Document Number: AFT27S012N Rev. 0, 07/2017

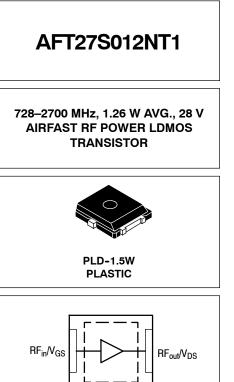
VRoHS

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This 1.26 W RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 728 to 2700 MHz.

• Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 90 mA, P_{out} = 1.26 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾


2100 MHz

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
2110 MHz	20.8	22.0	9.8	-41.1	-9
2140 MHz	20.9	22.6	9.6	-40.7	-10
2170 MHz	20.9	22.8	9.4	-40.8	-10
2200 MHz	20.8	22.9	9.3	-40.4	-9

1. All data measured in fixture with device soldered to heatsink.

Features

- Greater negative gate-source voltage range for improved Class C operation
- Designed for digital predistortion error correction systems
- Universal broadband driven device with internal RF feedback

(Top View)

Note: The center pad on the backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating			Va	lue	Unit
Drain-Source Voltage	V _{DSS}	-0.5	, +65	Vdc	
Gate-Source Voltage			-6.0	, +10	Vdc
Operating Voltage		V _{DD}	32	, +0	Vdc
Storage Temperature Range		T _{stg}	-65 to	o +150	°C
Case Operating Temperature Range		Т _С	-40 to	o +150	°C
Operating Junction Temperature Range (1,2)		TJ	-40 to	o +150	°C
Fable 2. Thermal Characteristics					
Characteristic		Symbol	Valu	e ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 77°C, 1.3 W CW, 28 Vdc, I _{DQ} = 110 mA, 2450	MHz	$R_{ extsf{ heta}JC}$	3	.4	°C/W
Table 3. ESD Protection Characteristics					
Test Methodology			Cla	ass	
Human Body Model (per JESD22-A114)		1B			
Charge Device Model (per JESD22-C101)			C	23	
Table 4. Moisture Sensitivity Level					
Test Methodology	Rating	Package Peak Temperature			Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260			°C
Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise	noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	10	μAdo
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	1	μAdo
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		—	_	1	μAdo
On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 15.4 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage $(V_{DD} = 28 \text{ Vdc}, I_D = 90 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	1.5	1.8	2.3	Vdc
Drain-Source On-Voltage	V _{DS(on)}	0.1	0.2	0.3	Vdc
(V _{GS} = 10 Vdc, I _D = 154 mAdc)					

1. Continuous use at maximum temperature will affect MTTF.

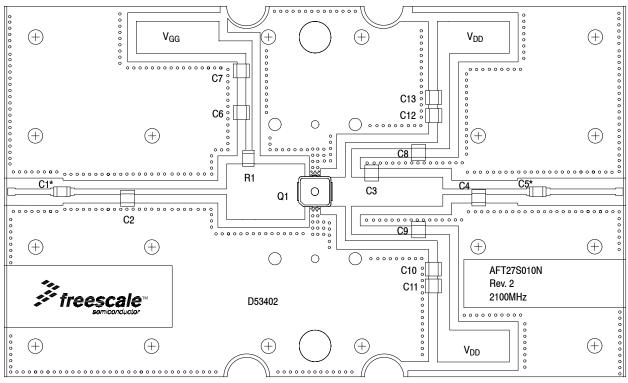
MTTF calculator available at <u>http://www.nxp.com/RF/calculators</u>.
Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to <u>http://www.nxp.com/RF</u> and search for AN1955.

(continued)

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic				Symbol	Min	Тур	Max	Unit	

Functional Tests (In NXP Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 90 mA, P_{out} = 1.26 W Avg., f = 2170 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.


Power Gain	G _{ps}	20.0	20.9	_	dB
Drain Efficiency	η _D	18.5	22.8	_	%
Adjacent Channel Power Ratio	ACPR	—	-40.8	-37.9	dBc
Input Return Loss	IRL	—	-12	-9	dB
Load Mismatch (In NXP Test Fixture, 50 ohm system) I _{DQ} = 90 mA, f = 2140 MHz					

VSWR 10:1 at 32 Vdc, 16.6 W CW Output Power No Device Degradation (3 dB Input Overdrive from 125 mW CW Rated Power) Typical Performance⁽¹⁾ (In NXP Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 90 mA, 2110-2200 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB W 13 0 AM/PM Φ -13 ____ (Maximum value measured at the P3dB compression point across the 2110-2200 MHz frequency range.) Gain Flatness in 90 MHz Bandwidth @ Pout = 1.26 W Avg. 0.20 dB G_F dB/°C ΔG 0.004 Gain Variation over Temperature (-30°C to +85°C) Output Power Variation over Temperature $\Delta P1dB$ 0.010 dB/°C (-30°C to +85°C)

Table 6. Ordering Information

Device	Tape and Reel Information	Package
AFT27S012NT1	T1 Suffix = 1000 Units, 16 mm Tape Width, 7-inch Reel	PLD-1.5W

1. All data measured in fixture with device soldered to heatsink.

*C1 and C5 are mounted vertically.

NOTE: All data measured in fixture with device soldered to heatsink. AFT27S012N uses the AFT27S0101N production fixture; board and parts list are identical.

Figure 2. AFT27S010NT1	Test Circuit Component La	yout — 2110-2200 MHz
------------------------	---------------------------	----------------------

Part	Description	Part Number	Manufacturer
C1, C5, C6, C8, C9	9.1 pF Chip Capacitors	ATC100B9R1JT500XT	ATC
C2	1.1 pF Chip Capacitor	ATC100B1R1JT500XT	ATC
C3	2.0 pF Chip Capacitor	ATC100B2R0JT500XT	ATC
C4	1.0 pF Chip Capacitor	ATC100B1R0JT500XT	ATC
C7, C10, C11, C12, C13	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
Q1	RF Power LDMOS Transistor	AFT27S010N	NXP
R1	2.37 Ω Chip Resistor	CRCW12062R37FKEA	Vishay
PCB	Rogers RO4350B, 0.020″, ε _r = 3.66	D53402	MTL

Table 7 AFT27S010NT1 Test Circuit Com	ponent Designations and Values — 2110-2200 MHz

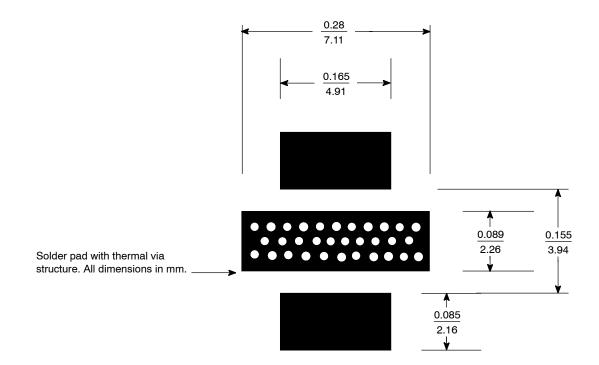
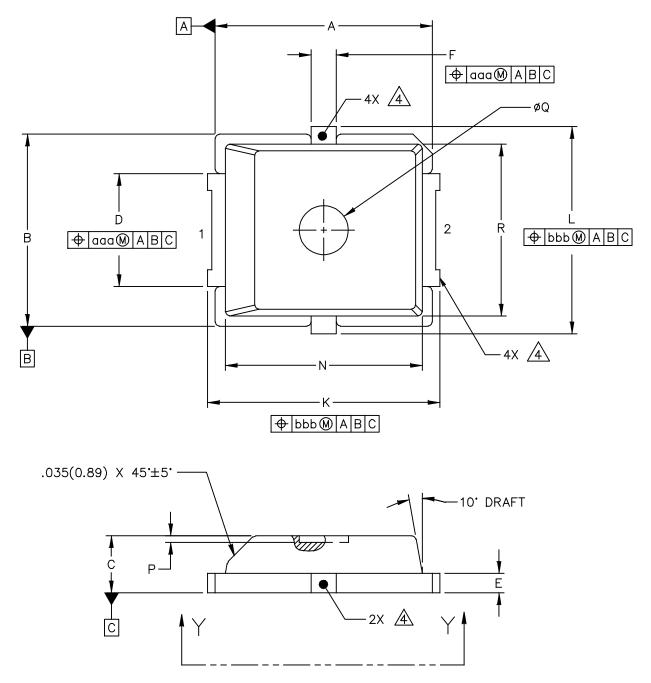
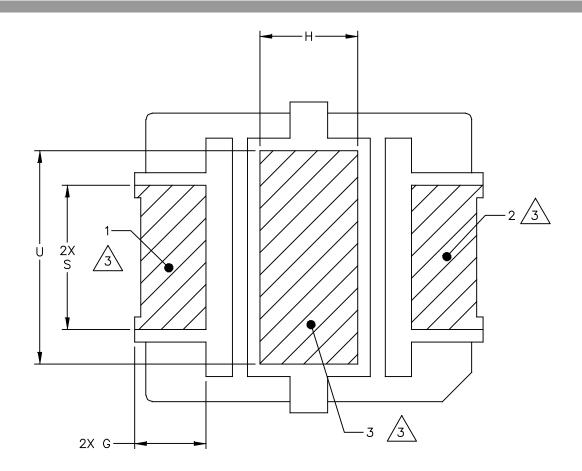



Figure 3. PCB Pad Layout for PLD-1.5W


Figure 4. Product Marking

PACKAGE DIMENSIONS

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00476D	REV: A
PLD-1.5W		STANDAF	RD: NON-JEDEC	
		SOT1811-	-2	08 FEB 2016

AFT27S012NT1

VIEW Y-Y

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUME	NT NO: 98ASA00476D	REV: A
PLD-1.5W		STANDAF	RD: NON-JEDEC	
		SOT1811-	-2	08 FEB 2016

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

 $\sqrt{3}$

HATCHING REPRESENTS THE EXPOSED AND SOLDERABLE AREA. DIMENSIONS G, S, H AND U REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA.

4. THESE SURFACES ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.

	IN	СН	MILLIMETER		MILLIMETER INCH		MILLI	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.255	.265	6.48	6.73	Q	.055	.063	1.40	1.60
В	.225	.235	5.72	5.97	R	.200	.210	5.08	5.33
С	.065	.072	1.65	1.83	S	.110	_	2.79	-
D	.130	.150	3.30	3.81	U	.156	_	3.96	-
E	.021	.026	0.53	0.66	aaa		.004	c).10
F	.026	.044	0.66	1.12	bbb		.005	c).13
G	.038	_	0.97	_					
Н	.069	_	1.75	_					
J	.160	.180	4.06	4.57					
К	.273	.285	6.93	7.24					
L	.245	.255	6.22	6.48					
N	.230	.240	5.84	6.10					
Р	.000	.008	0.00	0.20					
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHAN			MECHANICA	L 0U1	LINE	PRINT VERS	SION NOT T	O SCALE	
TITLE:						DOCUMEN	NT NO: 98ASAC	0476D	REV: A
	PLD-1.5W						D: NON-JEDEC	2	
							-2	08	FEB 2016

AFT27S012NT1

PRODUCT DOCUMENTATION

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	July 2017	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions.

NXP, the NXP logo, Freescale, the Freescale logo, and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

