

Others parts

-

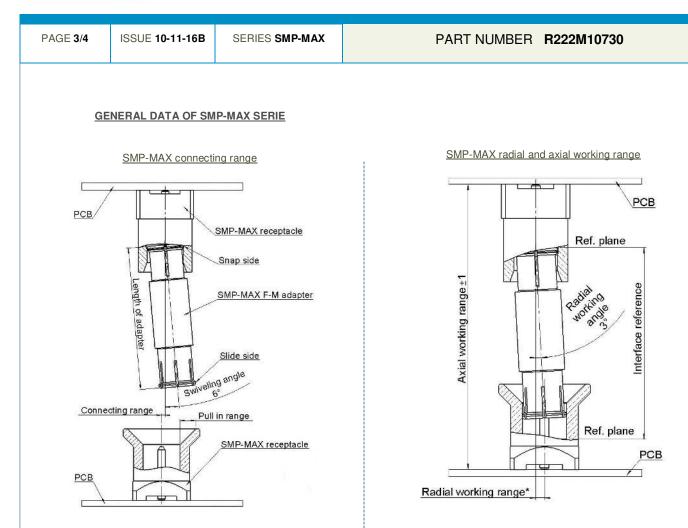
_

STRAIGHT PRESS MOUNT MALE RECEPTACLE FRONT MOUNT - WITH CYLINDRICAL CONTACT

PAGE 1/4	ISSUE 10-11-16	B SERIES SMP-MAX	PART NUMBER R222M10730		
Slide type 1.47 4 1.47 4 1.5 5.3 1.47 4 1.5 5.3 1.5 5.3 1.5 5.3 1.5 5.3 1.5 1.5 5.3					
PANEL CUT OUT					
	A	mm Maxi mini 6.13 6.07			
All dime	ensions are in mm.				
COMP	ONENTS	MATERIALS	PLATING (µm)		
Body Center con Outer con Insulator Gasket	ntact BR	ASS ASS FE	NPGR NPGR		

This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

-



STRAIGHT PRESS MOUNT MALE RECEPTACLE FRONT MOUNT - WITH CYLINDRICAL CONTACT

PAGE 2/4	ISSUE 10-11-16B	SERIES SMP-I	мах		PART NUMBER	R R222M10730	
	[Standard 100	PACK/ Uni Contac	t	Other Contact us		
E	LECTRICAL CHARA	ACTERISTICS					
Impedance 50 Ω Frequency 0 - 10 GHz VSWR (max.) / Return Loss (max.) <u>DC - 4 GHz 4 - 6 GHz</u> 1.07 / -30dB 1.12 / -25dB					ENVIR	RONMENTAL	
Insertion loss RF leakage Voltage rating Dielectric withstan Insulation resistan	- (ding voltage	< 0.03* √F(GHz))) dB Maxi ki i	Operatii Hermeti Panel le		-55/+168 NA NA	Atm.cm3/s
M	ECHANICAL CHAR	ACTERISTICS		SPECIFICATION			
Center contact retention Axial force – Mating End Axial force – Opposite end Torque Pull-in-range		7 N mini 15 N mini NA N.cm mini 0.0000 mm		OTHER CHARACTERISTICS Assembly instruction:			
Recommended to Mating Panel nut Mating life Weight			N.cm N.cm i	Others: *Coaxia	I Transmission Line Only	У	

This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

STRAIGHT PRESS MOUNT MALE RECEPTACLE FRONT MOUNT - WITH CYLINDRICAL CONTACT

The connecting range represents the maximum misalignment during connection.

Radiall 🚺

The swiveling angle is the maximum possible angle of the adapter in a snap receptacle.

A blind assembly is guaranteed if radial misalignment is smaller than connecting range. Otherwise a manual lead-in is necessary.

Electrical performance is achieved when radial and axial misalignments are within their working ranges. Radial working range = (length of the adapter) x Sinus(radial working angle).

$\frac{1}{2} \frac{1}{2} \frac{1}$					
	Misalignment	DC - 3 GHz	3 - 6 GHz		
	Radial 0 $^\circ$, Axial 0mm	<1.15/-23.9 dB	<1.25/-19.10 dB		
V.S.W.R / Return loss	Radial 0 $^{\circ}$, Axial +/-1mm	<1.20/-20.8 dB	<1.35/-16.5 dB		
	Radial 3 $^\circ$, Axial 0mm	<1.15/-23.1 dB	<1.25/-19.1 dB		
	Radial 3° , Axial +/-1mm	<1.20/-20.8 dB	<1.35/-16.5 dB		
	Misalignment	DC - 3 GHz	3 - 6 GHz		
	Radial 0 $^\circ$, Axial 0mm	<0.10 dB	<0.15 dB		
Insertion loss	Radial 0°, Axial +/-1mm	<0.12 dB	<0.25 dB		
	Radial 3 $^\circ$, Axial 0mm	<0.10 dB	<0.15 dB		
	Radial 3°, Axial +/-1mm	<0.12 dB	<0.25 dB		
handling power	>300W@2.7GHz at 25°C; >200W@2.7GHz at 85°C				

<u>Typical RF performances for a set:</u> <u>slide receptacle + adapter + snap receptacle (receptacles soldered on boards):</u>

This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

STRAIGHT PRESS MOUNT MALE RECEPTACLE FRONT MOUNT - WITH CYLINDRICAL CONTACT

PAGE 4/4	ISSUE 10-11-16B	SERIES SMP-MAX	PART NUMBER R222M10730			
SOLDER PROCEDURE						
		• •	screen printing application. We recommend a low residue flux.). Verify that the edges of the zone are clean.			
			n automatic machine of 'pick and place' type. A video camera is agents must not be used on the receptacle.			
3. This pro	ocess of soldering has	been tested with convection	n oven .Below please find, the typical profile to use.			
4. The clea	aning of printed circuit	boards is not obliged.				
5. Verifica	tion of solder joints an	d position of the component	by visual inspection			
TEMPERATURE PROFILE						
	250		Max peak temperature: 260°C			
	200					
	(C) 150					
	لي ۲۵۵					
50						
	0	60 120	180 240 300			

Parameter	Value	Unit
Temperature rising Area	1 - 4	°C/sec
Max Peak Temperature	260	°C
Max dwell time @260°C	10	sec
Min dwell time @235°C	20	sec
Max dwell time @235°C	60	sec
Temperature drop in cooling Area	-1 to - 4	°C/sec
Max dwell time above 100°C	420	sec

This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.