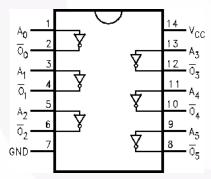
74LVX04 Low Voltage Hex Inverter

Features

- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

General Description

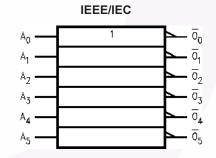
The LVX04 contains six inverters. The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.


Ordering Information

Order Number	Package Number	Package Description
74LVX04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVX04SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX04MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.


Connection Diagram

Pin Description

Pin Names	Description
A _n	Inputs
\overline{O}_n	Outputs

Logic Symbol

ar

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current, $V_I = -0.5V$	–20mA
VI	DC Input Voltage	–0.5V to 7V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{\rm O} = V_{\rm CC} + 0.5 V$	+20mA
Vo	DC Output Voltage	–0.5V to V _{CC} + 0.5V
Ι _Ο	DC Output Source or Sink Current	±25mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
Р	Power Dissipation	180mW

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0V to 3.6V
VI	Input Voltage	0V to 5.5V
V _O	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	–40°C to +85°C
$\Delta t / \Delta V$	Input Rise and Fall Time	0ns/V to 100ns/V

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

74LVX04 — Low Voltage Hex Inverter

DC Electrical Characteristics

				T _A = +25°C			T _A = -40°C to +85°C		
Symbol	Parameter	Vcc	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input	2.0		1.5			1.5		V
	Voltage	3.0		2.0			2.0]
		3.6		2.4			2.4		
V _{IL}	LOW Level Input	2.0				0.5		0.5	V
	Voltage	3.0				0.8		0.8	
		3.6				0.8		0.8	
	HIGH Level Output Voltage	2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu A$	1.9	2.0		1.9		V
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu A$	2.9	3.0		2.9		
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -4mA$	2.58			2.48		
V _{OL}	LOW Level Output Voltage	2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 50 \mu A$		0.0	0.1		0.1	V
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 50 \mu A$		0.0	0.1		0.1	
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 4mA$			0.36		0.44	
I _{IN}	Input Leakage Current	3.6	$V_{IN} = 5.5V \text{ or GND}$			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	3.6	$V_{IN} = V_{CC}$ or GND			2.0		20.0	μA

Noise Characteristics⁽²⁾

				$T_A = 25^{\circ}C$		
Symbol	Parameter	V _{CC} (V)	C _L (pF)	Тур.	Limit	Units
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	50	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	50	-0.3	-0.5	V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3	50		2.0	V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3	50		0.8	V

Note:

2. Input $t_r = t_f = 3ns$

AC Electrical Characteristics

				T _A = +25°C		T _A = -40°C to +85°C			
Symbol	Parameter	V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay Time	2.7	15		5.4	10.1	1.0	12.5	ns
			50		7.9	13.6	1.0	16.0	
		3.3 ± 0.3	15		4.1	6.2	1.0	7.5	
			50		6.6	9.7	1.0	11.0	
t _{OSLH} , t _{OSHL}	Output to Output Skew ⁽³⁾	2.7	50			1.5		1.5	ns
		3.3				1.5		1.5	

Note:

3. Parameter guaranteed by design $t_{OSLH} = |t_{PLHm} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Capacitance


		-	Γ _A = +25°	с	T _A = -4 +85	l0°C to 5°C	
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Units
C _{IN}	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance ⁽⁴⁾		18				pF

Note:

4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} \times I_{CC}}{6 (per Gate)}$

Physical Dimensions

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

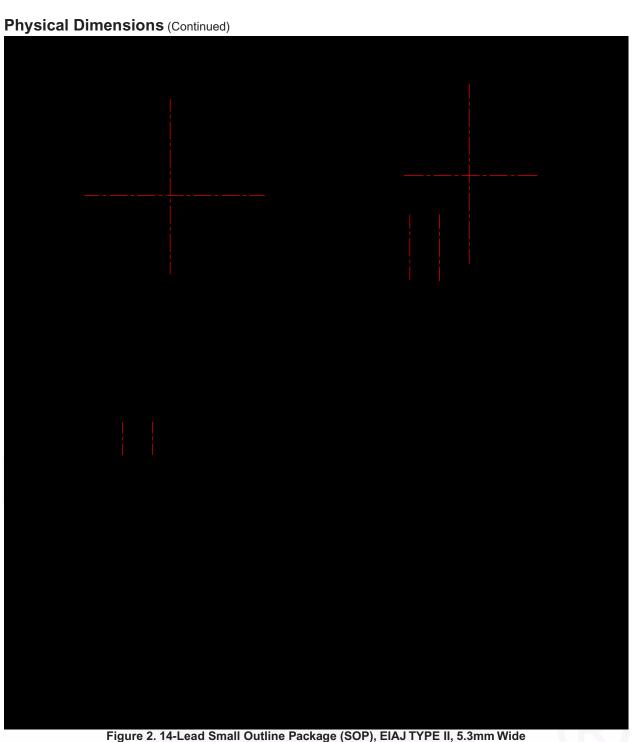
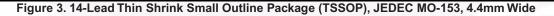


Figure 2. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions,


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

specifically the warranty therein, which covers Fairchild products.

74LVX04 — Low Voltage Hex Inverter

Physical Dimensions (Continued)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>

SEMICONDUCTOR

ACEx®

Build it Now™ CorePLUS™ *CROSSVOLT*™ CTL™ Current Transfer Logic™ EcoSPARK[®] EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FlashWriter®* FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™e-Series™ GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC[®]** OPTOPLANAR®

PDP-SPM™ Power220[®] POWEREDGE[®] Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET**[®] QS™ QT Optoelectronics[™] Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™3 SuperSOT™6 SuperSOT™-8

SupreMOS™ SyncFET™ GENERAL ® The Power Franchise[®] franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ SerDes™ UHC® Ultra FRFET™ UniFET™ VCX™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms							
Datasheet Identification	Product Status	Definition					
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make abanges at any time without paties to improve design					