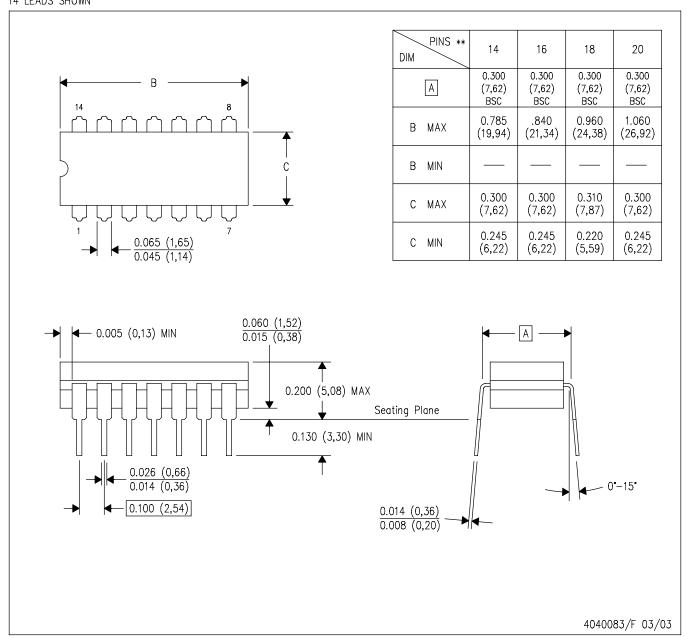
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

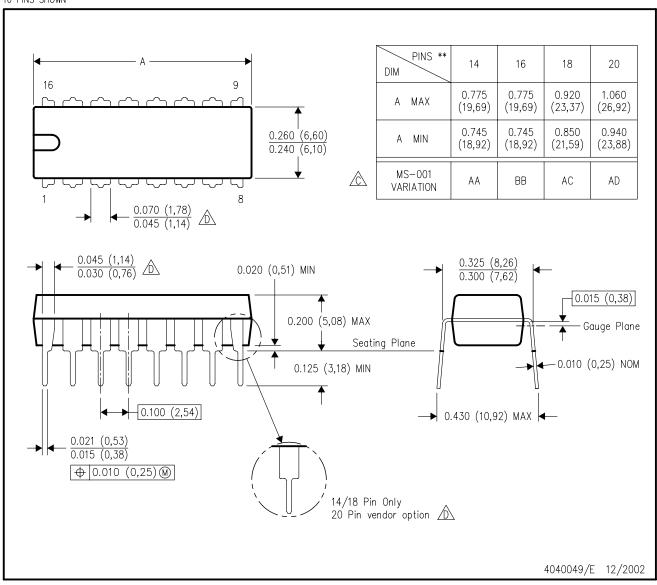
SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated