1-of-8 Decoder/ Demultiplexer

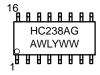
High-Performance Silicon-Gate CMOS

The MC74HC238A is identical in pinout to the LS238. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC238A decodes a three-bit Address to one-of-eight active-high outputs. This device features three Chip Select inputs, two active-low and one active-high to facilitate the demultiplexing, cascading, and chip-selecting functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output; one of the Chip Selects is used as a data input while the other Chip Selects are held in their active states.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 V to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 100 FETs or 29 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices*


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

A = Assembly Location

WL, L = Wafer LotY = Year

WW, W = Work Week G or ■ = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

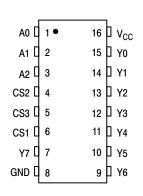


Figure 1. Pin Assignment

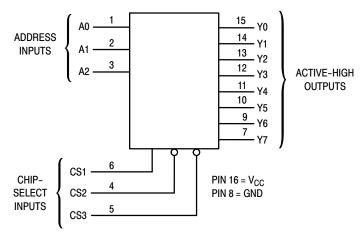


Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]	
MC74HC238ADG	SOIC-16 (Pb-Free)	48 Units / Rail	
MC74HC238ADR2G	SOIC-16	2500 Tape & Reel	
NLV74HC238ADR2G*	(Pb-Free)		
MC74HC238ADTG	TSSOP-16 (Pb-Free)	96 Units / Tube	
MC74HC238ADTR2G	TSSOP-16	2500 Tape & Reel	
NLV74HC238ADTR2G*	(Pb-Free)		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TRUTH TABLE

	Inputs								Out	outs			
CS3	CS2	CS1	A0	A1	A2	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Н	Х	Х	Х	Х	Х	L	L	L	L	L	L	L	L
Х	Н	Х	Х	Х	Х	L	L	L	L	L	L	L	L
Х	Х	L	Х	Х	Х	L	L	L	L	L	L	L	L
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L
L	L	Н	Н	L	L	L	Н	L	L	L	L	L	L
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L
L	L	Н	Н	Н	L	L	L	L	Н	L	L	L	L
L	L	Н	L	L	Н	L	L	L	L	Н	L	L	L
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L
L	L	Н	L	Н	Н	L	L	L	L	L	L	Н	L
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	± 20	mA
I _{out}	DC Output Current, per Pin	± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 50	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating – SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 .W/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage (Referenced to	2.0	6.0	V	
V _{in} , V _{out}	DC Input Voltage, Output Voltage (F	0	V _{CC}	V	
T _A	Operating Temperature, All Packa	ge Types	- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 2)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

		Vcc	Guara	nteed Limit		
Parameter	Test Conditions	V	–55°C to 25°C	≤ 85 ° C	≤ 125°C	Unit
Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
	$\begin{split} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ & I_{out} \leq 4.0 \text{ mA} \\ & I_{out} \leq 5.2 \text{ mA} \end{split}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
	Minimum High-Level Input Voltage Maximum Low-Level Input Voltage Minimum High-Level Output Voltage	$\begin{array}{ll} \mbox{Minimum High-Level Input} & \mbox{$V_{out} = 0.1$ V or $V_{CC} - 0.1$ V} \\ \mbox{$V_{out} = 0.1$ V or $V_{CC} - 0.1$ V} \\ \mbox{$Maximum Low-Level Input} & \mbox{$V_{out} = 0.1$ V or $V_{CC} - 0.1$ V} \\ \mbox{$V_{out} = 0.1$ V or $V_{CC} - 0.1$ V} \\ \mbox{$V_{out} = 0.1$ V or $V_{CC} - 0.1$ V} \\ \mbox{$ I_{out} \le 20$ μA} \\ \mbox{$Minimum High-Level Output}} & \mbox{$V_{in} = V_{IH}$ or V_{IL} } \\ \mbox{$ I_{out} \le 2.4$ mA} \\ \mbox{$ I_{out} \le 4.0$ mA} \\ \mbox{$ I_{out} \le 5.2$ mA} \\ \mbox{$Maximum Low-Level Output}} & \mbox{$V_{in} = V_{IH}$ or V_{IL}} \\ \mbox{$V_{in} = V_{IH}$ or V_{IL} } \\ \mbox{$V_{in} = V_{IH$	$\begin{array}{c} \mbox{Minimum High-Level Input} \\ \mbox{Voltage} \end{array} \begin{array}{c} \mbox{V}_{out} = 0.1 \ \mbox{V or V}_{CC} - 0.1 \ \mbox{V} \\ \mbox{3.0} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{Maximum Low-Level Input} \\ \mbox{Voltage} \end{array} \begin{array}{c} \mbox{V}_{out} = 0.1 \ \mbox{V or V}_{CC} - 0.1 \ \mbox{V} \\ \mbox{Il}_{out} \leq 20 \ \mu \mbox{A} \\ \mbox{3.0} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{Minimum High-Level Output} \\ \mbox{Voltage} \end{array} \begin{array}{c} \mbox{V}_{in} = \mbox{V}_{IH} \ \mbox{or V}_{IL} \\ \mbox{Il}_{out} \leq 2.4 \ \mbox{mA} \\ \mbox{Il}_{out} \leq 2.4 \ \mbox{mA} \\ \mbox{Il}_{out} \leq 4.0 \ \mbox{mA} \\ \mbox{Il}_{out} \leq 5.2 \ \mbox{mA} \\ \mbox{Il}_{out} \leq 5.2 \ \mbox{mA} \\ \mbox{Oltage} \end{array} \begin{array}{c} \mbox{2.0} \\ \mbox{V}_{in} = \mbox{V}_{IH} \ \mbox{or V}_{IL} \\ \mbox{Il}_{out} \leq 5.2 \ \mbox{mA} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{Assimum Low-Level Output} \\ \mbox{V}_{in} = \mbox{V}_{IH} \ \mbox{or V}_{IL} \\ \mbox{Il}_{out} \leq 2.0 \ \mbox{mA} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{Maximum Low-Level Output} \\ \mbox{V}_{in} = \mbox{V}_{IH} \ \mbox{or V}_{IL} \\ \mbox{Il}_{out} \leq 2.0 \ \mbox{mA} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{Maximum Low-Level Output} \\ \mbox{V}_{in} = \mbox{V}_{IH} \ \mbox{or V}_{IL} \\ \mbox{Il}_{out} \leq 2.0 \ \mbox{mA} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{4.5} \\ \mbox{6.0} \\ \mbox{6.0}$	$\begin{array}{ c c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} & \textbf{V} & -55^{\circ}\textbf{C to } 25^{\circ}\textbf{C} \\ \hline \textbf{Minimum High-Level Input} & V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V & 3.0 & 2.1 \\ I_{out} \leq 20 \ \mu A & 3.0 & 2.1 \\ A.5 & 3.15 & 6.0 & 4.2 \\ \hline \textbf{Maximum Low-Level Input} & V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V & 2.0 & 0.5 \\ I_{out} \leq 20 \ \mu A & 3.0 & 0.9 \\ A.5 & 1.35 & 6.0 & 1.8 \\ \hline \textbf{Minimum High-Level Output} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 1.9 \\ V_{out} \leq 20 \ \mu A & 4.5 & 4.4 \\ I_{out} \leq 20 \ \mu A & 4.5 & 3.98 \\ I_{out} \leq 2.4 \ mA & 3.0 & 2.48 \\ I_{out} \leq 4.0 \ mA & 4.5 & 3.98 \\ I_{out} \leq 5.2 \ mA & 6.0 & 5.48 \\ \hline \hline \textbf{Maximum Low-Level Output} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 \\ I_{out} \leq 5.2 \ mA & 6.0 & 5.48 \\ \hline \hline \textbf{Maximum Low-Level Output} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 \\ I_{out} \leq 20 \ \mu A & 4.5 & 0.1 \\ \hline \hline \end{tabular}$	$\begin{array}{ c c c c c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} & \textbf{V} & \hline & -55^{\circ}\textbf{C to } 25^{\circ}\textbf{C} & \leq 85^{\circ}\textbf{C} \\ \hline \hline \textbf{Minimum High-Level Input} \\ \textbf{Voltage} & \begin{matrix} V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{matrix} & \begin{matrix} 2.0 \\ 3.0 \\ 4.5 \\ 3.15 \\ 6.0 \end{matrix} & \begin{matrix} 2.1 \\ 2.1 \\ 4.5 \\ 3.15 \\ 6.0 \end{matrix} & \begin{matrix} 2.1 \\ 4.5 \\ 3.15 \\ 6.0 \end{matrix} & \begin{matrix} 3.15 \\ 4.2 \end{matrix} & \begin{matrix} 4.2 \end{matrix} \\ 4.2 \end{matrix} \\ \hline \hline \textbf{Maximum Low-Level Input} \\ \textbf{Voltage} & \begin{matrix} V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{matrix} & \begin{matrix} 2.0 \\ 4.5 \\ 6.0 \end{matrix} & \begin{matrix} 0.5 \\ 1.35 \\ 6.0 \end{matrix} & \begin{matrix} 0.5 \\ 1.35 \\ 6.0 \end{matrix} & \begin{matrix} 1.8 \\ 1.35 \\ 6.0 \end{matrix} & \begin{matrix} 1.8 \\ 1.8 \end{matrix} \\ \hline \textbf{Minimum High-Level Output} \\ \textbf{Voltage} \end{matrix} & \begin{matrix} V_{in} = V_{IH} \ or \ V_{IL} \\ I_{out} \leq 20 \ \mu A \end{matrix} & \begin{matrix} 2.0 \\ 4.5 \\ 6.0 \end{matrix} & \begin{matrix} 1.9 \\ 4.5 \\ 4.4 \\ 4.4 \\ 6.0 \end{matrix} & \begin{matrix} 1.9 \\ 5.9 \end{matrix} \\ \hline \textbf{Vin} = V_{IH} \ or \ V_{IL} \ I_{out} \leq 2.4 \ mA \\ I_{out} \leq 4.0 \ mA \\ 4.5 \\ 6.0 \end{matrix} & \begin{matrix} 3.08 \\ 3.98 \\ 3.84 \\ 6.0 \end{matrix} & \begin{matrix} 2.48 \\ 2.34 \\ 3.98 \\ 3.84 \\ 6.0 \end{matrix} & \begin{matrix} 3.08 \\ 5.34 \end{matrix} \\ \hline \hline \textbf{Maximum Low-Level Output} \\ \textbf{Voltage} \end{matrix} & \begin{matrix} V_{in} = V_{IH} \ or \ V_{IL} \\ I_{out} \leq 5.2 \ mA \end{matrix} & \begin{matrix} 2.0 \\ 4.5 \\ 0.0 \end{matrix} & \begin{matrix} 0.1 \\ 0.1 \\ 0.1 \end{matrix} \\ \hline \textbf{O.1} \end{matrix} \\ \hline \textbf{Maximum Low-Level Output} \\ V_{in} = V_{IH} \ or \ V_{IL} \\ I_{out} \leq 20 \ \mu A \end{matrix} & \begin{matrix} 2.0 \\ 4.5 \\ 0.1 \end{matrix} & \begin{matrix} 0.1 \\ 0.1 \\ 0.1 \end{matrix} \\ \hline \textbf{O.1} \end{matrix}$	$\begin{array}{ c c c c c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} & \textbf{V} & -55^{\circ}\textbf{C to 25^{\circ}\textbf{C}} & \leq 85^{\circ}\textbf{C} & \leq 125^{\circ}\textbf{C} \\ \hline \hline \textbf{Minimum High-Level Input} & V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ \hline \textbf{Voltage} & \begin{vmatrix} V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ \hline \textbf{Iout} \end{vmatrix} \leq 20 \ \mu A & 3.0 & 2.1 & 2.1 & 2.1 \\ \hline 4.5 & 3.15 & 3.15 & 3.15 & 3.15 \\ \hline 6.0 & 4.2 & 4.2 & 4.2 \\ \hline \hline \textbf{Maximum Low-Level Input} & V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ \hline \textbf{Voltage} & \begin{vmatrix} V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ \hline \textbf{Iout} \end{vmatrix} \leq 20 \ \mu A & 3.0 & 0.9 & 0.9 & 0.9 \\ \hline \textbf{4.5} & 1.35 & 1.35 & 1.35 \\ \hline \textbf{6.0} & 1.8 & 1.8 & 1.8 \\ \hline \textbf{Minimum High-Level Output} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 1.9 & 1.9 & 1.9 \\ \hline \textbf{Iout} \end{vmatrix} \leq 20 \ \mu A & 4.5 & 4.4 & 4.4 & 4.4 \\ \hline \textbf{6.0} & 5.9 & 5.9 & 5.9 \\ \hline \textbf{Vin} = V_{IH} \ or \ V_{IL} \ I_{out} \leq 2.4 \ mA \\ \hline \textbf{Il}_{out} \leq 4.0 \ mA & 4.5 & 3.98 & 3.84 & 3.70 \\ \hline \textbf{Il}_{out} \leq 5.2 \ mA & 6.0 & 5.48 & 5.34 & 5.20 \\ \hline \hline \textbf{Maximum Low-Level Output} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 2.0 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 0.1 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IH} \ or \ V_{IL} & 0.1 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IL} \ or \ V_{IL} & 0.1 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IL} \ or \ V_{IL} & 0.1 & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IL} \ or \ V_{IL} & 0.1 & 0.1 \\ \hline \textbf{Voltage} & V_{in} = V_{IL} \$

V _{OL}	Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{split} V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} & \mid I_{\text{out}} \mid \leq 2.4 \text{ mA} \\ & \mid I_{\text{out}} \mid \leq 4.0 \text{ mA} \\ & \mid I_{\text{out}} \mid \leq 5.2 \text{ mA} \end{split}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	6.0	± 0.1	± 1.0	± 1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4	40	160	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \ pF$, Input $t_r = t_f = 6.0 \ ns$)

		V _{CC}	Guara	nteed Limit		
Symbol	Parameter	v	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 3 and 6)	2.0 3.0 4.5 6.0	135 90 27 23	170 125 34 29	205 165 41 35	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CS1 to Output Y (Figures 4 and 6)	2.0 3.0 4.5 6.0	110 85 22 19	140 100 28 24	165 125 33 28	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CS2 or CS3 to Output Y (Figures 5 and 6)	2.0 3.0 4.5 6.0	120 90 24 20	150 120 30 26	180 150 36 31	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 4 and 6)	2.0 3.0 4.5 6.0	75 30 15 13	95 40 19 16	110 55 22 19	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)*	55	pF

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

SWITCHING WAVEFORMS

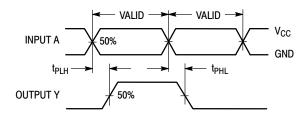


Figure 3.

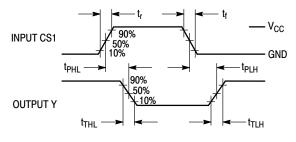


Figure 4.

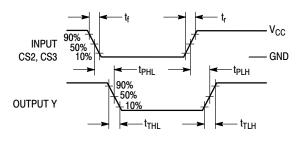
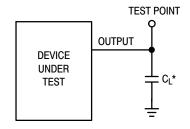



Figure 5.

*Includes all probe and jig capacitance

Figure 6. Test Circuit

PIN DESCRIPTIONS

ADDRESS INPUTS A0, A1, A2 (Pins 1, 2, 3)

Address inputs. These inputs, when the chip is selected, determine which of the eight outputs is active—low.

CONTROL INPUTS CS1, CS2, CS3 (Pins 6, 4, 5)

Chip select inputs. For CS1 at a high level and CS2, CS3 at a low level, the chip is selected and the outputs follow the

Address inputs. For any other combination of CS1, CS2, and CS3, the outputs are at a logic low.

OUTPUTS

Y0 - Y7 (Pins 15, 14, 13, 12, 11, 10, 9, 7)

Active-high Decoded outputs. These outputs assume a high level when addressed and the chip is selected. These outputs remain low when not addressed or the chip is not selected.

EXPANDED LOGIC DIAGRAM

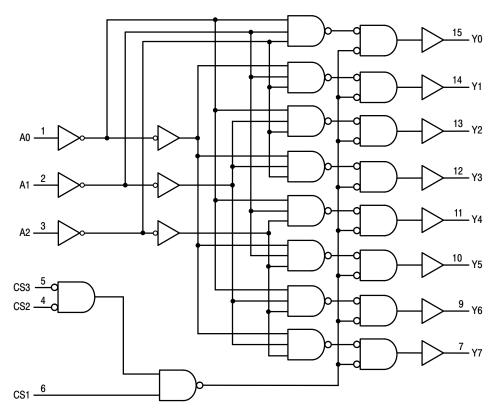
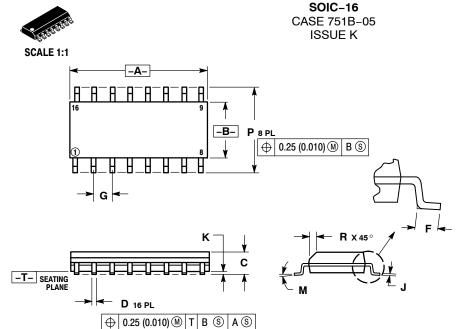



Figure 7. Logic Diagram

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

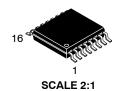
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

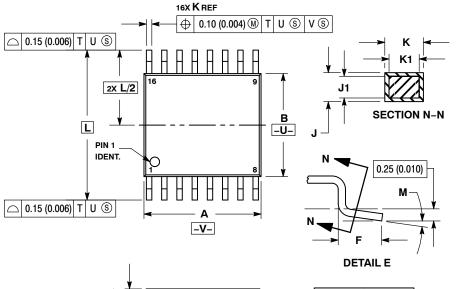
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.		PIN 1.		PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	E #1	
2.			ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR			8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE		CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.		11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER		CATHODE	12.		12.			
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOI DEDING	FOOTPRINT
14.			NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTFRINT
15.	EMITTER	15.		15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	 6	.40
								-	0
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 ← ➤
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				,
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPUT	1		. 🗀 1	16
3.	DRAIN, #2		CATHODE	3.	COMMON DRAIN (OUTPUT			↓ ·	'' 🗀
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,			
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT	1	16	6X 🛧 🖳	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT			58 ^J 🖂	' <u> </u>
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT		0.	36	1
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT				Ш
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT				
13.	GATE, #2	13.	ANODE	13.	GATE N-CH	,			
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)			↓ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT				<u>+-</u>
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH				
	•							□ 8	9 + - + -
								~	ı
									DIMENDIONO, MILLIMETERS
									DIMENSIONS: MILLIMETERS


DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

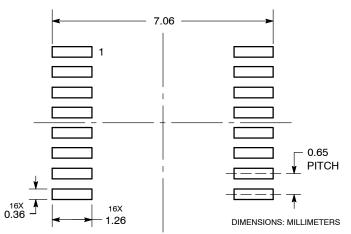
0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0°	8°	0°	8 °

G

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales