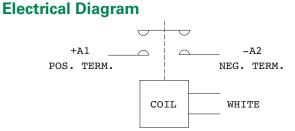


DCNSEV30 SERIES HIGH CURRENT HIGH VOLTAGE DC CONTACTOR RELAY

Applications

- Battery Electric Vehicles
- Hybrid Electric Vehicles
- Material Handling


C € ∰

- Electric Maintenance and Transport Vehicles
- Industrial Applications

Features and Benefits

- High current (30A) and high voltage (900V) contactor for EV applications
- Compact structure, helping reduce noise when turned on
- Sealed IP67, gas-filled relay which mitigates arcing
- No mounting orientation restrictions
- Designed and manufactured under the IATF16949 certification for Automotive Quality Systems.
- Designed specifically for automotive applications.

High current and high voltage DC contactor relays for electric

Specifications Overview

safety devices for industrial machinery.

Description

Amperage: 30A Continuous Carry
Housing: Nylon UL 94-V0

Voltage Rating: 12-900V

Output Connectors: M5 Bolt and Lockwasher Connections

vehicle applications such as battery power supply, charging pill, motor control, circuit insulation, circuit protection, and also

(not supplied)

Connectors: Wire Leads for Control Circuit

Ingress Protections: IP67

Operating Temperature: -40 to 85°C **Circuitry:** SPST NO

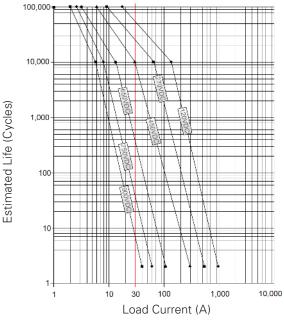
Coil Voltage: B: 12V DC Nominal, 8 - 16V DC Working

C: 24V DC Nominal, 18 - 28V DC Working

Max Coil Inrush Current: B: 500mA Max to coil

C: 250mA Max to coil

Mounting: M4 with Compression Limiters


(not supplied)

Size:54mm x 40mm x 45mmMounting Bolt Torque:2.3 Nm (20 in-lb)

Contact Torque: 3.4 - 4.5 Nm (30 - 40 in-lb) **Terminals:** M5 Silver Plated Copper

Approvals: UL File No. E510407 Recognized

Estimated Make Break Chart

Ordering Information

PART NUMBER	DESCRIPTION	COIL VOLTAGE 12V DC	COIL VOLTAGE 24V DC	BOTTOM MOUNT
DCNSEV30-B	High Voltage DC Contactor Relay Bottom Mount with Polar Load Terminals	•		•
DCNSEV30-C	High Voltage DC Contactor Relay Bottom Mount with Polar Load Terminals		•	•

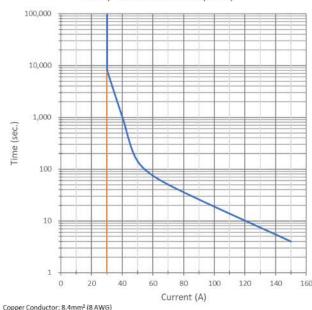
(@100mm) 70dB(a) <4000m

0.28 Lb (0.13 kg)

DCNSEV30 SERIES HIGH CURRENT HIGH VOLTAGE DC CONTACTOR RELAY

Performance Data

	MAIN CONTACT			
	IVIAIN C	UNTAGI		
F	Contact arrangement	1 Form X (SPST-NO, DM)		
	Rated Operating Voltage	12-900VDC		
	Continuous (Carry) Current	30A*1		
	Short term	50A (3 minutes)*2		
Max short circuit current		1,250A (½ cycle, 60Hz) (through closed contacts)		
Dielectric Withstanding Voltage		Between open contacts: 5,600Vrms/8,000Vdc		
		Between contact and coil: 2,200Vrms/4,000Vdc		
Insulation Resistance		Terminal to Terminal/Terminal to coil		
\		New: Min 100 MΩ @500Vdc End of life: Min 50 MΩ @500Vdc		
	Voltage Drop (@30A)	≤60mV		


^{1:} Current is relevant to the cross-sectional area of conductor.

^{2:} Ambient temperature: +40°C, 3 minutes

COIL	COIL DATA		
Voltage rating	12Vdc	24Vdc	
Pickup voltage (25°C)	8Vdc	18Vdc	
Dropout voltage (25°C)	1.2Vdc	2.4Vdc	
Max Pickup voltage (85°C)	9.6Vdc	19Vdc	
Rated coil resistance±5% (25°C)	25Ω	92Ω	
Coil watts (25°C)	6.0W	6.0W	

Current vs Time Curve

Web Resources

Download 2D print and technical resources at:

littelfuse.com/DCNSEV30

LIFE						
Electrical life	See estimated make break chart					
Mechanical life	200,000 cycles					
OPERATE / RELEASE TIME						
Close (includes bounce)	25ms, Max.					
Release	10ms, Max.					
MAX. BREAKING LIMIT	MAX. SHORT CIRCUIT					
300A@320VDC, 1 cycle	300A, 1 sec					
ENVIRONMENTAL DATA						
Shock, 11ms ½ sine, operating	20G Peak					
Vibration, Sine, Peak, 20G	55—2,000Hz					
Operating Ambient Temperature	-40 to +85°C					

Application Note:

Altitude Weight

- Be sure to use washer to prevent screws from loosening, all the terminals or copper bar must be in direct contact with the contactor's terminals. Screw tightening torque is specified below. Exceeding the maximum torque can lead to product failure.
 - Contact torque: 30 40 lb.in (3.4 4.5 N.m) Max. Active length of thread is 7.0 mm
 - Mounting torque: 20 lb.in (2.3 N.m)
- Contact terminals are polarized so refer to drawing during connecting. We suggest using a varistor rather than diode as a surge protector.
- 3. Do not use if dropped.
- Avoid installing in a strong magnetic field (close to a transformer or magnet), or near a heat source.
- 5. Electrical life
 - Use per load capability and life cycle limits so as not to cause a function failure (treat the contactor as a product with specified life and replace it when necessary). It is possible to make parts burn around the contactor once operating failure occurs. It is necessary to take layout into account and to make sure power shall be cut off within 1 second.
- 6. Lifetime of internal gas diffusion
 - The contactor is sealed and filled with gas, lifetime of gas diffusion is determined by temperature in contact chamber (ambient temperature + temperature generated by contact operation). Operate only in an ambient temperature from -40 to +85 °C.
- Drive power must be greater than coil power or it will reduce performance capability.
- 8. Avoid debris or oil contamination on the main terminals to optimize contact and avoid excess heat generation.
- 9. After continuous rated voltage / current has been applied to the coil and contacts, turning off the coil and immediately re-energizing the coil will result in a higher pick-up voltage than the rated value. This is due to increased coil resistance (coil temperature rise) of the device.