

Features

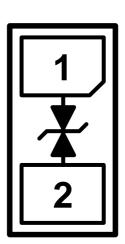
- ESD protection for one line with bi-directional
- Provide transient protection for the protected line to

IEC 61000-4-2 (ESD) ±15kV (air) / ±12kV (contact) IEC 61000-4-5 (Lightning) 4A (8/20µs)

- Ultra-low capacitance: 0.15pF typical
- For low operating voltage applications: **1.5V** and below
- 0201 small DFN package saves board space
- Fast turn-on and low clamping voltage
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part

Applications

- Thunderbolt interface
- USB3.1 and USB3.0 interfaces
- USB Type-C interface
- DisplayPort interface
- Hand held portable applications
- Consumer electronics


Description

AZ5B8S-01F is a design which includes a bi-directional ESD rated clamping cell to protect high-speed data interfaces in an electronic system. The AZ5B8S-01F has been specifically designed to protect sensitive components which are connected to data and transmission lines from over-voltage caused by Electrostatic Discharging (ESD), Lightning, and Cable Discharge Event (CDE). AZ5B8S-01F is a unique design which includes proprietary clamping cell with ultra-low capacitance in a small package. During transient conditions, the proprietary clamping cell prevents over-voltage on the control/data lines, protecting any downstream components.

AZ5B8S-01F is bi-directional and may be used on lines where the signal swings above and below ground.

AZ5B8S-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (\pm 15kV air, \pm 8kV contact discharge).

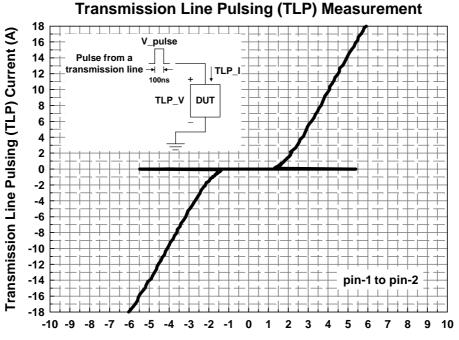
Circuit Diagram / Pin Configuration

DFN0603P2Y (Bottom View) (0.6mm x 0.3mm x 0.3mm)

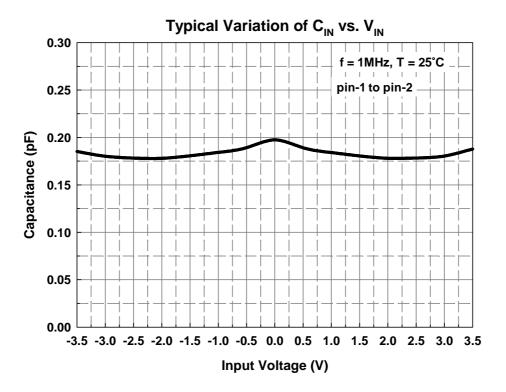
1

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise specified)				
PARAMETER	SYMBOL	RATING	UNIT	
Peak Pulse Current (tp=8/20µs)	I _{pp}	4	А	
Operating Supply Voltage	V _{DC}	±1.65	V	
ESD per IEC 61000-4-2 (Air)	V _{ESD-1}	±15	kV	
ESD per IEC 61000-4-2 (Contact)	V_{ESD-2}	±12	ΚV	
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	

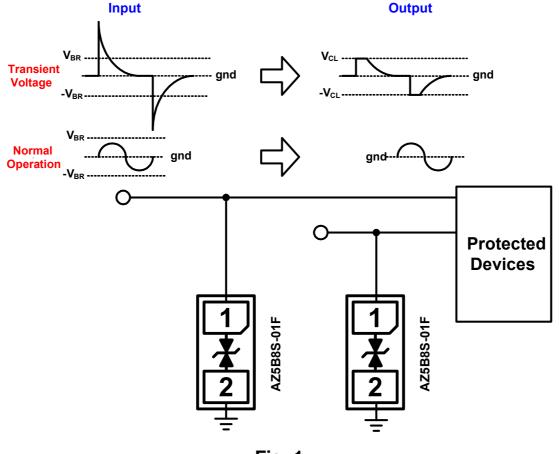

ELECTRICAL CHARACTERISTICS						
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Reverse Stand-Off Voltage	V _{RWM}	T=25 °C.	-1.5		1.5	V
Reverse Leakage Current	_{Leak}	V _{RWM} = ±1.5V, T=25 °C.			100	nA
Reverse Breakdown Voltage	V_{BV}	I _{BV} = 10μA, T=25 °C.	4			V
ESD Clamping Voltage (Note 1)	V _{CL-ESD}	IEC 61000-4-2 +8kV (I_{TLP} = 16A), Contact mode, T=25 °C.		5.5		V
ESD Dynamic Turn on Resistance	R _{dynamic}	IEC 61000-4-2 0~+8kV, Contact mode, T=25 °C.		0.25		Ω
Channel Input	C _{IN}	$V_{R} = 1V$, f = 1MHz, T=25 °C.		0.18		рF
Capacitance	UN	V _R = 1V, f = 1GHz, T=25 °C.		0.15		pF

Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.


TLP conditions: $Z_0=50\Omega$, $t_p=100$ ns, $t_r=1$ ns.

Typical Characteristics

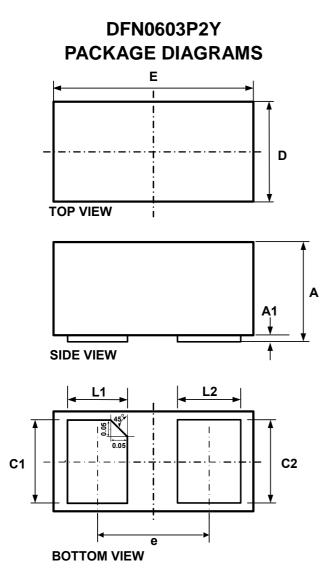
Transmission Line Pulsing (TLP) Voltage (V)

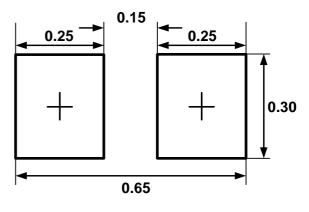


Application Information

The AZ5B8S-01F is designed to protect one line against system ESD pulse by clamping it to an acceptable reference. It provides bi-directional protection.

The usage of the AZ5B8S-01F is shown in Fig. 1. Protected line, such as data line, control line, or power line, is connected at pin 1. The pin 2 is connected to a ground plane on the board. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of AZ5B8S-01F should be kept as short as possible. In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:


- Minimize the path length between the protected lines and the AZ5B8S-01F.
- Place the AZ5B8S-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.



Mechanical Details

SYMBOL	MILLIMETERS			
	MIN.	NOM.	MAX.	
Е	0.55	0.6	0.65	
D	0.25	0.3	0.35	
Α	0.28	0.3	0.32	
A1	0	0.02	0.05	
L1	0.13	0.18	0.23	
L2	0.14	0.19	0.24	
C1/C2	0.2	0.25	0.3	
е	0.35 BSC			

LAND LAYOUT

(Unit: mm)

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

MARKING CODE

J = Device Code

Part Number	Marking Code	
AZ5B8S-01F.R7G	I	
(Green Part)	J	

Note. Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Туре	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ5B8S-01F.R7G	Green	T/R	7 inch	12,000/reel	4 reels= 48,000/box	6 boxes =288,000/carton

Revision History

Revision	Modification Description
Revision 2018/12/25	Formal Release.