

# 5A Slew Rate Controlled Load Switch with Reverse Blocking

### **Features**

• Operating Range: 1.5V~5.5V

• Low RDS(ON) MOSFET: Typ. 13.4mΩ @ 3.3V

• Continuous DC current up to 5A

• Built-in slew rate controlled turn-on: 2.7ms

Low guiescent current < 1µA</li>

• ESD Protection

► Human Body Model : 8kV
 ► Charged Device Model : 2.0kV
 ► Compliance to IEC61000-4-2 Level 4

Contact Discharge : 8kVAir Discharge : 15kV

• Output Auto Discharge when Disabled option (-1)

• Pb-Free Packages:

► WLCSP-6, 1.0 x 1.5mm

► RoHS and Green Compliant

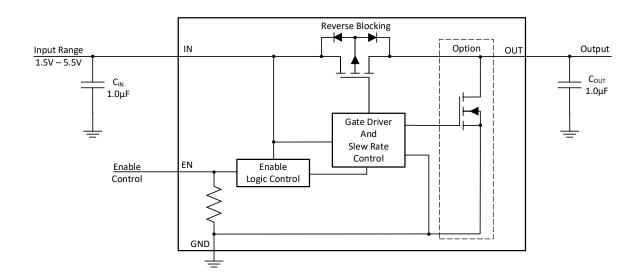
• -40°C to +85°C Temperature Range

## **Applications**

- Mobile Phones & Tablets
- SSD (Solid State Drive)
- Portable Instruments
- DSC, DVR, GPS

### **Brief Description**

The KTS1605 is slew rate controlled load switch designed for 1.5V to 5.5V operation. It features a controlled soft-on slew rate of typical 2.7ms that limits the inrush current for designs with heavy capacitive loads and thereby minimizing any resulting voltage droop at the power rails.


The very low RDS(ON) allows currents up to 5A, whilst minimizing the power dissipation and voltage drop from supply to load. The KTS1605 features an active high enable pin, which is capable of interfacing directly with low input control signals, without any additional level shifting circuitry. The KTS1605 also includes an active pull-down to ensure the device remains off, should the enable be allowed to float.

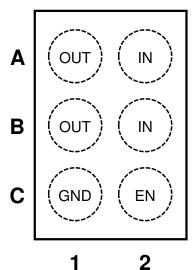
The KTS1605 provides reverse blocking in the OFF state to ensure that power supplies are not discharged.

In addition, the KTS1605 has an option for output auto discharge feature. This enables the device to quickly discharge the output when the device is disabled.

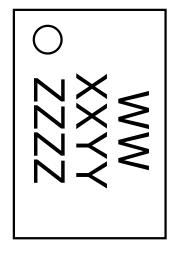
The KTS1605 is available in an optimized, lead-free, RoHS and Green compliant, small 6-pin WLCSP 1.0 x 1.5mm package with 0.5mm pitch

# **Typical Application**






# **Pin Descriptions**


| Pin#   | Name | Function                                                                                                                                                                    |
|--------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1, B1 | OUT  | Power-switch output. Connect a 1.0uF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.  (-1) Option includes an output discharge transistor. |
| A2, B2 | IN   | Power-switch input voltage. Connect a 1.0µF or greater ceramic capacitor from IN to GND as close as possible to the IC.                                                     |
| C1     | GND  | Ground connection                                                                                                                                                           |
| C2     | EN   | Enable input, logic high turns on power switch.                                                                                                                             |

### WLCSP-6, 1.0 x 1.5 x 0.620 mm









6-Bump 1.0mm x 1.5mm x 0.620mm micro SMD Package

### **Top Mark**

WW = Device ID Code, XX = Date Code, YY = Assembly Code, ZZZZ = Serial Number



# Absolute Maximum Ratings<sup>1</sup>

#### $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

| Symbol      | Description                                                                                                | Value                 | Units |  |
|-------------|------------------------------------------------------------------------------------------------------------|-----------------------|-------|--|
| IN, OUT, EN | Input voltage, Enable Input Voltage, Output Voltage to GND                                                 | -0.3 to +6.0          | V     |  |
| ISW         | Maximum Continuous Switch Current (IMAX)                                                                   | 5.0                   | Α     |  |
| ESD IEC     | ESD Withstand Voltage (IEC 61000-4-2) <sup>2</sup> (IN and OUT when bypassed with 1.0μF capacitor minimum) | Air: 15<br>Contact: 8 | kV    |  |
| ESD HBM     | Human Body Model (HBM) ESD Rating <sup>3,4</sup>                                                           | 8                     | kV    |  |
| ESD CDM     | Charge Device Model (CDM) Rating <sup>3,4</sup>                                                            | 2.0                   |       |  |
| ESD MM      | Machine Model (MM) ESD Rating                                                                              | 400                   | V     |  |
| TJ          | Operating Junction Temperature Range                                                                       | -40 to 125            |       |  |
| Ts          | Storage Temperature Range                                                                                  | -65 to 150            | °C    |  |
| TLEAD       | Maximum Soldering Temperature (at leads, 10sec)                                                            | 300                   |       |  |
| MSL         | Moisture Sensitivity <sup>5</sup>                                                                          | Level 1               |       |  |

# Thermal Capabilities<sup>6</sup>

| Symbol              | Description                                        | Value | Units |
|---------------------|----------------------------------------------------|-------|-------|
| $\theta_{JA}$       | Thermal Resistance – Junction to Ambient           | 85    | °C/W  |
| P <sub>D</sub>      | Maximum Power Dissipation at T <sub>A</sub> ≤ 25°C | 1.17  | W     |
| ΔP <sub>D</sub> /°C | Derating Factor Above T <sub>A</sub> = 25°C        | 1.17  | mW/°C |

# **Ordering Information**

| Part Number     | Marking                 | Operating<br>Temperature | Auto-Discharge | Package             |
|-----------------|-------------------------|--------------------------|----------------|---------------------|
| KTS1605EUB-TR   | JCXXYYZZZZ <sup>7</sup> | -40°C to +85°C           | NO             | WLCSP-6             |
| KTS1605EUB-1-TR | JLXXYYZZZZ <sup>7</sup> | -40 C to +65 C           | YES            | 1.0 x 1.5 x 0.620mm |

<sup>1.</sup> Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be applied at any one time.

<sup>2.</sup> Guaranteed by design and not 100% tested

<sup>3.</sup> According to JEDEC standard JESD22-A108

<sup>4.</sup> This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22–A114 for all pins. Machine Model (MM) ±200 V per JEDEC standard: JESD22–A115 for all pins.

<sup>5.</sup> Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

<sup>6.</sup> Junction to Ambient thermal resistance is highly dependent on PCB layout. Values are based on thermal properties of the device when soldered to a PCB board.

<sup>7.</sup> XX = Date Code, YY = Assembly Code, ZZZZ = Serial Number.



## **Electical Characteristics**8

The *Min* and *Max* specs are applied over the full operation temperature range of -40°C to +85°C,  $V_{IN} = 1.5V$  to 5.5V unless otherwise noted, while *Typ* values are specified at  $V_{IN} = 4.5V$  and room temperature ( $T_A = 25$ °C) unless otherwise noted.

| Symbol                 | Description                              | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min  | Тур  | Max  | Units |  |
|------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|--|
| VIN                    | Input Voltage Range                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5  |      | 5.5  | V     |  |
| lα                     | Quiescent Current                        | $V_{IN} = 1.5V$ to 5.5V,<br>EN = Active, $I_{OUT} = 0$ mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 8    | 14   | μΑ    |  |
| $I_{Q\_OFF}$           | No Load Quiescent Current                | V <sub>IN</sub> = 1.5V to 5.5V,<br>EN = Inactive, OUT = OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      | 1.0  | μΑ    |  |
| I <sub>SD</sub>        | Shutdown Current                         | $V_{IN} = 1.5V$ to 5.5V,<br>EN = GND, $OUT = GND$ ,<br>$T_A = -40$ °C to $+85$ °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 2.0  | 4.0  | μΑ    |  |
| I <sub>EN LEAK</sub>   | EN Input Leakage Current                 | $V_{EN} = 5.5V$ , $V_{IN} = 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -10  |      | 10   | μА    |  |
| TEN_LEAK               | EN Input Leakage Current                 | $V_{EN} = 0V$ , $V_{IN} = 5.5V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.0 |      | 1.0  |       |  |
|                        |                                          | $V_{IN} = 5.5V$ , $I_{OUT} = 1A$ , $T_A = 25$ °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 10.2 | 15.0 |       |  |
|                        |                                          | $V_{IN} = 5.0V$ , $I_{OUT} = 1A^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 10.5 |      | mΩ    |  |
|                        |                                          | $V_{IN} = 4.5V$ , $I_{OUT} = 1A$ , $T_A = 25$ °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 11.1 | 16.0 |       |  |
| R <sub>DS(ON)</sub>    | On-Resistance                            | $V_{IN} = 3.3V$ , $I_{OUT} = 500mA$ , $T_A = 25$ °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 13.4 | 18.0 |       |  |
|                        |                                          | $V_{IN} = 2.5V$ , $I_{OUT} = 500 \text{mA}^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 16.6 |      |       |  |
|                        |                                          | $V_{IN} = 1.8V$ , $I_{OUT} = 500 \text{mA}^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 23.0 |      |       |  |
|                        |                                          | V <sub>IN</sub> = 1.5V, I <sub>OUT</sub> = 500mA, T <sub>A</sub> = 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 29.4 | 40.0 |       |  |
| V <sub>IH</sub>        | EN Input Logic High Level                | V <sub>IN</sub> = 1.5V to 5.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.15 |      |      |       |  |
| V <sub>IL</sub>        | EN Input Logic Low Level                 | $V_{IN} = 1.8V \text{ to } 5.5V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      | 0.65 | V     |  |
| VIL                    | Liv input Logic Low Level                | $V_{IN} = 1.5V \text{ to } 1.8V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      | 0.60 |       |  |
| ROUT_PD                | OUT Pull-Down (Option -1)                | $V_{EN} = 0V^9$ , $I_{PD} = 2mA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 30   |      | Ω     |  |
| R <sub>EN_DOWN</sub>   | EN Pull-down Resistor                    | $V_{IN} = V_{EN} = 1.5V \text{ to } 5.5V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.38 | 7.65 | 8.86 | МΩ    |  |
| Іоит_оит               | VOUT Shutdown Current                    | $V_{EN} = 0V$ , $V_{OUT} = 4.2V$ , $V_{IN} = Short to GND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      | 1.0  | μΑ    |  |
| tdelay_on              | Turn-On Delay Time <sup>10</sup>         | V 45V D 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1.7  |      |       |  |
| $t_R$                  | V <sub>OUT</sub> Rise Time <sup>10</sup> | $V_{IN} = 4.5V$ , $R_{LOAD} = 5\Omega$ , $C_{LOAD} = 100 \mu F$ , $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.7  |      | ms    |  |
| ton                    | Turn-On Time <sup>11</sup>               | OLOAD = 100μ1, 1A = 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 4.4  |      |       |  |
| tdelay_on              | Turn-On Delay Time <sup>10</sup>         | V 45V D 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1.7  |      |       |  |
| t <sub>R</sub>         | V <sub>OUT</sub> Rise Time <sup>10</sup> | $V_{IN} = 4.5V$ , $R_{LOAD} = 150\Omega$ ,<br>$C_{LOAD} = 100\mu F$ , $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1.5  |      | ms    |  |
| ton                    | Turn-On Time <sup>11</sup>               | $\frac{1}{2}$ OLOAD = $\frac{1}{2}$ O |      | 3.2  |      |       |  |
| t <sub>DELAY_OFF</sub> | Turn-Off Delay Time <sup>10</sup>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 1.8  |      |       |  |
| t <sub>F</sub>         | V <sub>OUT</sub> Fall Time <sup>10</sup> | $V = 4.5V$ , $R_{LOAD} = 150\Omega$ ,<br>$C_{LOAD} = 100\mu F$ , $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 34   |      | ms    |  |
| toff                   | Turn-Off Time <sup>12</sup>              | οιολύ – 100μι, 1λ – 25 ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 35   | _    |       |  |
| tdelay_off             | Turn-Off Delay Time <sup>10</sup>        | $V = 4.5V, R_{LOAD} = 150\Omega,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 0.8  |      |       |  |
| t <sub>F</sub>         | V <sub>OUT</sub> Fall Time <sup>10</sup> | Vout Fall Time <sup>10</sup> $C_{LOAD} = 100 \mu F$ , $T_A = 25 ^{\circ} C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 9.0  |      | ms    |  |
| toff                   | Turn-Off Time <sup>12</sup>              | KTS1605-1 Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 9.8  |      |       |  |

<sup>8.</sup> All specifications are 100% production tested at  $T_A = +25$ °C, unless otherwise noted. Specifications are over -40°C to +85°C and are guaranteed by design

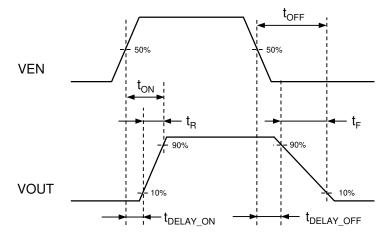
<sup>9.</sup> Guaranteed by design and not 100% tested

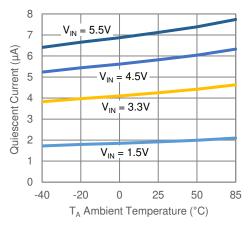
<sup>10.</sup>  $t_{DELAY\_ON}/t_{DELAY\_OFF}/t_R/t_F$  are defined in Figure 1

<sup>11.</sup>  $t_{ON} = t_R + t_{DELAY\_ON}$ 

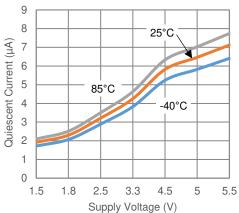
<sup>12.</sup>  $t_{OFF} = t_F + t_{DELAY\_OFF}$ 



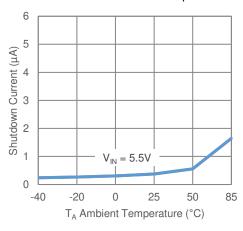




Figure 1. Timing Diagram

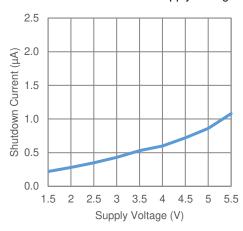



## **Typical Characteristics**

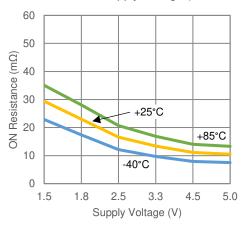
 $V_{IN} = 5V$ ,  $C_{IN} = 0.1 \mu F$ ,  $C_{OUT} = 1 \mu F$ , Temp = 25°C unless otherwise specified.



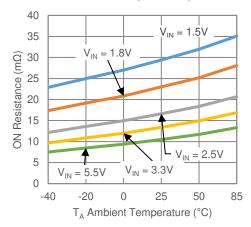




# Quiescent Current vs. Supply Voltage




#### Shutdown Current vs. Temperature



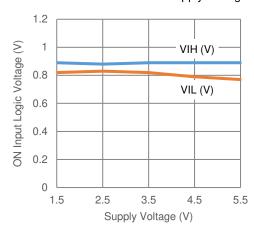

Shutdown Current vs. Supply Voltage



### ON Resistance vs. Supply Voltage (I<sub>OUT</sub> = 500mA)

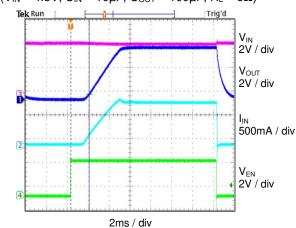


#### ON Resistance vs. Temperature (I<sub>OUT</sub> = 500mA)



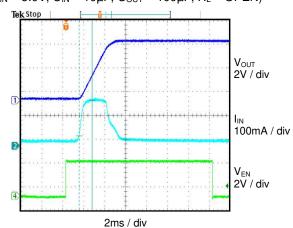



# **Typical Characteristics (continued)**


 $V_{IN} = 5V, \ C_{IN} = 0.1 \mu F, \ C_{OUT} = 1 \mu F, \ Temp = 25 ^{\circ}C$  unless otherwise specified.

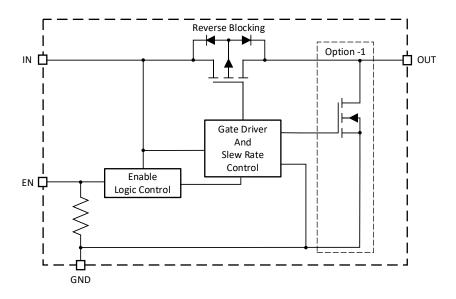
EN Pin Threshold vs. Supply Voltage




#### Turn-On & Turn-Off Response

 $(V_{IN} = 4.5V, C_{IN} = 10\mu F, C_{OUT} = 100\mu F, R_L = 5\Omega)$ 




#### In-rush Current Waveform

 $(V_{IN} = 5.0 V, \, C_{IN} = 10 \mu F, \, C_{OUT} = 100 \mu F, \, R_L = OPEN)$ 





## **Functional Block Diagram**



# **Functional Description**

The KTS1605 is an advanced slew-rate controlled high-side load switch comprised of a low resistance MOSFET power switch, level shift with slew-rate control logic and reverse blocking protection. The KTS1605 is a low resistance MOSFET power distribution switch designed to connect an external voltage, such as a DC power supply or battery, directly to the system. The high-side MOSFET is turned-on sequence is initiated via an active high, low voltage logic voltage signal. Once above the input threshold voltage, the MOSFET turn-on is slew-rate limited to avoid excessive current surges, due to high capacitance loads. By limiting the turn-on, large voltage over-shoot can also be avoided. Once fully on the MOSFET will provide a low resistance path to the load, both minimizing the voltage drop from IN to OUT, while keeping the power dissipation to a minimum.

Should the voltage on the output of The KTS1605 switch, in the OFF state, be higher than the input voltage, Reverse Blocking circuitry will be activated to stem the flow of current preventing power supplies for discharging.

In addition, the KTS1605 has an option for output auto discharge feature. This enables the device to quickly discharge the output when the device is disabled.

The KTS1605 integrates a pull-down resistor on the enable pin to ensure that the device should remain OFF when the EN is left floating.



## **Application Information**

#### **Enable Input**

The EN pin is compatible with active HIGH GPIO and CMOS logic voltage levels and operates over the 1.5V to 5.5V operating voltage range. The KTS1605 incorporates an internal pull-down resistor on the enable pin, to ensure that the device remains OFF, in the event that the pin is left floating.

#### **Reverse Current Blocking**

The KTS1605 implements reverse current blocking circuitry, to prevent reverse current flow through the switch. The reverse current blocking circuitry is active when the device is in the OFF state.

### **Auto Discharge Option**

The KTS1605 has an option for auto discharging the output when the part is disabled. This enables the device to quickly discharge the output when the device is disabled, and to remove any residual capacitor voltage.

#### **Input Capacitor**

To limit the voltage drop on the input supply caused by transient inrush currents, an input bypass capacitor is recommended. A minimum capacitance of  $1.0\mu$ F, must be placed as close as possible between pins VIN and GND) to be Compliant with IEC 61000-4-2 (Level 4).

Higher value capacitors can further help to reduce the voltage drop. Ceramic capacitors are recommended for their ability to withstand input current surges from low impedance sources such as batteries in portable devices.

#### **Output Capacitor**

Depending on the sink current during system start-up and system turn-off, a capacitor must be placed on the output. A 1.0µF or larger capacitor across OUT and GND pins is recommended to accommodate load transient condition. This capacitor can also help to prevent parasitic inductance which can force the output voltage to fall below GND during turn-off. The output capacitor has minimal effect on The KTS1605's turn-on slew-rate time.

#### **Inrush Current**

Inrush current occurs when the device is turned on. Inrush current is dependent on output capacitance and slewrate control capability, as expressed by:

$$extit{Inrush} = extit{C} extit{OUT} imes rac{ extit{V}_{ extit{IN}} - extit{V}_{ extit{INITIAL}}}{ extit{tr}} + extit{I}_{ extit{OAD}}$$

#### Where:

Couт - Output capacitance

t<sub>R</sub> - Slew-rate or rise time at V<sub>OUT</sub>

V<sub>IN</sub> - Input voltage

VINITIAL - Initial voltage at Cout, usually GND

ILOAD - Load current

The KTS1605 has a 2.7ms of slew-rate capability under  $4.5V_{IN}$  at 1000uF of  $C_{OUT}$  and  $5\Omega$  of  $R_{LOAD}$  so inrush current can be minimized and no input voltage drop appears.



#### **Layout Guidelines**

The KTS1605 integrates a 5A rated MOSFET, and the PCB design rules must be respected to properly transfer the heat out of the silicon. By increasing PCB area, the  $R\theta_{JA}$  of the package can be decreased, allowing higher power dissipation.

For the best performance, all traces should be as short as possible to minimize the inductance and parasitic effects. The input and output capacitors should be kept as close as possible to the input and output pins respectively. Using wide traces for input, output, and GND help reducing the case to ambient thermal impedance.

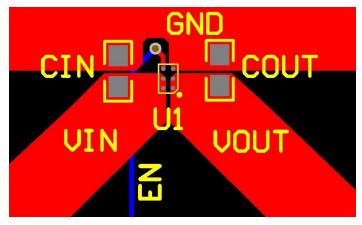
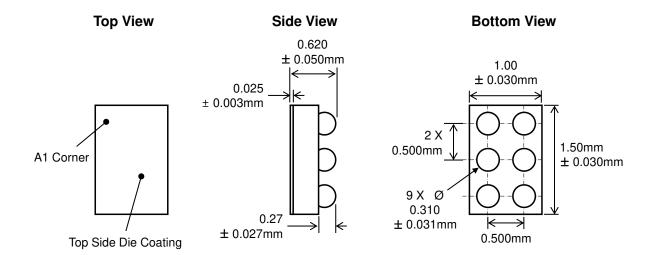
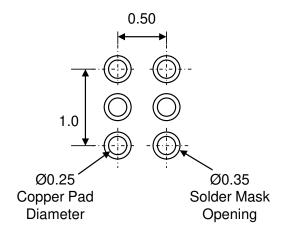




Figure 2. Recommended Layout for WLCSP-6 Package




## **Packaging Information**

### WLCSP-6, 1.0mm x 1.5mm x 0.620mm Package



### **Recommended Footprint**

### (NSMD Pad Type)



\* Dimensions are in millimeters.

Kinetic Technologies cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Kinetic Technologies product. No intellectual property or circuit patent licenses are implied. Kinetic Technologies reserves the right to change the circuitry and specifications without notice at any time.