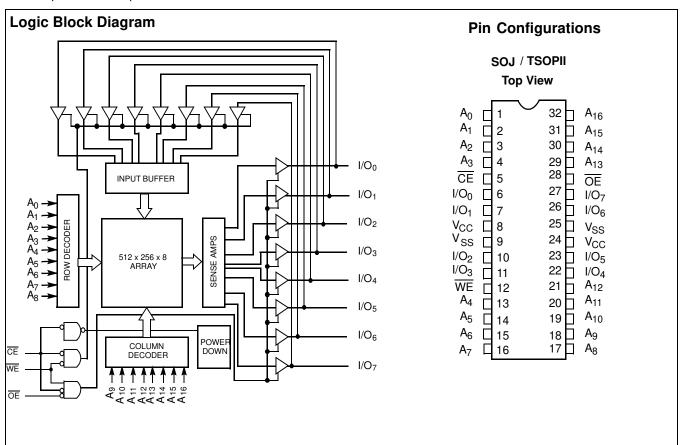


128K x 8 Static RAM

Features

- · High speed
 - $-t_{AA} = 10, 12, 15 \text{ ns}$
- · CMOS for optimum speed/power
- · Center power/ground pinout
- · Automatic power-down when deselected
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ options
- Functionally equivalent to CY7C1019

Functional Description


The CY7C1019B/10191B is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and three-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable (\overline{OE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1019B/10191B is available in standard 32-pin TSOP Type II and 400-mil-wide SOJ packages. Customers should use part number CY7C10191B when ordering parts with 10 ns t_{AA} , and CY7C1019B when ordering 12 and 15 ns t_{AA} .

Selection Guide

		7C10191B-10	7C1019B-12	7C1019B-15	Unit
Maximum Access Time		10	12	15	ns
Maximum Operating Current		150	140	130	mA
Maximum Standby Current		10	10	10	mA
	L	_	1	1	mA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on V_{CC} to Relative $GND^{[1]}$ –0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V_{CC} + 0.5V

DC Input Voltage^[1].....-0.5V to V_{CC} + 0.5V

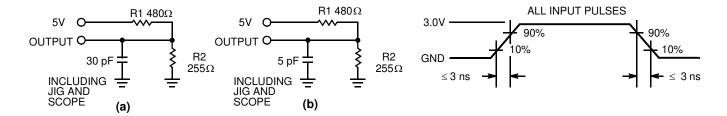
Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

			7C101	91B-10	7C1019B-12		7C1019B-15		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = - 4.0 mA	2.4		2.4		2.4		٧
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	٧
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	-1	+1	μА
l _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$	-5	+5	– 5	+5	– 5	+5	μА
Icc	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$		150		140		130	mA
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$		40		40		40	mA
	Power-Down Current —TTL Inputs	$V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL}, f = f_{MAX}$		20		20		20	
I _{SB2}	Automatic CE	Max. V _{CC} ,		10		10		10	mA
	Power-Down Current —CMOS Inputs	$ \begin{array}{c c} \text{CE} \geq \text{V}_{CC} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V}, \\ \text{or } \text{V}_{\text{IN}} \leq 0.3\text{V}, \text{f} = 0 \end{array} $		_		1		1	


Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

- 1. $V_{\rm IL}$ (min.) = -2.0V for pulse durations of less than 20 ns. 2. $T_{\rm A}$ is the "Instant On" case temperature.
- 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT $\begin{array}{ccc} & 167\Omega \\ \hline & & \\$

Switching Characteristics^[4] Over the Operating Range

		7C101	91B-10	7C10	19B-12	7C10	19B-15	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		•		•		•	•	
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA}	Address to Data Valid		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		5		6		7	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		5		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12		15	ns
Write Cycle ^{[7}	7, 8]		•					-
t _{WC}	Write Cycle Time	10		12		15		ns
t _{SCE}	CE LOW to Write End	8		9		10		ns
t _{AW}	Address Set-Up to Write End	7		8		10		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	7		8		10		ns
t _{SD}	Data Set-Up to Write End	5		6		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		5		6		7	ns

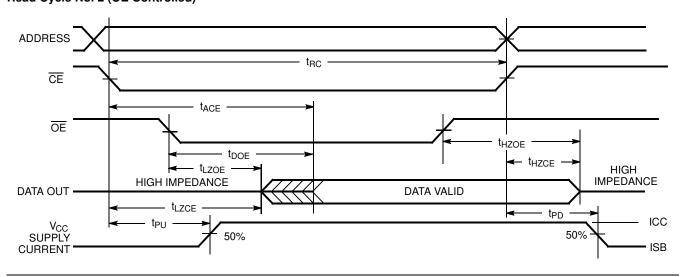
Notes:


- 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 5. thzoe, thzee, thzee, and thzwe are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
- 8. The minimum write cycle time for Write Cycle no. 3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

Data Retention Characteristics Over the Operating Range (L Version Only)

Parameter	Description	Conditions	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention	No input may exceed V _{CC} + 0.5V	2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V,}$		300	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$V_{\text{IN}} \ge V_{\text{CC}} - 0.3 \text{V} \text{ or } V_{\text{IN}} \le 0.3 \text{V}$	0		ns
t _R	Operation Recovery Time		200		μS

Data Retention Waveform

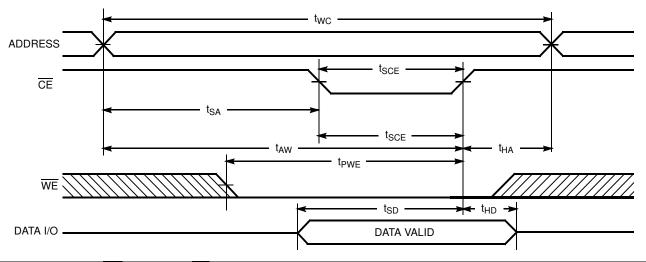


Switching Waveforms

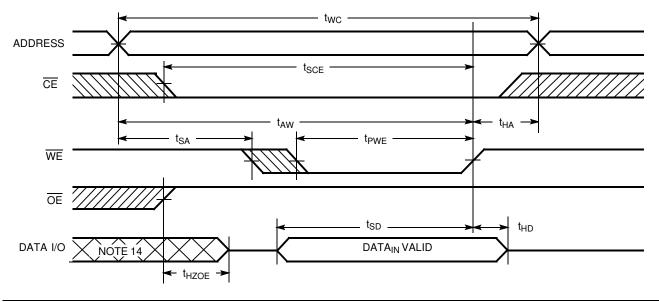
Read Cycle No. 1^[9, 10]

Read Cycle No. 2 (OE Controlled)[10, 11]

Notes:


- 9. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 10. WE is HIGH for read cycle.

 11. Address valid prior to or coincident with CE transition LOW.

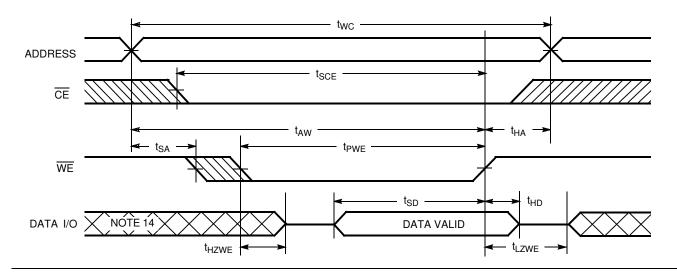


Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[12, 13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[12, 13]

Notes:


12. Data I/O is high impedance if $\overline{OE} = V_{|H-}$ 13. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

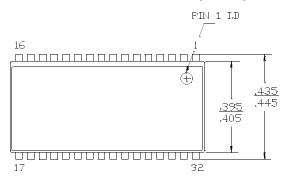
14. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

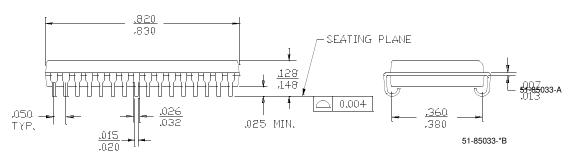
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[13]

Truth Table

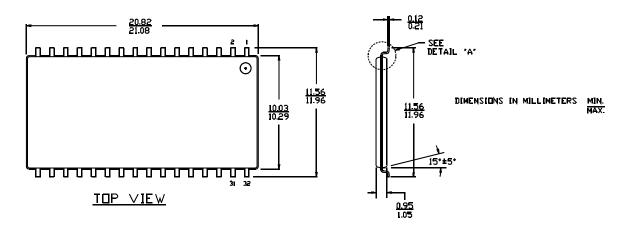
CE	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

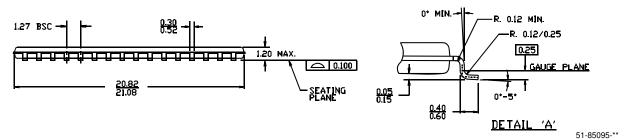

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1019B-12VC	V33	32-Lead 400-Mil Molded SOJ	Commercial
	CY7C1019B-12ZC	ZS32	32-Lead TSOP Type II	
	CY7C1019B-12ZXC	ZS32	32-Lead TSOP Type II (Pb -Free)	
15	CY7C1019B-15VC	V33	32-Lead 400-Mil Molded SOJ	Commercial
	CY7C1019B-15VI	V33	32-Lead 400-Mil Molded SOJ	Industrial
	CY7C1019B-15ZC	ZS32	32-Lead TSOP Type II	Commercial
	CY7C1019B-15ZXC	ZS32	32-Lead TSOP Type II (Pb -Free)	
	CY7C1019B-15ZI	ZS32	32-Lead TSOP Type II	Industrial
lease contac	ct local sales representative regarding	availability of pa	rts	



Package Diagrams


32-Lead (400-mil) Molded SOJ V33



DIMENSIONS IN INCHES MIN. MAX.

32-Lead TSOP II ZS32

All product or company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Document Title: CY7C1019B/CY7C10191B 128K x 8 Static RAM Document Number: 38-05026						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	109949	09/25/01	SZV	Change from Spec number: 38-01115 to 38-05026			
*A	116170	08/14/02	HGK	SOJ (400-mil) package outline replacing incorrect SOJ package Pin for pin compatible with CY7C1019 Industrial packages added to Ordering Information			
*B	397875	See ECN	NXR	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Updated the Ordering Information Table on page # 6.			