

General Purpose Low-Power Audio DSP

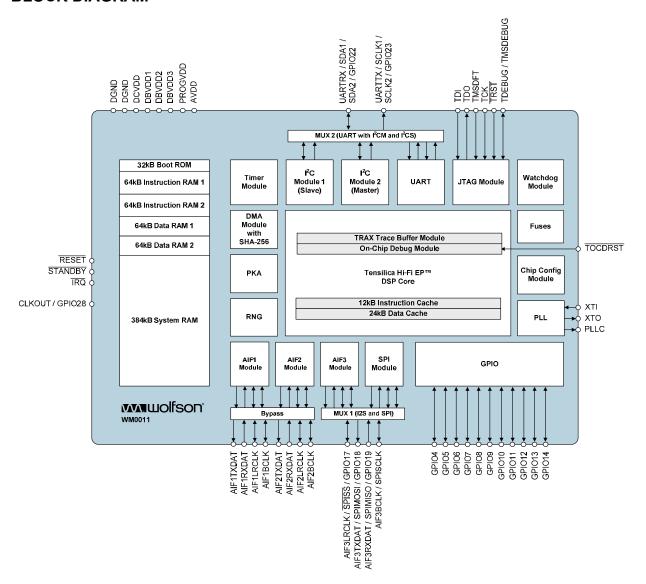
DESCRIPTION

WM0011 Audio DSP provides Wolfson HD audio quality, with a power-budget targeted at handheld battery-powered audio devices

WM0011 combines the advanced Tensilica HiFi EP™ audio DSP with an I/O and peripheral set optimized for flexible integration into smartphones, tablets and other portable consumer electronics devices. WM0011 is ideal for extremely power-efficient implementations of advanced voice enhancement, telephony noise reduction, voice and music CODECs and general audio enhancement.

A very wide range of audio CODECs, voice CODECs and third-party algorithms from such companies as Waves Audio, SRS Labs and Dolby are available, providing a rich portfolio of audio-processing options that can be integrated into a device with no additional software development.

WM0011 comes in a space-saving 3x3mm 49-ball W-CSP package with 0.4mm pitch.


APPLICATIONS

- Wireless audio devices headsets, microphones, speakerphones
- Portable media devices
- Automotive
- General purpose digital signal processor for consumer audio applications
- Smartphones

FEATURES

- 260MHz Tensilica HiFi EP™ 24-bit audio digital signal processor
 - C-programmable with advanced debugging and profiling tool set
 - 256kB local RAM memory
 - 36kB Instruction / Data cache memory
 - 384kB general-purpose system RAM
 - Flexible boot options with 32kB boot ROM
 - 32 Channel DMA
 - XTAL or CMOS clock input
 - Low-power programmable PLL
- Securit
 - Support for HW Authentication
 - Random Number Generator (RNG) to assist security algorithms
- Peripherals
 - SPI Master / Slave interface
 - 3 x multi-channel AIF interfaces, including I2S and TDM
 - UART
 - I²C Master
 - I²C Slave
 - 3 x 32-bit general-purpose timer modules
 - Watchdog timer
 - On-chip JTAG debug unit and trace buffer
 - GPIO
- Software-defined standby modes for extended battery life

BLOCK DIAGRAM

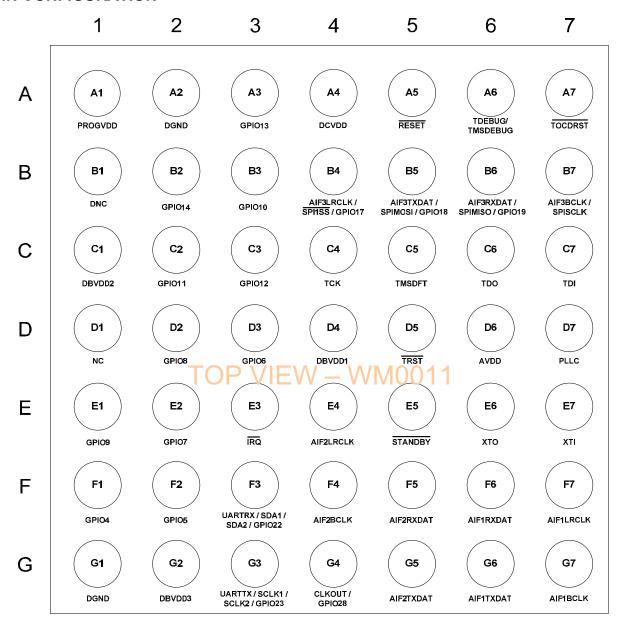
TABLE OF CONTENTS

DESCRIPTION	1
APPLICATIONS	
FEATURES	
BLOCK DIAGRAM	
TABLE OF CONTENTS	
PIN CONFIGURATION	
ORDERING INFORMATION	
PIN DESCRIPTION	
ABSOLUTE MAXIMUM RATINGS	
RECOMMENDED OPERATING CONDITIONS	13
THERMAL PERFORMANCE	14
ELECTRICAL CHARACTERISTICS	15
TYPICAL POWER CONSUMPTION	16
SIGNAL TIMING REQUIREMENTS	17
SYSTEM CLOCK & PHASE LOCKED LOOP (PLL)	
AUDIO INTERFACE (AIF) TIMING	
DIGITAL AUDIO INTERFACE – MASTER MODE	
DIGITAL AUDIO INTERFACE – SLAVE MODE	
SPI INTERFACE TIMING	20
SPI INTERFACE - MASTER MODE	20
SPI INTERFACE – SLAVE MODE	
CONTROL INTERFACE (I2C) TIMING	
DEVICE DESCRIPTION	
INTRODUCTION	
BLOCK DIAGRAM	
DESCRIPTION OF MODULES	
BOOT ROM	
TIGHTLY-COUPLED MEMORY (TCM) RAM	
MULTI-PURPOSE RAM	
TENSILICA HIFI EP™ DSP CORE	
TIMER MODULE	
WATCHDOG MODULE	
IRQC MODULE	
I ² C MASTER AND SLAVE MODULE	
PLL MODULE	
AUDIO INTERFACE (AIF) MODULES	
SPI MODULE	
FUSE MODULE	
DMA MODULE	27
TRAX TRACE BUFFER MODULE	27
JTAG MODULE	
ON-CHIP DEBUG MODULE	28

POWER-ON AND RESET CONTROL	29
POWER ON RESET	29
HARDWARE RESET	30
WARM RESET	30
SOFTWARE RESET	31
JTAG RESET	
BOOT SEQUENCE CONTROL	
SOFTWARE / CONFIGURATION DOWNLOAD	
CODE PACKET FORMAT	
CODE HEADER DOWNLOAD	
CODE DATA DOWNLOAD	
PLL CONFIGURATION DOWNLOAD	
BOOT STATUS AND ERROR REPORTING	35
BOOT SEQUENCE FLOW DIAGRAMS	36
INTERRUPTS	
MEMORY MAP	
CLOCKING	
CRYSTAL OSCILLATOR	
PHASE LOCKED LOOP (PLL)	
CORE DEVICE PERIPHERALS	
CCM - CHIP CONFIGURATION MODULE	
CCM FEATURES	
CLOCKING CONTROL	
RESET CONTROLINTERFACE PORT SELECTION	
GPIO / STANDBY DE-BOUNCE	
I/O BUFFER CONTROL	
SLEEP / WAKE-UP CONTROL	
AIF BYPASS MODE	
CCM REGISTER MAP	
CCM CONTROL – GENERAL CONTROL REGISTER	
CCM STATUS – GENERAL STATUS REGISTER	
CCM GPIO SEL – PORT SELECT REGISTER	
CCM CLK CTRL1 – CLOCK CONTROL 1 REGISTER	
CCM CLK CTRL2 – CLOCK CONTROL 2 REGISTER	
CCM CLK CTRL3 - CLOCK CONTROL 3 REGISTER	
CCM_PLL_LOCK_CTRL - PLL LOCK DETECT CONTROL REGISTER	
CCM_CLK_ENA - CLOCK ENABLE REGISTER	66
CCM_SOFTRST – SOFTWARE RESET REGISTER	
CCM_WKUP_CTRL - CHIP WAKEUP CONTROL REGISTER	
CCM_DB_STBY - STANDBY DE-BOUNCE CONTROL REGISTER	
CCM_DB_GINT1 – GINT1 DE-BOUNCE CONTROL REGISTER	
CCM_DB_GINT2 - GINT2 DE-BOUNCE CONTROL REGISTER	
CCM_SCRATCH1 - SCRATCHPAD 1 REGISTER	
CCM_SCRATCH2 - SCRATCHPAD 2 REGISTER	
CCM_SCRATCH3 - SCRATCHPAD 3 REGISTER	
CCM_SCRATCH4 – SCRATCHPAD 4 REGISTER	
CCM_IOCTRL1 – I/O CONTROL 1 REGISTER	
CCM_IOCTRL2 – I/O CONTROL 2 REGISTER	
CCM_IOCTRL3 – I/O CONTROL 3 REGISTER	
CCM_IOCTRL4 - I/O CONTROL 4 REGISTER	
CCM_IOCTRL5 - I/O CONTROL 5 REGISTER	
CCM_IOCTRL6 - I/O CONTROL 6 REGISTER	81

CCM IOCTRL7 - I/O CONTROL 7 REGISTER	83
CCM_IOCTRL8 - I/O CONTROL 8 REGISTER	
CCM_IOCTRL9 - I/O CONTROL 9 REGISTER	
CCM_IOCTRL10 - I/O CONTROL 10 REGISTER	
CCM IOCTRL11 – I/O CONTROL 11 REGISTER	
TIMER (TMR) MODULES	
TIMER DESCRIPTION	
TIMER INTERRUPTS	
TIMER REGISTER MAP	
TMR PRESCALE – TIMER PRESCALE REGISTER	
TMR_MAX_CNT - TIMER MAXIMUM COUNT REGISTER	
TMR_CUR_CNT = TIMER MAXIMOM COUNT REGISTER TMR_CUR_CNT = TIMER CURRENT COUNT REGISTER	
TMR_CTRL - TIMER CONTROL REGISTER	
TMR_INT_STATUS - TIMER INTERRUPT STATUS REGISTER	
I ² C INTERFACE MODULE	
I2C FEATURES	
I2C TRANSFERS	
I2C INTERRUPTS	
I2C REGISTER MAP I2C CFG – I ² C CONFIGURATION REGISTER	
I2C_STATUS – I2C STATUS REGISTER	
12C_INT_CTRL – I ² C INTERRUPT CONTROL REGISTER	
12C_MCTRL - I ² C MASTER ACCESS CONTROL REGISTER	
I2C_MRXDATA – I ² C MASTER RECEIVE DATA REGISTER	
I2C_MTXDATA – I ² C MASTER TRANSMIT DATA REGISTER	
I2C_BAUD – I ² C BAUD RATE REGISTER	
I2C_SRXDATA – I ² C SLAVE RECEIVE DATA REGISTER	
12C_STXDATA – I ² C SLAVE TRANSMIT DATA REGISTER	
I2C_SLV_ADDR – I ² C SLAVE ADDRESS REGISTER	
FUSE MEMORY	
FUSE MEMORY DEFINITION	
CYCLIC REDUNDANCY CHECK (CRC)	
SOFTWARE AUTHENTICATION	
GENERAL PURPOSE INPUT/OUTPUT (GPIO) MODULE	
GPIO FEATURES	
INPUT / OUTPUT CONTROL	
LEVEL/EDGE INTERRUPT CONTROL	
GPIO INTERRUPTS	
GPIO REGISTER MAP	
GPIO_OUT – GPIO OUTPUT REGISTER	
GPIO_IN - GPIO INPUT REGISTER	
GPIO_DIR - GPIO DIRECTION REGISTER	
GPIO_INV - GPIO INVERSION REGISTER	
EDGE DETECTION	
GPIO_EDGE0 - GPIO EDGE DETECTION 0 REGISTER	
GPIO_EDGE1 – GPIO EDGE DETECTION 1 REGISTER	
GPIO_INT_CTRL - GPIO INTERRUPT CONTROL REGISTER	
GPIO_INT_CLR - GPIO INTERRUPT CLEAR REGISTER	
GPIO_INT_MSK - GPIO INTERRUPT MASK REGISTER	
GPIO_INT_VECT - GPIO INTERRUPT VECTOR REGISTER	
GPIO_INT_STS - GPIO INTERRUPT STATUS REGISTER	
INTERRUPT CONTROLLER (IRQC) MODULE	
INTERRUPT CONTROLLER (IRQC) FEATURES	
INPUT / OUTPUT CONTROL	125

. = . = . = . = =	
LEVEL/EDGE INTERRUPT CONTROL	
IRQC MODULE INTERRUPTS	
IRQC MODULE REGISTER MAP	
IRQC_OUT – IRQ OUTPUT REGISTER	
IRQC_IN - IRQ INPUT REGISTER	
IRQC_DIR - IRQ DIRECTION REGISTER	
IRQC_INV - IRQ INVERSION REGISTER	
EDGE DETECTION	
IRQC_EDGE0 - IRQ EDGE DETECTION 0 REGISTER	
IRQC_EDGE1 – IRQ EDGE DETECTION 1 REGISTER	
IRQC_INT_CTRL - IRQ INTERRUPT CONTROL REGISTER	
IRQC_INT_CLR - IRQ INTERRUPT CLEAR REGISTER	
IRQC_IRQ_MSK - IRQ INTERRUPT MASK REGISTER	
IRQC_IRQ_VECT - IRQ INTERRUPT VECTOR REGISTER	
IRQC_IRQ_STS - IRQ INTERRUPT STATUS REGISTER	
IRQC_FIRQ_MSK - IRQ FAST INTERRUPT MASK REGISTER	
IRQC_FIRQ_VECT - IRQ FAST INTERRUPT VECTOR REGISTER	139
IRQC_FIRQ_STS - IRQ FAST INTERRUPT STATUS REGISTER	
TRAX TRACE BUFFER MODULE	141
TRAX REGISTER MAP	141
TRAX_CONFIG - TRAX TRACE BUFFER CONFIGURATION REGISTER	142
TRAX_CTRL - TRAX CONTROL REGISTER	142
TRAX_STS - TRAX STATUS REGISTER	144
TRAX_DATA – TRAX DATA REGISTER	145
TRAX ADDR – TRAX ADDRESS REGISTER	145
TRAX_TRIG_PC - TRAX PC MATCH TRIGGER REGISTER	146
TRAX PC MATCH - TRAX PC MATCH CONTROL REGISTER	
TRAX DLY CNT - TRAX POST-TRIGGER DELAY COUNT REGISTER	148
WATCHDOG TIMER (WDT) MODULE	
WATCHDOG DESCRIPTION	
WATCHDOG TIMER INTERRUPT	
WATCHDOG REGISTER MAP	
WDT_CTRL - WATCHDOG CONTROL REGISTER	
WDT_CNT_RESTART - WATCHDOG COUNTER RESTART REGISTER	
WDT MAX CNT - WATCHDOG MAXIMUM COUNT REGISTER	
WDT_CUR_CNT - WATCHDOG CURRENT COUNT REGISTER	
WDT RST LEN - WATCHDOG RESET PULSE LENGTH REGISTER	
UART MODULE	
UART FEATURES	
UART INTERRUPTS	
UART REGISTER MAP	
UART DAT - UART DATA REGISTER	
UART INT CTRL - UART INTERRUPT CONTROL REGISTER	
UART FIFO CTRL - UART FIFO CONTROL REGISTER	
UART_INT_STATUS - UART INTERRUPT STATUS REGISTER	
UART LINE CTRL - UART LINE CONTROL REGISTER	
UART_LOOPBACK_CTRL - UART LOOPBACK CONTROL REGISTER	
UART LINE STS - UART LINE STATUS REGISTER	
UART BAUD LSW - UART BAUD LSW REGISTER	
UART_BAUD_MSW - UART BAUD MSW REGISTER	
SERIAL PERIPHERAL INTERFACE (SPI) MODULE	
SPI FEATURESSPI FEATURES	
SPI MASTER MODE	
SPI SLAVE MODE	
01 1 0L (V L 1910 DL	108


SPISCLK (CLOCK) CONFIGURATION	159
MISO/MOSI (DATA) CONFIGURATION	161
SPISS (SLAVE SELECT) PROTOCOL	
SPISS (SLAVE SELECT) CONFIGURATION AND TIMING CONTROL	162
EARLY TRANSMIT DATA PHASE	163
AUTOMATED RE-TRANSMISSION OF DATA WORD	164
DOUBLE-BUFFERED TRANSMIT	164
SPI BYTE-PACKING	
SPI DMA OPERATIONS	
SPI CONTROL SEQUENCES	
SPI INTERRUPTS	
SPI REGISTER MAP	
SPI CTRL – SPI CONTROL REGISTER	
SPI CFG – SPI CONFIGURATION REGISTER	
SPI SCLKDIV – SPI CLOCK DIVISION REGISTER	
SPI STATUS – SPI STATUS REGISTER	
SPI SS CFG- SPI SLAVE SELECT CONFIGURATION REGISTER	
SPI DAT- SPI DATA REGISTER	
SPI INT CTRL – SPI INTERRUPT CONTROL REGISTER	
SPI DMA CTRL- SPI DMA CONTROL REGISTER	
SPI BP CNT – SPI BYTE PACK WORD COUNT REGISTER	
SPI BP CNT RAW – SPI BYTE PACK RAW WORD COUNT REGISTER	
DMA CONTROLLER MODULE	
DMA FEATURES	
DMA CHANNEL CONTROL	
DMA CHANNEL ARBITRATION	
NORMAL DMA OPERATION	
SHA MODULE DATA INPUT	
DOUBLE-BUFFER DMA OPERATION	
LINKED LIST DMA CHAINING	
DMA STRIDING	
BURST DATA TRANSFERS	
DMA BYTE SWAP	
ENDIAN BYTE SWAP	
DMA INTERRUPTS	
DMA REGISTER MAP	
DMA_GLB_CTRL REGISTER	
DMA_INT_STS REGISTER	
DMA_TC_INT_MSK REGISTER	
DMA_ERR_INT_MSK REGISTER	
DMA_WMARK_INT_MSK REGISTER	
DMA_LINKNUL_INT_MSK REGISTER	
DMA_TC_STS REGISTER	
DMA_ERR_STS REGISTER	
DMA_WMARK_STS REGISTER	
DMA_LINKNUL_STS REGISTER	
DMA_FIFO_INT_MASK REGISTER	
DMA_FIFO_STATUS REGISTER	
DMA_AHB_SLAVE_ADDR REGISTER	
DMA_PRI_SRC REGISTER	
DMA_PRI_DST REGISTER	
DMA_PRI_LEN REGISTER	
DMA_LINK_ADDR REGISTER	
DMA_SEC_SRC REGISTER	200

DMA OFO DOT DECICIED	004
DMA_SEC_DST REGISTER	
DMA_SEC_LEN REGISTER	
DMA_COUNT REGISTER	
DMA_WMARK_CNT REGISTER	
DMA_CTRL1 REGISTER DMA CTRL2 REGISTER	
DMA_CTRL2 REGISTERDMA SOFT ABORT REGISTER	
DMA_STRIDE REGISTER	
DMA PROGRAM EXAMPLES	
EXAMPLE 1: PERIPHERAL TRANSFERS USING DMA	
EXAMPLE 2: MEMORY TO MEMORY TRANSFERS USING DMA	
EXAMPLE 3: LINKED LIST DMA OPERATION	
AIF INTERFACE MODULES	
AIF FEATURES	
AIF INTERFACE FORMATS	
AIF INTERRUPTS	
AIF REGISTER MAP	
AIF RX DAT – AIF RECEIVE DATA REGISTER	
AIF RX CH ID – AIF RECEIVE CHANNEL ID REGISTER	
AIF RX STS – AIF RECEIVE FIFO STATUS REGISTER	
AIF_RX_LIMIT – AIF RECEIVE FIFO UPPER LIMIT REGISTER	
AIF TX DAT – AIF TRANSMIT DATA REGISTER	
AIF TX CH ID – AIF TRANSMIT CHANNEL ID REGISTER	
AIF TX STS – AIF TRANSMIT FIFO STATUS REGISTER	
AIF TX LIMIT – AIF TRANSMIT FIFO LOWER LIMIT REGISTER	221
AIF_DATA_CFG – AIF DATA CONFIGURATION REGISTER	221
AIF_CLK_CFG - AIF SERIAL CLOCKING CONFIGURATION REGISTER	224
AIF_CTRL – AIF CONTROL REGISTER	225
AIF_INT_CTRL - AIF INTERRUPT CONTROL REGISTER	
AIF_MCLK_DIV – AIF MCLK DIVIDER REGISTER	
JTAG (JTAG) MODULE	
CROSS-TRIGGER MODULE (CTM)	228
ON-CHIP DEBUG (OCD) MODULE	
APPLICATIONS INFORMATION	229
CONNECTIVITY DIAGRAM	
PACKAGE DIMENSIONS	
MPORTANT NOTICE	
ADDRESS:	
PEVISION HISTORY	

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	CUSTOM FUSES	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM0011ECS/R	Un-programmed	-40 to +85°C	49-ball W-CSP	MSL1	260°C
	1 0		(Pb-free, Tape and reel)		
WM0011xxxECS/R	Custom-	-40 to +85°C	49-ball W-CSP	MSL1	260°C
VVIVIOUTIXXXECS/R	Programmed	-40 to +65 C	(Pb-free, Tape and reel)	IVIOLI	200 C

Note:

Reel quantity = 5000

PIN DESCRIPTION

PIN NO	NAME	TYPE	PULL DEVICE	DESCRIPTION	
Powe	r and Ground Reference				
D4	DBVDD1	Supply	-	I/O supply (except GPIO pins 414)	
A4	DCVDD	Supply	-	Core supply	
A1	PROGVDD	Supply	-	Fuse programming supply. Connect to GND.	
A2, G1	DGND	Supply	-	Ground	
D6	AVDD	Supply	-	Analogue supply	
D7	PLLC	Reference	-	PLL capacitor connection (0.1µF recommended)	
C1	DBVDD2	Supply	-	I/O supply (GPIO10, GPIO11, GPIO12, GPIO13, GPIO14 pins)	
G2	DBVDD3	Supply	-	I/O supply (GPIO4, GPIO5, GPIO6, GPIO7, GPIO8, GPIO9 pins)	
Clock	/ Reset / Miscellaneous Interfaces	}			
E7	XTI	Input	-	Crystal connection or digital clock input	
E6	хто	Output	-	Crystal connection	
A5	RESET	Input	Pull-Up	Device reset	
E5	STANDBY	Input	Pull-Up	Standby input signal	
E3	ĪRQ	Output	Pull-Up	Interrupt output	
G4	CLKOUT/GPIO28	Input / Output	Pull-Down	Reference clock output / GPIO pin	
Audio	Interface 1 (AIF1)				
G6	AIF1TXDAT	Output	Pull-Down	AIF1 data output	
F6	AIF1RXDAT	Input	Pull-Down	AIF1 data input	
F7	AIF1LRCLK	Input / Output	Pull-Down	AIF1 frame clock	
G7	AIF1BCLK	Input / Output	Pull-Down	AIF1 bit clock	
Audio	Interface 2 (AIF2)				
G5	AIF2TXDAT	Output	Pull-Down	AIF2 data output	
F5	AIF2RXDAT	Input	Pull-Down	AIF2 data input	
E4	AIF2LRCLK	Input / Output	Pull-Down	AIF2 frame clock	
F4	AIF2BCLK	Input / Output	Pull-Down	AIF2 bit clock	
Audio	Interface 3 (AIF3) / Control Interfa	ice (SPI)			
B5	AIF3TXDAT/SPIMOSI/GPIO18	Input / Output	Pull-Down	AIF3 data output / SPI Master Out Slave In / GPIO ¹	
В6	AIF3RXDAT/SPIMISO/GPIO19	Input / Output	Pull-Down	AIF3 data input / SPI Master In Slave Out / GPIO1	
В4	AIF3LRCLK/SPISS/GPIO17	Input / Output	Pull-Up	AIF3 frame clock / SPI slave select / GPIO ¹	

^{*} xxx = Unique Custom Fuse part number

^{**} Custom programmed minimum order quantity 50,000.

PIN NO	NAME	TYPE	PULL DEVICE	DESCRIPTION	
В7	AIF3BCLK/SPISCLK	Input / Output	Pull-Down	AIF3 bit clock / SPI serial clock ¹	
UART	/ I ² C Master & Slave Interfaces				
F3	UARTRX/SDA1/SDA2/GPIO22	Input / Output	Pull-Down	UART RX / Serial data 1 (slave) / Serial data 2 (master) / GPIO ²	
G3	UARTTX/SCLK1/SCLK2/GPIO23	Input / Output	Pull-Down	UART TX / Serial clock 1 (slave) / Serial clock 2 (master) / GPIO ²	
GPIO					
F1	GPIO4	Input / Output	Pull-Up/Down	GPIO pin	
F2	GPIO5	Input / Output	Pull-Up/Down	GPIO pin	
D3	GPIO6	Input / Output	Pull-Up/Down	GPIO pin	
E2	GPIO7	Input / Output	Pull-Up/Down	GPIO pin	
D2	GPIO8	Input / Output	Pull-Up/Down	GPIO pin	
E1	GPIO9	Input / Output	Pull-Up/Down	GPIO pin	
В3	GPIO10	Input / Output	Pull-Up/Down	GPIO pin	
C2	GPIO11	Input / Output	Pull-Up/Down	GPIO pin	
C3	GPIO12	Input / Output	Pull-Up/Down	GPIO pin	
А3	GPIO13	Input / Output	Pull-Up/Down	GPIO pin	
B2	GPIO14	Input / Output	Pull-Up/Down	GPIO pin	
Debu	g				
C4	TCK	Input	Pull-Up	JTAG clock	
A6	TDEBUG/TMSDEBUG	Input / Output	Pull-Up	Test Mode Debug output / Test Mode Select input	
C7	TDI	Input	Pull-Up	JTAG data input	
C6	TDO	Output	Pull-Up	JTAG data output	
C5	TMSDFT	Input	Pull-Up	JTAG mode select input	
A7	TOCDRST	Input	Pull-Up	Maskable chip reset from the debug tool	
D5	TRST	Input	Pull-Down	JTAG Test Access Port (TAP) block reset	
Other					
B1	DNC			Do Not Connect	
D1	NC			Not used - connect to GND.	

Notes:

- 1. The SPI interface I/O pads are multiplexed with AIF3
- 2. The UART, I2C master and I2C slave signals are multiplexed into two I/O pads.
- 3. The I/O pad multiplexers are configured during the boot-up sequence, as determined by the Custom Fuse settings.

Table 1 identifies the default power-up condition of each of the input / output pins, assuming that the Custom Fuses are not programmed.

Application-specific parameters for configuring the input / output pins, and many other parameters, may be selected using the integrated one-time-programmable fuses. See "Boot Sequence Control" for further details.

PIN NO	NAME	DEFAULT FUNCTION / RESET CONDITION (FUSES NOT PROGRAMMED)			
E7	XTI	XTI	input		
E6	XTO	XTO	output		
A5	RESET	RESET	input	Pull-up enabled	
E5	STANDBY	STANDBY	input	Pull-up enabled	
E3	ĪRQ	ĪRQ	output	Pull-up enabled	
G4	CLKOUT/GPIO28	CLKOUT	output	Pull-down enabled	
G6	AIF1TXDAT	AIF1TXDAT	output	Pull-down enabled	
F6	AIF1RXDAT	AIF1RXDAT	input	Pull-down enabled	

PIN NO	NAME	DEFAULT FUNCTION / RESET CONDITION (FUSES NOT PROGRAMMED)			
F7	AIF1LRCLK	AIF1LRCLK	input	Pull-down enabled	
G7	AIF1BCLK	AIF1BCLK	input	Pull-down enabled	
G5	AIF2TXDAT	AIF2TXDAT	output	Pull-down enabled	
F5	AIF2RXDAT	AIF2RXDAT	input	Pull-down enabled	
E4	AIF2LRCLK	AIF2LRCLK	input	Pull-down enabled	
F4	AIF2BCLK	AIF2BCLK	input	Pull-down enabled	
B5	AIF3TXDAT/SPIMOSI/GPIO18	SPIMOSI	output	Pull-down enabled	
B6	AIF3RXDAT/SPIMISO/GPIO19	SPIMISO	input	Pull-down enabled	
B4	AIF3LRCLK/SPISS/GPIO17	SPISS	output	Pull-up enabled	
B7	AIF3BCLK/SPISCLK	SPISCLK	output	Pull-down enabled	
F3	UARTRX/SDA1/SDA2/GPIO22	UARTRX	input	Pull-down enabled	
G3	UARTTX/SCLK1/SCLK2/GPIO23	UARTTX	output	Pull-down enabled whilst RESET is asserted. Pull-down is disabled after RESET is released. UARTTX is then actively driven.	
F1	GPIO4	[Disabled]	input/output	Pull-down enabled	
F2	GPIO5	[Disabled]	input/output	Pull-down enabled	
D3	GPIO6	[Disabled]	input/output	Pull-down enabled	
E2	GPIO7	[Disabled]	input/output	Pull-down enabled	
D2	GPIO8	[Disabled]	input/output	Pull-down enabled	
E1	GPIO9	[Disabled]	input/output	Pull-down enabled	
В3	GPIO10	[Disabled]	input/output	Pull-down enabled whilst RESET is asserted. Pull-up is enabled after RESET is released.	
C2	GPIO11	[Disabled]	input/output	Pull-down enabled	
C3	GPIO12	[Disabled]	input/output	Pull-down enabled	
A3	GPIO13	[Disabled]	input/output	Pull-down enabled	
B2	GPIO14	[Disabled]	input/output	Pull-down enabled	
C4	TCK	TCK	input	Pull-up enabled	
A6	TDEBUG/TMSDEBUG	TDEBUG/TMSDEBUG		Pull-up enabled	
C7	TDI	TDI	input	Pull-up enabled	
C6	TDO	TDO	output	Pull-down enabled	
C5	TMSDFT	TMSDFT	input	Pull-up enabled	
A7	TOCDRST	TOCDRST	input	Pull-up enabled	
D5	TRST	TRST	input	Pull-down enabled	

Table 1 Default Pin Conditions (assuming Fuses are not programmed)

WM0011

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020 for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Supply voltage (DCVDD)	DGND - 0.3V	1.6V
Supply voltage (DBVDD1, DBVDD2, DBVDD3, AVDD, PROGVDD)	DGND - 0.3V	5.0V
Voltage range digital inputs (DBVDD1 domain)	DGND - 0.3V	DBVDD1 + 0.3V
Voltage range digital inputs (DBVDD2 domain)	DGND - 0.3V	DBVDD2 + 0.3V
Voltage range digital inputs (DBVDD3 domain)	DGND - 0.3V	DBVDD3 + 0.3V
Operating temperature range, T _A	-40°C	+85°C
Junction temperature, T _J	-40°C	+125°C
Storage temperature after soldering	-65°C	+150°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Digital core supply range	DCVDD	1.14	1.2	1.32	V
Digital I/O supply range	DBVDD1	1.62	1.8	1.98	V
Digital I/O supply range (GPIO10, GPIO11, GPIO12, GPIO13, GPIO14)	DBVDD2	1.62		3.63	V
Digital I/O supply range (GPIO4, GPIO5, GPIO6, GPIO7, GPIO8, GPIO9)	DBVDD2	1.62		3.63	V
PLL supply range	AVDD	1.14	1.2	1.32	V
Fuse programming supply	PROGVDD		0		V
Ground	DGND		0		V
Operating temperature range	T _A	-40		+85	°C

Notes:

- 1. All supplies are independent of each other (i.e. not internally connected)
- 2. PROGVDD must be tied to 0V during normal operation
- 3. The WM0011 can operate with DBVDD2 tied to 0V, but GPIO10, GPIO11, GPIO12, GPIO13, GPIO14 functionality is not supported in this case
- 4. The WM0011 can operate with DBVDD3 tied to 0V, but GPIO4, GPIO5, GPIO6, GPIO7, GPIO8, GPIO9 functionality is not supported in this case

THERMAL PERFORMANCE

Thermal analysis should be performed in the intended application to prevent the WM0011 from exceeding maximum junction temperature. Several contributing factors affect thermal performance most notably the physical properties of the mechanical enclosure, location of the device on the PCB in relation to surrounding components and the number of PCB layers. Connecting the GND pin through thermal vias and into a large ground plane will aid heat extraction.

Three main heat transfer paths exist to surrounding air as illustrated below in:

- Package top to air (radiation)
- Package bottom to PCB (radiation)
- Package pins to PCB (conduction)

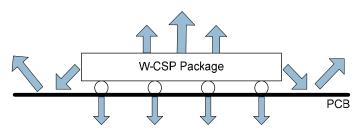


Figure 1 Heat Transfer Paths

The temperature rise T_R is given by $T_R = P_D * \Theta_{JA}$

- P_D is the power dissipated in the device.
- Θ_{JA} is the thermal resistance from the junction of the die to the ambient temperature and is therefore a measure of heat transfer from the die to surrounding air. Θ_{JA} is determined with reference to JEDEC standard JESD51-9.

The junction temperature T_J is given by $T_J = T_A + T_R$, where T_A is the ambient temperature.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Ambient Temperature	T _A	-40		+85	°C
Junction Temperature	T_J	-40		+125	Ĵ
Thermal Resistance	ӨЈА		58		°C/W

Note:

- 1. Junction temperature is a function of ambient temperature and of the device operating conditions. The ambient temperature limits and junction temperature limits must both be observed.
- 2. Thermal resistance (Θ_{JA}) is measured using JESD51-2 methodology

ELECTRICAL CHARACTERISTICS

Test Conditions

DCVDD=AVDD=1.2V, DBVDD1=DBVDD2=DBVDD3=1.8V, T_A = +25°C

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Input / Output					•	•
Input HIGH Level, GPIO[49] pads	V _{IH}		0.65 x V _{DBVDD3}			V
Input LOW Level, GPIO[49] pads	V _{IL}				0.35 x V _{DBVDD3}	V
Input HIGH Level, GPIO[1014] pads	V _{IH}		0.65 x V _{DBVDD2}			٧
Input LOW Level, GPIO[1014] pads	V _{IL}				0.35 x V _{DBVDD2}	٧
Input HIGH Level, All other digital pads	V _{IH}		0.65 x V _{DBVDD1}			٧
Input LOW Level, All other digital pads	V _{IL}				0.35 x V _{DBVDD1}	V
Output HIGH Level, GPIO[49] pads	V _{OH}	I _{OH} = 5mA Full strength output drive (*_DS = 1)	0.75 x V _{DBVDD3}			V
Output LOW Level, GPIO[49] pads	V _{OL}	I _{OL} = -5mA Full strength output drive (*_DS = 1)			0.25 x V _{DBVDD3}	V
Output HIGH Level, GPIO[1014] pads	V _{OH}	I _{OH} = 5mA Full strength output drive (*_DS = 1)	0.75 x V _{DBVDD2}			٧
Output LOW Level, GPIO[1014] pads	V _{OL}	$I_{OL} = -5mA$ Full strength output drive (*_DS = 1)			0.25 x V _{DBVDD2}	V
Output HIGH Level, All other digital pads	V _{OH}	I _{OH} = 1mA Full strength output drive (*_DS = 1)	0.75 x V _{DBVDD1}			V
Output LOW Level, All other digital pads	V _{OL}	I _{OL} = -1mA Full strength output drive (*_DS = 1)			0.25 x V _{DBVDD1}	V
Input Capacitance	C _{IN}				2.8	pF
Input Leakage			-10		+10	μA
Pull-up resistance, GPIO[414] pads		Pull-Up enabled for the respective pad (*_PU = 1)		61		kΩ
Pull-down resistance, GPIO[414] pads		Pull-Down enabled for the respective pad (*_PD = 1)		61		kΩ
Pull-up resistance, All other digital pads		Pull-Up enabled for the respective pad (*_PU = 1)		38		kΩ
Pull-down resistance, All other digital pads		Pull-Down enabled for the respective pad (*_PD = 1)		40		kΩ

Selectable output drive strength control is provided on the digital output pads, using the *_DS register bits. The reduced drive strength option may be used at lower clock speeds, if preferred. Specific characteristic data for reduced drive strength is not available.

TYPICAL POWER CONSUMPTION

Typical power consumption data is provided below for a number of different operating conditions.

Test Conditions:

DCVDD = AVDD = 1.2V, DBVDD1 = 1.8V, DBVDD2 = DBVDD3 = 0V, T_A = +25°C

OPERATING MODE	TEST CONDITIONS	I _{DCVDD}	I _{DBVDD1}	I _{AVDD}	TOTAL
Reset	RESET asserted CLKIN = 0MHz	0.2mA	0.03mA	0.05mA	0.35mW
BootROM (awaiting code download)	RESET de-asserted CLKIN = 24.576MHz	8.78mA	0.48mA	0.05mA	11.46mW
Sleep Mode	RESET de-asserted SLP_ENA=1 (CCM_WKUP_CTRL register) CLKIN = 0MHz DSPCLK disabled, AHBCLK disabled	0.25mA	0.02mA	0.05mA	0.40mW
	RESET de-asserted SLP_ENA=1 (CCM_WKUP_CTRL register) CLKIN = 24.576MHz DSPCLK disabled, AHBCLK disabled RAM & IRQC modules enabled	0.91mA	0.47mA	0.05mA	2.00mW
Sleep Mode AIF Bypass enabled	RESET de-asserted SLP_ENA=1 (CCM_WKUP_CTRL register) CLKIN = 0MHz DSPCLK disabled, AHBCLK disabled AIF Bypass Mode A enabled	0.27mA	0.16mA	0.05mA	0.67mW
	RESET de-asserted SLP_ENA=1 (CCM_WKUP_CTRL register) CLKIN = 24.576MHz DSPCLK disabled, AHBCLK disabled AIF Bypass Mode A enabled	0.95mA	0.60mA	0.05mA	2.28mW
Run Mode (full processor load)	RESET de-asserted SLP_ENA=0 (CCM_WKUP_CTRL register) CLKIN = 24.576MHz PLLOUT = 259.2MHz All peripherals enabled Processor fully loaded	90mA	0.60mA	0.10mA	109.2mW

The WM0011 supports a low-power Sleep mode, as referenced above. Note that, when the WM0011 is not in use, the Sleep mode (not the Reset mode) is recommended for typical applications. The Sleep mode allows the full processor functionality to be resumed at any time, without needing to re-load the software code. The Sleep mode also enables AIF Bypass modes to be selected.

SIGNAL TIMING REQUIREMENTS SYSTEM CLOCK & PHASE LOCKED LOOP (PLL)

Test Conditions

DCVDD=AVDD=1.2V, DBVDD1=DBVDD2=DBVDD3=1.8V, $T_A = +25^{\circ}C$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
External Clock Timing					
Chip Clock Input	CLKIN			26	MHz
Alternate Clock Input	ALTCLK			26	MHz
Timer Clock Trigger	TMRCLK			26	MHz
Input Clock duty cycle		40		60	%
Phase Locked Loop (PLL)					
PLL input frequency	CLKIN	5		26	MHz
PLL input duty cycle		40		60	%
PLL output frequency	PLLOUT	6.25		260	MHz
PLL lock time				2	ms
Internal Clock Timing					
DSP Core Clock	DSPCLK			260	MHz
AHB Bus Clock	AHBCLK			130	MHz
APB Bus Clock	APBCLK			130	MHz

Table 2 System Clock and Phase Locked Loop (PLL)

The WM0011 incorporates a 2-stage cascaded PLL circuit; the PLL timing parameters above refer to the 2-stage circuit in its entirety. Note that the specified frequency limits are not applicable to the internal reference points within the cascaded PLL circuits.

AUDIO INTERFACE (AIF) TIMING

DIGITAL AUDIO INTERFACE - MASTER MODE

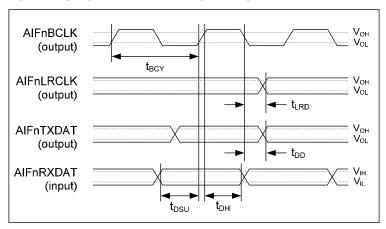


Figure 2 AIF Interface Timing - Master Mode

Test Conditions

DCVDD=AVDD=1.2V, DBVDD1=DBVDD2=DBVDD3=1.8V, $T_A = +25$ °C, C_{LOAD} =5pF (output pins)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Interface Timing - Master Mode					
AIFnBCLK cycle time	t _{BCY}	80			ns
AIFnBCLK duty cycle		40		60	%
AIFnLRCLK propagation delay from AIFnBCLK falling edge	t _{LRD}	0		15	ns
AIFnTXDAT propagation delay from AIFnBCLK falling edge	t _{DD}	0		15	ns
AIFnRXDAT setup time to AIFnBCLK rising edge	t _{DSU}	16.3			ns
AIFnRXDAT hold time from AIFnBCLK rising edge	t _{DH}	16.3			ns

Table 3 AIF Master Mode Timing Values

Note the timing figures quoted in the table above are for full drive strength outputs; these timings are not guaranteed for reduced drive strength.

DIGITAL AUDIO INTERFACE - SLAVE MODE

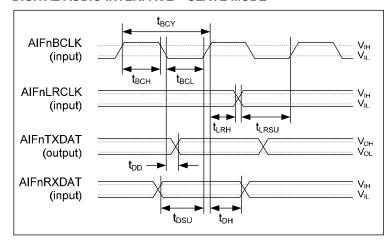


Figure 3 AIF Interface Timing - Slave Mode

Test Conditions

DCVDD=AVDD=1.2V, DBVDD1=DBVDD2=DBVDD3=1.8V, T_A = +25°C, C_{LOAD} =5pF (output pins)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Interface Timing - Slave Mode					
AIFnBCLK cycle time	t _{BCY}	80			ns
AIFnBCLK duty cycle		35		65	%
AIFnLRCLK set-up time to AIFnBCLK rising edge	t _{LRSU}	16.3			ns
AIFnLRCLK hold time from AIFnBCLK rising edge	t _{LRH}	7.5			ns
AIFnRXDAT hold time from AIFnBCLK rising edge	t _{DH}	10			ns
AIFnTXDAT propagation delay from AIFnBCLK falling edge	t _{DD}	0		12	ns
AIFnRXDAT set-up time to AIFnBCLK rising edge	t _{DSU}	16.3			ns

Table 4 AIF Slave Mode Timing Values

Note the timing figures quoted in the table above are for full drive strength outputs; these timings are not guaranteed for reduced drive strength.

SPI INTERFACE TIMING

SPI INTERFACE - MASTER MODE

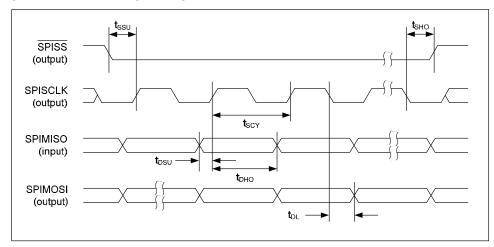


Figure 4 SPI Master Mode Timing

Note this diagram shows the mode where incoming data (SPIMISO) is sampled on the rising edge of SPISCLK, and outgoing data (SPIMOSI) transitions on the falling edge of SPISCLK.

Test Conditions AVDD=DCVDD=1.2V, DBVDD1=DBVDD2=DBVDD3=1.8V, $T_A = +25^{\circ}C$, C_{LOAD} =5pF (output pins), unless otherwise stated.

PAF	SYMBOL	MIN	TYP	MAX	UNIT	
SPI Interface Timing - Mas	ter Mode					
SPISS set-up time to SPISC	LK rising edge	t _{ssu}	25			ns
SPISS hold time from SPISO	CLK falling edge	t _{sho}	25			ns
SPISCLK pulse cycle time		t _{SCY}	61.6			ns
In SPI Master mode, the ma	MHz. It is also re	quired that F	SPISCLK ≤ FAI	HBCLK/8.		
SPISCLK duty cycle			40		60	%
SPIMISO set-up time to SPI	SCLK rising edge	t _{DSU}	10.5			ns
SPIMISO hold time from SP	ISCLK rising edge	t _{DHO}	2.0			ns
SPIMOSI propagation	5pF, reduced drive strength	t _{DL}			5.1	ns
delay from SPISCLK	5pF, full drive strength				4.7	
falling edge	25pF, reduced drive strength				6.3	
	25pF, full drive strength				8.7	

Table 5 SPI Master Mode Timing Values

Note the timing figures quoted in the table above are for full drive strength outputs (except where otherwise stated); these timings are not guaranteed for reduced drive strength.

SPI INTERFACE - SLAVE MODE

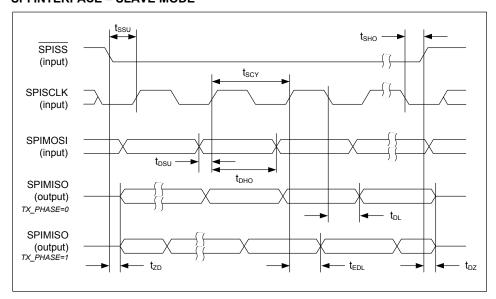


Figure 5 SPI Slave Mode Timing

Note this diagram shows the mode where incoming data (SPIMOSI) is sampled on the rising edge of SPISCLK. By default, the outgoing data (SPIMISO) transitions on the falling edge of SPISCLK. When 'Early Transmit Data Phase' mode is selected (TX_PHASE=1), the outgoing data (SPIMISO) transitions on the rising edge of SPISCLK.

Test Conditions

 $AVDD=DCVDD=1.2V,\ DBVDD1=DBVDD2=DBVDD3=1.8V,\ T_A=+25^{\circ}C,\ C_{LOAD}=5pF\ (output\ pins),\ unless\ otherwise\ stated.$

PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT
SPI Interface Timing - Slave Mode						
SPISS set-up time to SPISCLK rising edge		t _{ssu}	t _{AHBCLK} + 1.0			ns
SPISS hold time from SPISCLK falling edge		t _{SHO}	2.0			ns
SPISCLK pulse cycle time		t _{scy}	38.5			ns
In SPI Slave mode, the maximum SPISCLK f	requency is 26MH:	z. It is also require	d that F _{SPISC}	LK < F _{AHBCLK} .		
SPISCLK duty cycle			40		60	%
SPIMOSI set-up time to SPISCLK rising edge)	t _{DSU}	2.0			ns
SPIMOSI hold time from SPISCLK rising edge	е	t _{DHO}	2.0			ns
SPIMISO propagation delay from	C _{LOAD} =25pF	t _{DL}			12.1	ns
SPISCLK falling edge	C _{LOAD} =5pF				9.3	
SPIMISO propagation delay from C _{LOAD} =25pF		$t_{\sf EDL}$			14.1	ns
SPISCLK rising edge (early TX data mode) C _{LOAD} =5pF					11.3	
SPIMISO enable from SPISS falling edge		t _{ZD}			13.6	ns
SPIMISO disable from SPISS rising edge		t _{DZ}			7.8	ns

Table 6 SPI Slave Mode Timing Values

Note the timing figures quoted in the table above are for full drive strength outputs; these timings are not guaranteed for reduced drive strength.

CONTROL INTERFACE (12C) TIMING

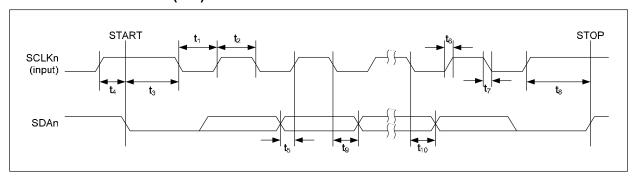


Figure 6 I²C Control Interface Timing

Test Conditions

AVDD= DCVDD=1.2V, DBVDD1=DBVDD2=DBVDD3=1.8V, T_A = +25°C, unless otherwise stated.

PARAME	TER	SYMBOL	MIN	TYP	MAX	UNIT
SCLKn Frequency					1000	kHz
SCLKn Low Pulse-Width		t ₁	500			ns
SCLKn High Pulse-Width		t ₂	260			ns
Hold Time (Start Condition)	Pulse filter OFF	t ₃	260			ns
	Pulse filter ON		275			
Setup Time (Start Condition)		t ₄	260			ns
SDAn, SCLKn Rise Time		t ₆			120	ns
SDAn, SCLKn Fall Time		t ₇			120	ns
Setup Time (Stop Condition)		t ₈	260			ns
SDAn Setup Time (data/ACK input)		t ₅	50			ns
SDAn Hold Time (data/ACK input)		t ₉	0			ns
SDAn Valid Time (data/ACK output)		t ₁₀			450	ns
Pulse width of spikes that will be	suppressed	t _{ps}	0		50	ns

Table 7 I²C Timing Values

DEVICE DESCRIPTION INTRODUCTION

The WM0011 is an audio DSP designed for smartphones and other high performance audio applications. The architecture is optimised for multi-channel audio processing such as software CODECs, equalisation, compression and echo cancellation.

BLOCK DIAGRAM

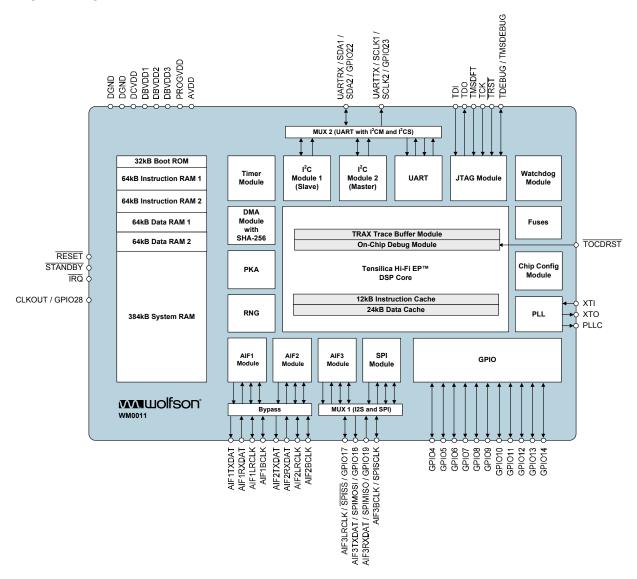


Figure 7 WM0011 Block Diagram

DESCRIPTION OF MODULES

BOOT ROM

The 32kB boot ROM allows the WM0011 to boot from a variety of sources. These are listed in the table below.

MODULE BOOTABLE FROM	
SPI Slave	External host processor
SPI Master	SST25WFxxx SPI Serial Flash

TIGHTLY-COUPLED MEMORY (TCM) RAM

The DSP's primary memory comprises 64-bit wide, zero-latency tightly coupled memory.

- 128kB of instruction RAM
- 128kB of data RAM

MULTI-PURPOSE RAM

The 384kB system RAM is connected to the DSP via the system bus. This RAM can be used for storing either instructions or data. Both data and instructions can be transferred in and out of TCM by DMA.

TENSILICA HIFI EP™ DSP CORE

The core combines a 24-bit audio DSP engine that has been optimised for highly efficient high-resolution audio processing, with a GCC-compatible (GNU Compiler Collection) general purpose RISC instruction set. It includes logic to interface with the AHB bus and the TRAX Trace Buffer, and to the JTAG TAP controller in order to provide support for On-Chip Debug (OCD). The HiFi EP^{TM} features:

- 7-stage instruction pipeline
- One load-store unit
- 12kB 3-way Instruction Cache (64-bit width), and corresponding TAG memory
- 24kB 3-way Data Cache (64-bit width), and corresponding TAG memory
- Pre-fetch buffering for slow external RAM support
- TCM Core Instruction RAM (64-bit width)
- PIF-to-AHB-Lite Bridge, Synchronous, 64-bit width
- Three general purpose timers
- Interrupt controller, with sixteen external and five internal interrupt inputs
- On-Chip Debug (OCD) support
- Trace port and corresponding 1kB TRAX trace RAM (32-bit width)
- Floating point accelerator

For more detailed information on the Tensilica HiFi EP™ core, refer to the 'HiFi EP Audio Engine Instruction Set Architecture Reference Manual' (HIFIEP-ISA-rm.pdf), available from Tensilica.

TIMER MODULE

Three 32-bit general-purpose timers are provided. The timers can be configured as up-counters or as down-counters. The Timer block features include:

- Free-running counter operation (triggered internally or externally)
- Event counter operation (externally triggered)
- One-shot operation from either an external or an internal trigger

WATCHDOG MODULE

A watchdog timer block is provided as a means to reset the WM0011 chip in the case of a software failure. A timeout of the watchdog produces a Warm Reset (maskable) that includes a reset of most registers and state machines, and of the PLL.

GPIO MODULE

There is one GPIO controller controlling seventeen multiplexed GPIO inputs. Two of these inputs can be selected as an interrupt to HiFi EPTM, or one can be selected to be used as an input to the IRQC controller.

IRQC MODULE

The IRQC controller provides fine control of interrupts (edge control, etc). It also enables wake-up, and controls the external IRQ output pin. Table 8 shows the IRQC assignments.

IRQC BIT	DIRECTION	DESCRIPTION
15	Output	Software interrupt – HiFi EP™ interrupt input
14	Output	Software interrupt – HiFi EP™ interrupt input
13	Input	Reserved
12	Input	Reserved
11	Input	Timer 2 interrupt
10	Input	Timer 1 interrupt
9	Input	DMA interrupt
8	Input	Watchdog interrupt
7	Input	STANDBY pin (Active Low)
		Note this input is inverted internally, and is therefore Active High at the input to the IRQC module.
6	Input	I2C interrupt
5	Input	AIF 2 interrupt
4	Input	AIF 1 interrupt
3	Input	UART interrupt
2	Input	SPI interrupt
1	Input	Cascaded interrupt input from the GPIO controller (Active Low)
0	Output	IRQ pin (Active Low)

Table 8 IRQC Interrupt assignment

I²C MASTER AND SLAVE MODULE

The I^2C module provides two independent I^2C buses. These are configured as one master and one slave. External pins are multiplexed such that only one of the I^2C Master, the I^2C slave, or the UART can be configured at any one time.

I²C Master:

- 100kHz, 400kHz and 1MHz operation
- Single master

I²C Slave:

- 100kHz, 400kHz and 1MHz operation
- Clock Stretching

PLL MODULE

An integrated cascade PLL can synthesise all internal clocks from a CMOS external reference clock or a directly-connected crystal. The two-stage PLL can generate accurate standard audio sampling frequencies from a wide range of reference frequencies. The cascade PLL provides a single lock indicator.

AUDIO INTERFACE (AIF) MODULES

The Audio Interface module transmits and receives a wide range of commonly used serial digital audio formats, including I^2S and multi-channel TDM. It has two independent serial data lines with a shared bit clock and a shared frame clock for transmit and receive.

Data is typically transferred between the AIF modules and memory by DMA.

SPI MODULE

The SPI control interface block features support for:

- 4-wire SPI protocol up to 26 MHz
- Master and slave mode operation
- Selectable 8, 16, 24, 32 and 64-bit data word transfer

FUSE MODULE

The fuse memory is a small area of non-volatile, one-time programmable (OTP) memory that controls:

- Access to the JTAG port, for security on production devices
- Port selection for program download following reset
- · Start-up (default) register settings
- Security configuration

For custom-programmed devices, the fuses are configured during manufacture, according to application-specific requirements.

The WM0011 is also available as an un-programmed device. Note that fuse programming by users is not supported.

DMA MODULE

The DMA module automates the movement of data between memory and key peripherals, or between different memory locations. Features of the DMA controller include:

- 32 independent channels
- DMA requests can be assigned to either a high or a low priority arbitration group, with each group being arbitrated separately
- Low priority arbitration group requests use a master transfer type of either Single or Burst
- Software transfer trigger per channel
- Each DMA channel is configurable for 64-bit, 32-bit, 16-bit or 8-bit transfers
- Programmable transfer length
- DMA chaining capability via Linked List descriptor
- Programmable byte-swapping function
- DMA striding

TRAX TRACE BUFFER MODULE

The Tensilica HiFi EP™ core has a trace capture unit that records the program execution flow to a circular trace buffer. Interrupts, exceptions and branches taken are all recorded in the trace capture file, which can be later used with the OCD module and Tensilica software tools for debugging real-time events or errors.

JTAG MODULE

The WM0011 features an IEEE 1149.1 JTAG Test Access Port (TAP) controller module for chip boundary scanning. The JTAG module also provides access to the On-Chip Debug (OCD) functions for the DSP core. A de-bug server connects to the TAP through a host TAP interface, which is typically an external device such as the USB2Demon™ from Macraigor Systems. All supported JTAG probes are shown on the Tensilica website at http://www.tensilica.com/partners/jtag-probes/. Using the JTAG TAP controller, users can access and control the software-visible state of the processor, including:

- Generate an interrupt to put the processor in the debug mode
- Gain control of the processor upon any debug exception
- Read and write any software-visible register and/or memory location
- · Resume normal mode of operation

The JTAG interface can be disabled on custom-programmed devices, to ensure device security. When the JTAG module is disabled, the WM0011 will only execute software code that has been securely authenticated.

The TAP interface consists of five signals listed below.

PIN NAME	DIRECTION	DESCRIPTION		
TCK	Input	TAP clock		
TMSDEBUG	Input	Input to TAP controller state machine		
TMSDFT	Input	JTAG mode select input		
TRST	Input	Reset input (Active low) for initialisation of the TAP controller		
TDI	Input	Selected serial instruction/data shift register input		
TDO	Output	Selected serial instruction/data shift register tri-state output		

Table 9 IEEE 1149.1 TAP Signals

For more detailed information, refer to the 'Tensilica On-Chip Debugging Guide' (onchip_debug_guide.pdf).

ON-CHIP DEBUG MODULE

The Tensilica HiFi EP core has an On-Chip Debug (OCD) function that is accessed by the JTAG module.

The OCD module may be reset by the JTAG debugger probe by asserting the TOCDRST signal. This signal may also optionally generate a warm reset of the chip.

For further details on the on-chip debug module, please refer to the Tensilica user guide for the on-chip debug, 'onchip_debug_guide.pdf'.

POWER-ON AND RESET CONTROL

The WM0011 incorporates a number of different Reset mechanisms, which are summarised below.

Hardware Reset - this is controlled by the RESET input pin. When the RESET pin is asserted, the chip is held in its reset condition, with all modules disabled and registers set to default. When the RESET pin is de-asserted, the WM0011 will commence the boot sequence.

Warm Reset - this is controlled by the $\overline{\text{TOCDRST}}$ input pin, or by internal functions (Watchdog timeout, PLL Lock status, or the Wake-Up FSM). Each of these triggers can be masked individually. If any of the Warm Reset conditions is asserted (and unmasked), the Warm Reset will reset the core functions and peripheral modules.

Software Reset - this function comprises individual reset control fields for each peripheral module.

POWER ON RESET

There is no Power-On Reset (POR) circuit for initialising the chip on power-up.

It is required that the $\overline{\text{RESET}}$ input pin is asserted (logic '0') during power-up, and must remain asserted until the power supply rails are within recommended operating conditions, and the CLKIN reference is stable.

The WM0011 boot sequence will commence after the $\overline{\text{RESET}}$ pin has been de-asserted. When the WM0011 is ready to commence software/configuration download, the $\overline{\text{IRQ}}$ output pin will be asserted (logic '0').

See "Boot Sequence Control" for details of the WM0011 boot sequence. Note that, on completion of the boot sequence, the \overline{IRQ} output pin will be de-asserted (logic '1').

Note that, under default start-up conditions, the CLKIN input is selected as the clock source. The Custom fuse settings, and/or PLL Configuration download, can be used to select the start-up clocking configuration for different applications.

The Power-On Reset sequence is illustrated in Figure 8.

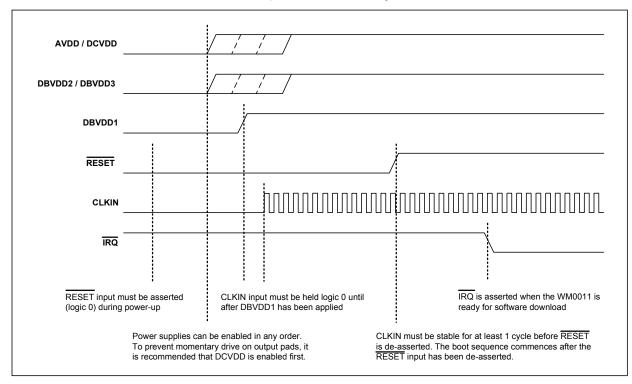


Figure 8 Power-On Reset Sequence

HARDWARE RESET

The Hardware Reset is triggered by asserting the RESET input pin. This pin is an 'active low' input; the Hardware Reset is asserted by applying a logic '0'. The Hardware Reset will reset the core functions and peripheral modules.

The WM0011 boot sequence will commence after the RESET pin has been de-asserted. When the WM0011 is ready to commence software/configuration download, the IRQ output pin will be asserted (logic '0').

See "Boot Sequence Control" for details of the WM0011 boot sequence. Note that, on completion of the boot sequence, the \overline{IRQ} output pin will be de-asserted (logic '1').

Note that, under default start-up conditions, the CLKIN input is selected as the clock source. The Custom fuse settings, and/or PLL Configuration download, can be used to select the start-up clocking configuration for different applications.

The Hardware Reset sequence is illustrated in Figure 9.

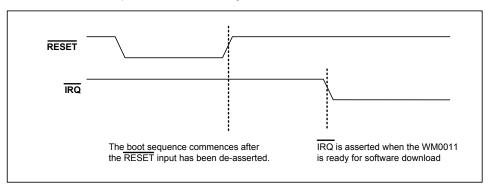


Figure 9 Hardware Reset Sequence

WARM RESET

The conditions that will initiate a Warm Reset are listed below. Each condition can be individually enabled or masked, to control whether a Warm Reset is triggered by the respective condition. The Warm Reset will reset the peripheral modules. Note that the Core Configuration Module (CCM) settings and the RAM contents are not affected by the Warm Reset (except where overwritten by the associated boot sequence).

TOCDRST input - this pin is provided for use as an input from the debug tool. Under default conditions, asserting this pin (logic '0') will trigger a Warm Reset. This can be masked using the OCD_MSK bit.

Watchdog timeout - the Watchdog Timeout condition can trigger a Warm Reset. This is disabled by default, and must be enabled in the Watchdog Timer (WDT) module using the WDT_RST_ENA bit if required. The Warm Reset can be masked within the Chip Configuration module using the WDT_MSK bit.

PLL Lock - the 'out-of-lock' condition in the PLL can trigger a Warm Reset. Under default conditions, the 'out-of-lock' condition will trigger a Warm Reset. This can be masked using the PLL MSK bit.

Wake-Up condition - the device wake-up is triggered by the FIRQ_N signal from the Interrupt Controller (IRQC) module to the Wake-Up FSM. The Wake-Up event can be enabled as a Warm Reset condition using the WKUP RST ENA bit.

When a Warm Reset is triggered as part of a Wake-Up transition, software execution will commence at the code address determined by the STATIC_VECT_SEL register field (see Table 25). If the primary reset vector is selected, then the code execution will be equivalent to a Hardware Reset. The alternate reset vector allows application-specific reset behaviour to be configured. See "Memory Map" for details of the reset vector addresses.

The Warm Reset logic is shown in Figure 10. The illustration includes a number of latching status registers that are associated with the Warm Reset conditions.

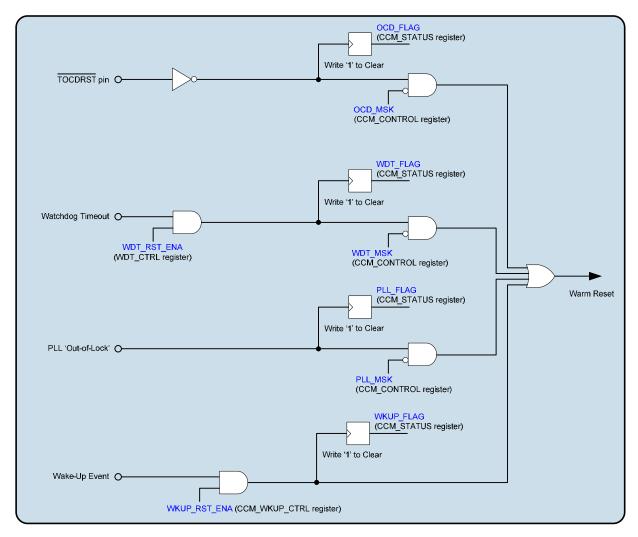


Figure 10 Warm Reset Control

SOFTWARE RESET

The Software Reset function comprises individual reset control fields for each peripheral module. Setting these bits to '0' will reset the respective module to its start-up condition. (These bits must be set to '1' for normal operation of the module.)

The Software Reset control bits are located in the CCM_SOFTRST register (see Table 24).

JTAG RESET

The JTAG interface controller is reset by asserting the TRST input pin. This pin is an 'active low' input; the JTAG Reset is asserted by applying a logic '0'.

Note that the JTAG interface is not affected by the WM0011 Warm Reset or Software Reset functions.

The JTAG interface can be disabled on custom-programmed devices, to ensure device security.

BOOT SEQUENCE CONTROL

Following Power-Up or Hardware Reset, the WM0011 executes the integrated ROM boot code, which starts up the chip from the reset condition. Following a short self-test routine, the $\overline{\text{IRQ}}$ pin is asserted (logic 0), indicating the WM0011 is ready to commence software/configuration download.

The boot-up behaviour is configurable using internal, one-time-programmable fuses. The fuse data controls which interface will be used for software/configuration download. The fuses also allow the start-up condition of certain control registers to be configured.

Note that the fuse data capability is supported on custom-programmed devices only. Un-programmed devices do not support these options. Fuse programming by users is not supported.

The software/configuration download is described later in this section. See also "Fuse Memory" for details of the programmable fuses.

As part of the boot sequence, the WM0011 will determine whether the Custom fuses have been programmed.

If the Custom fuses are not programmed, then the WM0011 will await a software/configuration download via the SPI (Slave) port.

If the Custom fuses have been programmed, then the fuse data will select the desired clocking configuration, and also select the desired boot method for software/configuration download. The available download options are SPI Slave, or SPI Master (eg. Flash Memory).

If SPI Master is selected, then the boot download is automatically initiated by the WM0011. If SPI Slave is selected, then the boot download is controlled by an external device. In all cases, the software will automatically execute on completion of a successful code download.

For normal operation, the software/configuration download must include executable code for the WM0011 DSP Core. The download may, optionally, include PLL settings codes for setting the desired clocking configuration.

The supported download actions are described later in this section. The 'Code Packet' format, also described, is used in each case.

The device clocking configuration can be selected via Custom fuse data or via PLL Configuration download. Note that, if the Custom fuses have been programmed, then the associated clocking configuration details will be superseded by the PLL Configuration data, if this is subsequently received.

Note that the Custom fuse data and PLL Configuration download include parameters that are held in the WM0011 control registers. The fuse settings and PLL download will determine the start-up values of the corresponding registers, but these can be updated during normal operation later if required.

The $\overline{\mbox{IRQ}}$ pin is asserted (logic 0) shortly after Power-Up or Hardware Reset, indicating the WM0011 is ready to commence software/configuration download. The $\overline{\mbox{IRQ}}$ pin remains asserted until valid application software is fully downloaded; the $\overline{\mbox{IRQ}}$ output is then de-asserted (logic 1).

SOFTWARE / CONFIGURATION DOWNLOAD

The software/configuration download following power-up or hardware reset will comprise one or more of the following operations:

- Software Header download
- Software Data download
- Phase Locked Loop (PLL) configuration

A standard "Code Packet Format" data transfer mode is used in all cases, as described below.

CODE PACKET FORMAT

The Code Packet Format comprises 4 data blocks, as described in Table 10.

NAME	SIZE	DESCRIPTION		
CMD	1 byte	Command field, describing the function of the packet		
LEN	3 bytes	Length (in bytes) of the DAT portion of this code packet		
ADDR	4 bytes	Memory Address associated with the packet		
DAT	0 to 8184 bytes	Data words		

Table 10 Code Packet Format

The total size of the Code Packet (LEN) is required to be a multiple of 8 bytes.

The ADDR field must also be 64-bit aligned (ie. a multiple of 8 bytes).

All multi-byte data fields in the packet must the formatted in 'little endian' (Least Significant Byte first) format.

One or more code packets may be downloaded to the WM0011 in order to configure the device for the required application. The Code Packet Format is illustrated in Figure 11.

Figure 11 Code Packet Format

CODE HEADER DOWNLOAD

The Software Code download operation requires multiple Code Packets to be sent to the WM0011. The download may be achieved via the SPI Slave or SPI Master (eg. Flash Memory) interfaces. If the Custom fuses are not programmed, then only the SPI (Slave) download method is possible.

The Software Code download comprises one Code Header packet, followed by multiple Code Data packets.

The Code Packet definition for the Code Header is:

- CMD = 0x02
- LEN = 0x00_0108
- ADDR = Start Address for code execution
- DAT = Data words

In the DAT portion of the code packet, the first 32-bit data word will contain the total length (in bytes) of the code image. This is followed by a 32-bit filler word, followed by the 256-byte image signature (SHA-256).

For custom-programmed devices, the WM0011 supports PKA-encryption of the image signature. This is not supported on un-programmed devices.

On receipt of a valid Code Header packet, the WM0011 will expect to receive the associated Code Data packets, thus completing the software code download.

Boot status and error codes are reported via the UART interface, and via the SPI interface during the Code Header download - see "Boot Status and Error Reporting".

CODE DATA DOWNLOAD

The Software Code download comprises one Code Header packet (as described above), followed by multiple Code Data packets.

The Code Packet definition for the Code Data is:

- CMD = 0x03
- LEN = Data Length (in bytes)
- ADDR = Start Address for code data
- DAT = Data words

On completion of the full set of Code Data packet downloads, the $\overline{\text{IRQ}}$ output is de-asserted and the WM0011 will commence execution of the downloaded software.

Note that completion of the Code Data packets is determined by the code image length that is contained within the Code Header packet (DAT). Software execution commences at the start address (ADDR) - also contained in the Code Header packet.

Boot status and error codes are reported via the UART interface, and via the SPI interface during the Code Data download - see "Boot Status and Error Reporting".

PLL CONFIGURATION DOWNLOAD

The PLL Configuration download operation requires a single Code Packet to be sent to the WM0011. The download may be achieved via the SPI Slave or SPI Master (eg. Flash Memory) interfaces. If the Custom fuses are not programmed, then only the SPI (Slave) download method is possible.

The Code Packet definition for PLL Configuration download is:

- CMD = 0x04
- LEN = 0x00_0018
- ADDR = 0x0000_0000
- DAT = PLL Configuration Data

The "DAT" portion must comprise 24 bytes, corresponding to the intended contents of the clocking configuration registers listed below. The CCM_CLK_CTRL1 register is transmitted first.

- CCM_CLK_CTRL1 (4 bytes, see Table 19)
- CCM_CLK_CTRL2 (4 bytes, see Table 20)
- CCM_CLK_CTRL3 (4 bytes, see Table 21)
- CCM_PLL_LOCK_CTRL (4 bytes, see Table 22)
- UART_BAUD_LSW (1 byte, see Table 118)
- UART BAUD MSW (1 byte, see Table 119)
- Padding (2 bytes)
- SPI_SCLKDIV (4 bytes, see Table 123)

On receipt of a valid PLL Configuration packet, the control registers noted above will be updated with the received data, and the new clocking configuration will become effective.

Note that the SPI_SCLKDIV register on the WM0011 is only updated if the selected boot method is SPI Master. In all other cases, the SPI_SCLKDIV portion of the PLL download is ignored and discarded. Note that the SPI Master boot method is only possible via the Custom fuse data settings.

Boot status and error codes are reported via the UART interface, and via the SPI interface during the PLL Configuration download - see "Boot Status and Error Reporting".

BOOT STATUS AND ERROR REPORTING

During boot-up, the WM0011 generates status and error codes for external monitoring of the start-up process. These status codes are reported via the UART interface, and also via the SPI interface (in SPI Slave mode only).

The SPI output comprises a 32-bit code for each status code. The status reporting on the SPI interface is only supported in SPI Slave mode. A maximum of one status/error code can be reported per Code Packet received. The applicable code will be transmitted for the duration of the next Code Packet that follows after the Code Packet to which the status/error code relates. Accordingly, it should be noted that some codes may be applicable but are not transmitted on the SPI interface.

The UART output is in the form of a single ASCII character code for each condition. The applicable code(s) are reported immediately after receipt of the Code Packet to which they relate.

The SPI interface can report all of the defined status/error codes; the UART interface only supports a reduced set of codes, as noted in Table 11.

The UART data output format is: 8 data bits, stop bit, no parity. If the Custom fuses are not programmed, then the assumed clock rate (24.5MHz) gives 115,200bps data output. Other clock frequencies and data bit rates are possible using the Custom fuse or PLL Configuration options.

The boot status and error report codes are defined in Table 11.

MESSAGE NAME	UART (ASCII)	SPI SLAVE	DESCRIPTION
ROM_DBG_CODE_START		0x0FED0000	The C startup code has finished and ROM application starting
ROM_DBG_FUSE_CLR		0x0FED0001	The contents of the fuse array are entirely blank
ROM_DBG_CUST_FUSE_CLR		0x0FED0002	The custom portion of the fuse array is blank
ROM_DBG_COMM_ENABLED	А	0x0FED0003	Communication port enabled and ROM ready for image download
ROM_DBG_FUSE_DL_SUCCESS	В	0x0FED0004	Fuse Data received successfully.
ROM_DBG_FUSE_PROGRAMMED	С	0x0FED0005	Fuses are programmed, rebooting immediately.
ROM_DBG_GOOD_PKT	D	0x0FED0006	A valid data packet received
ROM_DBG_CODE_HDR_VALID	Е	0x0FED0007	Valid Code Header Packet received
ROM_DBG_CODE_PKT_VALID	F	0x0FED0008	Valid Code Data packet received
ROM_DBG_CODE_DL_COMPLETE	G	0x0FED0009	An entire code image has been downloaded
ROM_DBG_CODE_SECURE_MATCH	Н	0x0FED000A	The decrypted image header matches the SHA result
ROM_DBG_CODE_UNSECURE_MATCH	I	0x0FED000B	The raw image header matches the SHA result, with JTAG enabled
ROM_DBG_APP_START	J	0x0FED000C	This is the final message sent by the ROM prior to starting the User Application.
ROM_DBG_WAITING_PLL_LOCK	K	0x0FED000D	This is sent as soon as the PLL is enabled while waiting for LOCK to be asserted
ROM_DBG_PLL_PACKET_SUCCESS	L	0x0FED000E	The PLL packet was received and clocks have been successfully changed
ROM_DBG_FUSE_INVALID	а	0x0FED0023	A CRC mismatch in the custom fuses detected
ROM_DBG_FUSE_DL_FAIL_BAD_LEN	b	0x0FED0024	The Custom Fuse image length is incorrect.
ROM_DBG_IMG_TOO_LONG	С	0x0FED0025	Final Data Packet exceeds total length specified in Header Packet
ROM_DBG_PKT_OVERFLOW	d	0x0FED0026	Data packet received prior to previous packet finished processing possible overflow
ROM_DBG_CODE_UNSECURE_MISMATCH	е	0x0FED0027	The raw image header does NOT match the SHA result w/ JTAG enabled

MESSAGE NAME	UART (ASCII)	SPI SLAVE	DESCRIPTION
ROM_DBG_CODE_SECURE_MISMATCH	f	0x0FED0028	The decrypted image header does NOT match the SHA result
ROM_DBG_CODE_ILLEGAL_DOWNLOAD	g	0x0FED0029	The USER has attempted a Code Download when fuses are blank and JTAG is disabled
ROM_DBG_CODE_DL_FAIL	h	0x0FED002A	The code download has failed and will restart
ROM_DBG_BAD_SPI_FUSE_PKT	i	0x0FED002B	Invalid packet received when JTAG fuse is blank
ROM_DBG_BAD_SPI_PKT	j	0x0FED002C	SPI XFR length does NOT match packet length
N/A	k	0x0FED002D	Not Currently Used
N/A	I	0x0FED002E	Not Currently Used
N/A	m	0x0FED002F	Not Currently Used
N/A	n	0x0FED0030	Not Currently Used
N/A	0	0x0FED0031	Not Currently Used
ROM_DBG_SPI_ERR_RDOFL	р	0x0FED0032	SPI Read Overflow error reported by IP Packet is discarded
ROM_DBG_SPI_ERR_UCLK	q	0x0FED0033	SPI Underclock error is reported by IP, Packet is discarded
ROM_DBG_BAD_HDR_PKT	r	0x0FED0034	Header Packet does not contain correct # of bytes.
ROM_DBG_INVALID_PKT_TYPE	s	0x0FED0035	An unsupported packet type is received.
ROM_DBG_DATA_BEFORE_HDR	t	0x0FED0036	A Data packet is received without first receiving the Header packet
ROM_DBG_FUSE_DL_FAIL_FUSES_PROG D	u	0x0FED0037	A Custom Fuse image is received when fuses are already programmed.
ROM_DBG_FUSE_DL_FAIL_BAD_CRC	V	0x0FED0038	Computed CRC in downloaded Fuse Packet is incorrect.
ROM_DBG_INVALID_PLL_PKT	w	0x0FED0039	PLL packet with incorrect data length received.
ROM_DBG_CLEARING_PLL_OVERRIDE	х	0x0FED003A	PLL Unlock caused warm reset clearing error before switching to PLL clock source
ROM_DBG_DATA_PACKET_ALIGN_ERR	у	0x0FED003B	Code Download packet has a length or address that is not double word aligned

Table 11 Boot Status and Error Reporting

BOOT SEQUENCE FLOW DIAGRAMS

Figure 12, Figure 13 and Figure 14 illustrate the top level boot flow (Figure 12), boot packet processing (Figure 13), and application validation (Figure 14).

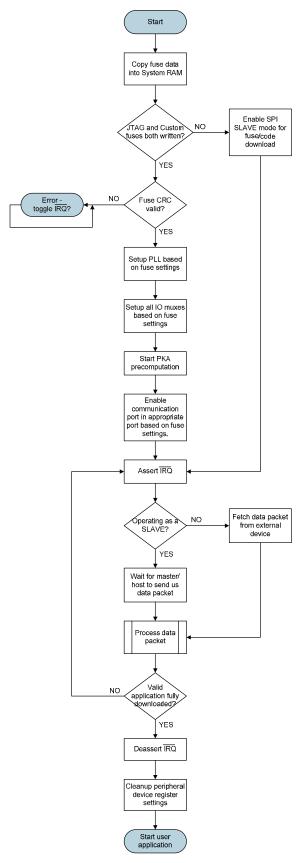


Figure 12 Top Level Boot Flow

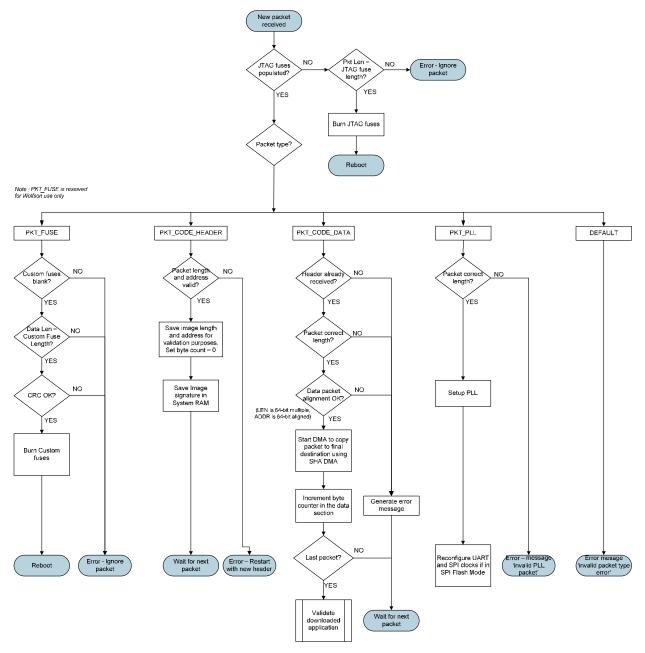


Figure 13 Boot Packet Processing

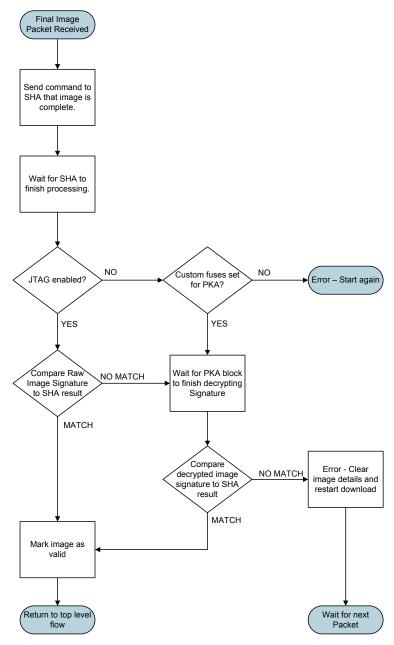


Figure 14 Application Validation

INTERRUPTS

There are a number of different Interrupt levels on the WM0011. The overall Interrupt scheme is illustrated in Figure 15.

GPIO pins that are configured as inputs are handled by a dedicated GPIO circuit. This provides readback of the GPIO status, and configurable edge/level detection, giving rise to a single GPIO_INT interrupt. See "General Purpose Input/Output (GPIO) Module" for further details.

Most of the peripheral modules generate one interrupt each, feeding into the WM0011 Interrupt module. The GPIO_INT signal described above is one such input. The STANDBY pin also provides input directly to the Interrupt module. See "Interrupt Controller (IRQC) Module" for further details.

The HiFi2 EP^{TM} DSP core has its own Interrupt functionality also. The inputs to the HiFi2 EP^{TM} DSP core comprise the IRQ_N and FIRQ_N outputs from the WM0011 Interrupt module, combined with direct inputs from most of the peripheral modules. Two GPIO inputs may be selected (via multiplexers) as HiFi2 EP^{TM} interrupts. The STANDBY pin and a number of HiFi2 EP^{TM} internal signals make up the remaining inputs.

The IRQ pin output is controlled by the WM0011 Interrupt module.

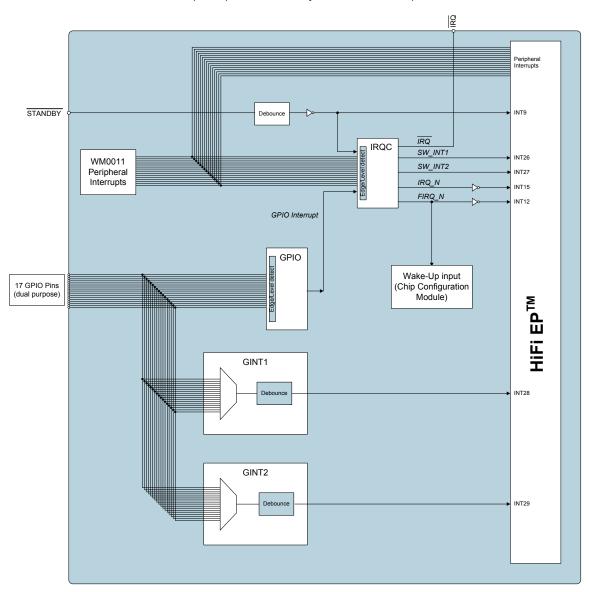


Figure 15 External and Internal Interrupts to HiFi EP™

The HiFi $\mathsf{EP^{TM}}$ DSP core interrupts are described in Table 12.

All of these interrupts are Active High at the input to the HiFi $\mathsf{EP^{TM}}$ DSP core.

HIFI EP™ DSP	DESCRIPTION	SOURCE
INTERRUPT		
(TYPE/PRIORITY)	CDI interrupt	SPI controller
Int0 (Level/1)	SPI interrupt	UART controller
Int1 (Level/1)	UART interrupt	OART controller
Int2 (Level/2)	Reserved	Make Indian Time
Int3 (Level/1)	WDT interrupt	Watchdog Timer
Int4 (Level/1)	I2C interrupt	I2C controller
Int5 (Level/1)	PKA interrupt	PKA controller
Int6 (TMR/1)	HiFi EP™ Timer0	Internal to HiFi EP™ core
Int7 (Software/1)	HiFi EP™ Software	Internal to HiFi EP™ core
Int8 (Level/2)	Reserved	
Int9 (Level/3)	STANDBY input pin	STANDBY input pin
Int10 (Timer/3)	HiFi EP™ Timer1	Internal to HiFi EP™ core
Int11 (Software/3)	HiFi EP™ Software	Internal to HiFi EP™ core
Int12 (Level/4)	FIRQ_N interrupt	IRQC module
Int13 (TMR/5)	HiFi EP™ Timer2	Internal to HiFi EP™ core
Int14 (NMI/7)	Non-Maskable Interrupt	
Int15 (Level/1)	IRQ_N interrupt	IRQC module
Int16 (Level/1)	AIF 1 interrupt	AIF controller #1
Int17 (Level/1)	AIF 2 interrupt	AIF controller #2
Int18 (Level/1)	AIF 3 interrupt	AIF controller #3
Int19 (Level/1)	DMA interrupt	DMA controller
Int20 (Level/1)	Reserved	
Int21 (Level/1)	TMR 1 interrupt	TIMER 1 module
Int22 (Level/1)	TMR 2 interrupt	TIMER 2 module
Int23 (Level/1)	TMR 3 interrupt	TIMER 3 module
Int24 (Level/1)	Reserved	
Int25 (Level/1)	Reserved	
Int26 (Level/1)	Software interrupt 15	IRQC module
Int27 (Level/1)	Software interrupt 14	IRQC module
Int28 (Level/1)	GINT1	GPIO pin
		(selected using GINT1_SEL - CCM_CONTROL register)
Int29 (Level/1)	GINT2	GPIO pin
		(selected using GINT2_SEL - CCM_CONTROL register)
Int30 (Level/1)	Reserved	202002.109.0.0./
Int31 (WriteErr)	AHB bus error	Internal to HiFi EP™ core

Table 12 DSP Core Interrupts

MEMORY MAP

	OxFFFF FFFF	
250880 kB	_	[reserved]
	0xF0B0 0000	[
	0xF0AF FFFF	
1024 kB	0xF0A0_0000	RNG
	0xF09F FFFF	
1024 kB	_	AIF CONTROLLER #3
	0xF090_0000	
1024 kB	0xF08F_FFFF	AIF CONTROLLER #2
	0xF080_0000	
1024 kB	0xF07F_FFFF	AIF CONTROLLER #1
	0xF070_0000	, iii ddittittazzzitiii
	0xF06F_FFFF	PKA CONTROLLER
1024 kB	0xF060_0000	FRA CONTROLLER
	0xF05F_FFFF	DMA CONTROLLER:
1024 kB	0xF050 0000	SHA SPACE
	0xF04F FFFF	
1024 kB	0xF040 0000	DMA CONTROLLER
	0xF03F FFFF	
1024 kB	0xF03F_FFFF	SPI CONTROLLER
	-	
2048 kB	0xF02F_FFFF	[reserved]
	0xF010_0000	[
	0xF00F_FFFF	
1024 kB	0xF000 0000	APB BRIDGE SPACE
	_	
	0xEFFF FFFF	
	0xEFFF_FFFF	[reserved]
2358912 kB	_	[reserved]
	0x6006_0000	[reserved]
	0x6006_0000 0x6005_FFFF	[reserved] System RAM
2358912 kB	0x6006_0000 0x6005_FFFF 0x6000_0000	
2358912 kB 384 kB	0x6006_0000 0x6005_FFFF	System RAM
2358912 kB 384 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF	
2358912 kB 384 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000	System RAM
2358912 kB 384 kB 262112 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF	System RAM
2358912 kB 384 kB 262112 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000	System RAM [reserved]
2358912 kB 384 kB 262112 kB 32 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF	System RAM [reserved] System ROM
2358912 kB 384 kB 262112 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF	System RAM [reserved]
2358912 kB 384 kB 262112 kB 32 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000	System RAM [reserved] System ROM [reserved]
2358912 kB 384 kB 262112 kB 32 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1
2358912 kB 384 kB 262112 kB 32 kB 262016 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000	System RAM [reserved] System ROM [reserved] HiFi EP TM IRAM1 (this space maps to HiFi EP TM AHB Slave as inbound DMA)
2358912 kB 384 kB 262112 kB 32 kB 262016 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ IRAM0
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000	System RAM [reserved] System ROM [reserved] HiFi EP TM IRAM1 (this space maps to HiFi EP TM AHB Slave as inbound DMA)
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000 0x4000_FFFF	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ IRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000 0x4000_FFFF 0x4000_0000	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ IRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA)
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000 0x4000_FFFF 0x4000_0000 0x3FFF_FFFF	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ IRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM1
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000 0x4000_FFFF 0x4000_0000 0x3FFF_FFFF 0x3FFF_0000 0x3FFF_FFFF	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM1 (this space maps to HiFi EP™
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x4000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000 0x3FFF_FFFF 0x3FFF_0000 0x3FFF_FFFF 0x3FFF_0000	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ IRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM1
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB 64 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x5000_7FFF 0x5000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000 0x4000_FFFF 0x4000_0000 0x3FFF_FFFF 0x3FFF_0000 0x3FFF_FFFF	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ IRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA)
2358912 kB 384 kB 262112 kB 32 kB 262016 kB 64 kB 64 kB	0x6006_0000 0x6005_FFFF 0x6000_0000 0x5FFF_FFFF 0x5000_8000 0x4000_0000 0x4FFF_FFFF 0x4002_0000 0x4001_FFFF 0x4001_0000 0x3FFF_FFFF 0x3FFF_0000 0x3FFF_FFFF 0x3FFF_0000	System RAM [reserved] System ROM [reserved] HiFi EP™ IRAM1 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ IRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM0 (this space maps to HiFi EP™ AHB Slave as inbound DMA) HiFi EP™ DRAM1 (this space maps to HiFi EP™

	0xF00F FFFF	
[reserved]	• • • · _ · · ·	448 kB
	0xF009_0000	
	0xF008_FFFF	
UART	0xF008_0000	64 kB
WDT	0xF007_FFFF	64 kB
VVDI	0xF007_0000	04 KD
TRAX access	0xF006_FFFF	64 kB
TIVAX access	0xF006_0000	04 KD
IRQC	0xF005_FFFF	64 kB
11100	0xF005_0000	
GPIO	0xF004_FFFF	64 kB
5	0xF004_0000	
FUSE	0xF003_FFFF	64 kB
	0xF003_0000	
I2C	0xF002_FFFF	64 kB
	0xF002_0000	
TMR	0xF001_FFFF	64 kB
	0xF001_0000	
ССМ	0xF000_FFFF	64 kB
	0xF000_0000	

	/	
	Window Reg Ovfl Vector	0x6000_0000
	Level 2 Interrupt	0x6000_0180
	Level 3 Interrupt	0x6000 01C0
	Level 4 Interrupt	0x6000 0200
)	Level 5 Interrupt	0x6000 0240
^	Level 6 Interrupt	0x6000_0280
	Level 7 (NMI)	0x6000_02C0
	Kernel Exception	0x6000 0300
	User Exception	0x6000 0340
	Double Exception	0x6000 03C0

Primary	Reset	Vector	0x5000 0000
FITHERTA	veser	AECTOI	023000_0000

Alternate Reset Vector 0x4000_0400

WM0011

CLOCKING

The WM0011 requires a clock reference for its internal functions, and to provide clocking for external interfaces when Master mode is selected on the respective module(s).

The external clock reference is connected via the XTI pin; this may be either a digital logic input, or may be provided using an external crystal. A two-stage PLL is provided, allowing a high frequency internal clock to be generated from the XTI clock input reference.

The clocking architecture is illustrated in Figure 16. The CLKIN reference (direct from the XTI pin) can provide clocking to all modules directly, and is also used as the input clock to the PLL. An alternate clock (ALTCLK) can also be configured using a GPIO pin as input.

The clock source for most of the WM0011 functions is selected using the CLK_SEL multiplexer; this provides a glitch-free switchover between the CLKIN, PLLOUT or ALTCLK signals. Note that, if a Warm Reset is triggered due to the PLL 'out-of-lock' condition, then the CLK_SEL multiplexer forces the selection of CLKIN as the system clock source. This override must be cleared before any other clock source can be selected.

The clock reference selected by CLK_SEL is processed by configurable dividers to generate the following system clocks:

- DSPCLK clock reference for the HiFi2 EP[™] DSP core
- · AHBCLK clock reference for selected peripherals
- APBCLK clock reference for selected peripherals

The main clocking options are summarised as follows:

- Under initial start-up conditions, CLKIN is selected as the clock source.
- High-speed clocking is possible when the PLL is configured, and PLLOUT is selected as the clock source.
- The alternative clock source, ALTCLK provides the option of a low-speed clocking configuration; this could be used for a low-power operating mode, or if CLKIN was unsuitable or unavailable.

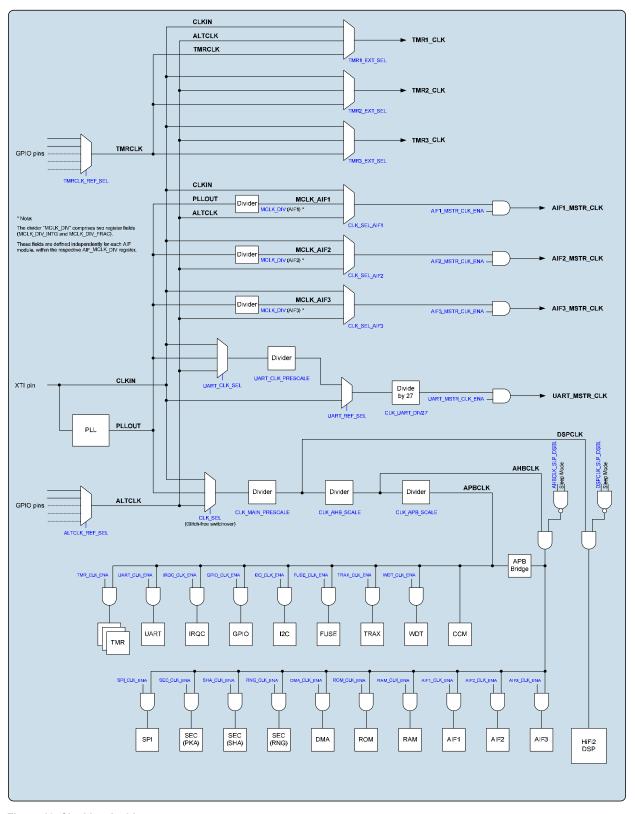


Figure 16 Clocking Architecture

CRYSTAL OSCILLATOR

The external clock reference connected to the XTI pin may be either a digital logic input, or may be provided using an external crystal. The typical connection details for an external crystal are illustrated in Figure 17.

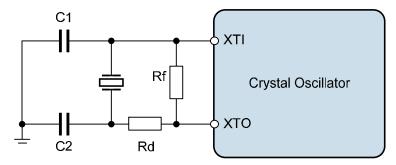


Figure 17 Crystal Oscillator External Components

Selection of the correct external components for the crystal oscillator is important. Recommended guidelines are provided below. Users should also refer to the crystal component datasheet for applicable guidelines.

The feedback resistor (Rf) biases the internal inverter in the high gain region. A typical resistance of $1M\Omega$ is recommended.

The damping resistor (Rd) increases stability, and reduces power consumption, suppressing the high frequency gain. Note that, if this resistance is too large, the loop could fail to oscillate. Some circuits may omit the Rd resistor altogether.

The load capacitors C1 and C2 should be selected according to the recommended load capacitance, C_L of the crystal, which is given by the following equation:

Load Capacitance
$$C_L = \frac{C1 \times C2}{C1 + C2} + C_{STRAY}$$

Assuming C1 = C2 and C_{STRAY} = 2.75pF (typical pad i/o capacitance), then:

$$C1 = C2 = 2 \times (C_L - 2.75pF).$$

For example, if the crystal has a recommended load capacitance C_L = 9pF, then C1 = C2 = 12.5pF.

Table 13 shows the recommended load capacitance and maximum ESR values for a range of suitable WM0011 clocking frequencies.

EDECHENCY	CADACITANCE (C.)	MAYIMUM ECD
FREQUENCY	CAPACITANCE (C _L)	MAXIMUM ESR
2MHz to 6MHz	20pF	1000Ω
6MHz to 10MHz	16pF	160Ω
10MHz to 20 MHz	12pF	90Ω
20MHz to 30MHz	8pF	40Ω

Table 13 Crystal Selection Guide

PHASE LOCKED LOOP (PLL)

The WM0011 incorporates a 2-stage Phase Locked Loop (PLL), which can generate the internal high-speed clock reference for the DSP core and other peripheral modules.

The PLL input reference is derived from CLKIN, which may be either a digital logic input, or crystalgenerated, as described earlier.

Each PLL can be configured independently. The PLL is reset using the PLLn_RST bits; the PLL is bypassed using the PLLn_BYPASS bits, where 'n' is 1 or 2 for the respective PLL. Note that, if only a single-stage PLL is required, then PLL1 should be bypassed, and PLL2 used.

The PLL loop filter is configured using the PLLn_FRANGE_MSK register; this should be set according to the reference frequency, F_{REF}, of the respective PLL. (Note that the reference frequency is the input frequency, after division by the PLLn_INDIV register setting.)

The frequency conversion ratio of the PLL is configured using PLLn_FRATIO. A divider is provided in the input path and output path of each PLL; these are adjusted using the PLLn_INDIV and PLLn OUTDIV registers.

The PLL configuration registers are illustrated in Figure 18. The frequency limits for F_{REF} and F_{VCO} are also noted. The two PLLs are cascaded in series; the same frequency limits apply in each case.

The PLLs should be disabled whenever changes are made to the PLL configuration registers. Note that a valid system clock must be maintained when disabling the PLLs; the system clock multiplexer (CLK SEL) must select a valid clock source (CLKIN or ALTCLK) before disabling the PLLs.

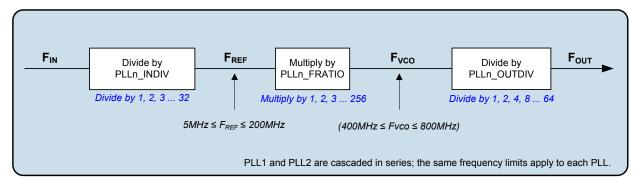


Figure 18 PLL Configuration

The PLL Lock status can be read from the PLL_RAW_LOCK register bit in the CCM_STATUS register (see Table 17). It is recommended that the PLL output is not selected as the clock source until PLL RAW LOCK indicates that PLL Lock has been achieved.

A configurable PLL 'out-of-lock' detection circuit is also provided; this is enabled and configured using the PLL_LOCKDET_ENA and PLL_LOCKDET_MODE registers, as described in Table 22. It is recommended that this function is not enabled until PLL_RAW_LOCK indicates that PLL Lock has been achieved.

The PLL lock detection is derived by checking the ratio of the PLL2 output frequency with respect to the PLL1 input frequency; a count is maintained of instances when the ratio is outside the limits set by PLL_LOCKDET_MIN and PLL_LOCKDET_MAX.

When setting the PLL_LOCKDET_MIN and PLL_LOCKDET_MAX thresholds, it should be noted that the input and output clock counters are not synchronised; an error margin should be incorporated into the thresholds to avoid incorrect triggering of the out-of-lock detection.

If the count of the number of frequency ratio exceptions exceeds the thresholds set by PLL_UNDERFLOW_LIMIT or PLL_OVERFLOW_LIMIT, then the PLL 'out-of-lock' condition is asserted.

The PLL 'out-of-lock' condition is indicated via the PLL_FLAG and PLL_UNLOCK register bits in the CCM_STATUS register (see Table 17).

The PLL 'out-of-lock' condition can trigger a Warm Reset, as described in the "Power-on and Reset Control" section. This is selectable using the PLL MSK bit.

If a Warm Reset is triggered, due to the PLL 'out-of-lock' condition, then the CLK_SEL multiplexer is overridden to force the selection of CLKIN as the system clock source. This override condition is indicated via the PLL_OVERRIDE_FLAG in the CCM_STATUS register. The PLL_OVERRIDE_FLAG must be cleared before any other clock source can be selected.

The 2-stage PLL configuration is illustrated in Figure 19. Example PLL settings for typical use cases are described in Table 14.

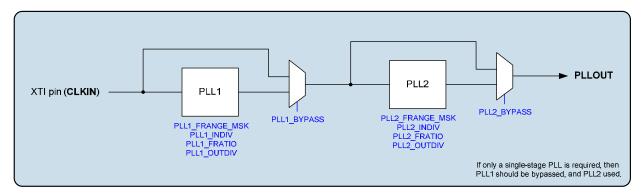


Figure 19 2-stage Cascade PLL Architecture

	PL	L1 CONFI	GURATION	ı		PL	L2 CONF	GURATION	I	
PLL1 INPUT (MHz)	PLL1_ FRANGE _MSK	PLL1_ INDIV	PLL1_ FRATIO	PLL1_ OUTDIV	PLL1 OUTPUT (MHz)	PLL2_ FRANGE _MSK	PLL2_ INDIV	PLL2_ FRATIO	PLL2_ OUTDIV	PLL2 OUTPUT (MHz)
6.144		(PLL1 b	ypass)		6.144	1h	00h	53h	01h	258.048
12.288		(PLL1 b	ypass)		12.288	2h	00h	29h	01h	258.048
24.576		(PLL1 b	ypass)		24.576	2h	01h	29h	01h	258.048
5.6448		(PLL1 b	ypass)		5.6448	1h	00h	5Bh	01h	259.6608
11.2896		(PLL1 b	ypass)		11.2896	2h	00h	2Dh	01h	259.6608
22.5792		(PLL1 b	ypass)		22.5792	2h	01h	2Dh	01h	259.6608
26		(PLL1 b	ypass)		26	3h	00h	13h	01h	260
19.2		(PLL1 b	ypass)		19.2	1h	01h	35h	01h	259.2
26	3h	03h	41h	01h	214.5	2h	2Dh	01h	259.6579	

Note that the values shown for PLLn_FRANGE_MSK, PLLn_INDIV, PLLn_FRATIO and PLLn_OUTDIV are the register values. See Table 20 and Table 21 for the coding of these registers.

Table 14 Example PLL Configurations

CORE DEVICE PERIPHERALS

The following sections describe each of the peripheral modules in turn. Each section comprises a descriptive overview, and the detailed definition of the associated control registers.

Note that the following definitions apply for the "S/W Access" data relating to the control register fields:

- RO: Read-Only register bit. Writes to these bits have no effect.
- WO: Write-Only register bit. The read value has no meaning.
- RW: Read/Write register bit.
- R/W1C: Read / Write 1 to Clear bit. Supports Read and Write operations. Writing a '1' clears the
 bit; Writing a '0' has no effect.
- R/WC: Read / Write to Clear bit. Supports Read and Write operations. Writing any value clears
 the bit.
- RC: Read to Clear bit. The bit is cleared (set to 0) when it is Read.

CCM - CHIP CONFIGURATION MODULE

BASE ADDRESS 0xF000_0000

CCM FEATURES

This Chip Configuration Module section covers the internal chip configuration, core peripherals, and low power modes of operation.

This 32-bit APB slave contains user-programmable control registers to gate various peripheral clocks, force various peripheral resets, control power management, and control other miscellaneous functions.

The CCM implements the following functions:

- Clocking control/enable registers, and clock generation
- Reset control/enable registers, and Reset generation
- Main control and status registers
- GPIO / STANDBY de-bounce
- I/O buffer control registers (programmable drive strength, pull enables, etc.)
- · Scratchpad registers
- Sleep/Wake-up control registers and Wake-up state machine (FSM)

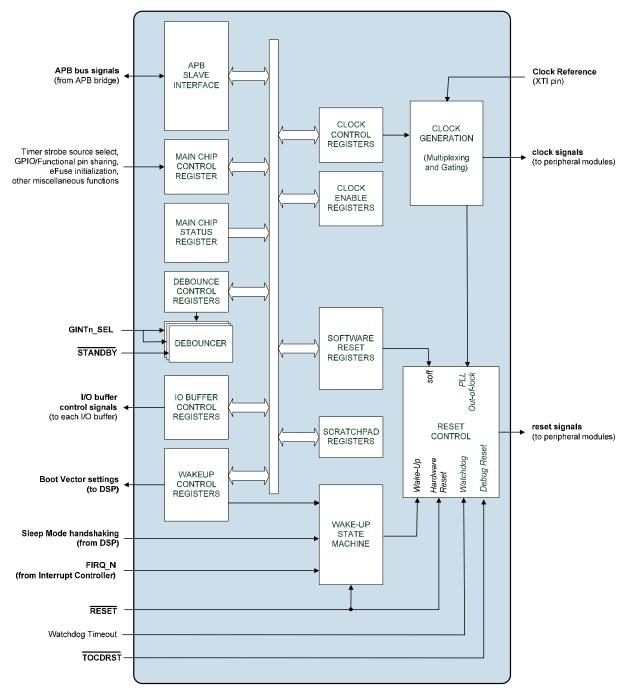


Figure 20 Chip Configuration Module (CCM) Block Diagram

CLOCKING CONTROL

The CCM registers allow full configuration of the WM0011 clocking options, including clock dividers, clock multiplexers and the 2-stage Phase Locked Loop (PLL). Individual clock enable registers are provided for each peripheral module.

RESET CONTROL

The CCM registers allow flexible control of the Warm Reset functions. The Warm Reset conditions are individually maskable, and status readback is also provided. Software Reset control registers allow each peripheral to be reset individually.

INTERFACE PORT SELECTION

The I2C and UART interfaces are supported via multiplexed input/output pins. The SPI and AIF3 interfaces are similarly multiplexed. These ports are configured using the PORTn_SEL fields in the CCM_CONTROL register.

Each of the GPIO pins is multiplexed with one or more serial interface pin function. These pins are configured using the control bits in the CCM_GPIO_SEL register.

GPIO / STANDBY DE-BOUNCE

A maximum of two GPIO pins can be selected as interrupts directly to the HiFi2 EP[™] DSP core. The applicable GPIOs are selected using the GINTn_SEL register fields.

The STANDBY pin is an input to the Interrupt Controller module, and also to the HiFi2 EP™ DSP core.

De-bouncing of these inputs to the DSP core can be configured using the control fields in the CCM_DB_STBY, CCM_DB_GINT1 and CCM_DB_GINT2 registers.

I/O BUFFER CONTROL

The CCM provides full control of the input/output enables, drive strength and pull-up/pull-down configuration of the I/O buffer pins. Note that the Pull-Up / Pull-Down capabilities of the I/O pins are noted in the "Pin Description" section.

SLEEP / WAKE-UP CONTROL

The WM0011 supports a 'Sleep' mode, suitable for low-power standby and similar requirements.

Note that the application software must ensure that the WM0011 (and associated functions) are configured as required before selecting the Sleep mode.

Sleep mode is commanded by writing '1' to the SLP_ENA bit in the CCM_WKUP_CTRL register.

Note that the SLP_ENA bit does not have any effect on the HiFi2 EP[™] DSP core operation; the DSP core sleep state is selected when the core executes a "WAITI" command. The WAIT_HIFI_SLP_ENA bit selects whether to wait for the WAITI to complete before proceeding with the Sleep sequence.

The DSPCLK_SLP_DSBL bit selects whether to disable the DSPCLK in Sleep mode.

The AHBCLK SLP DSBL bit selects whether to disable the AHBCLK in Sleep mode.

Note that, if DSPCLK or AHBCLK is disabled in Sleep mode, then the WAIT_HIFI_SLP_ENA bit must be set to '1'. This ensures that the DSP core functions are suspended before the clocking is disabled.

Note that, if DSPCLK is disabled in Sleep mode, then the AHBCLK must also be disabled in Sleep.

The AIF_BYP_SEL field controls whether one of the AIF Bypass Modes is selected in Sleep mode. Details of the AIF Bypass modes are provided later in this section.

On completion of the steps described above, the WM0011 will be in Sleep mode.

The trigger for Wake-Up is the FIRQ_N output from the Interrupt Controller (IRQC) module. The STANDBY pin, GPIO pins, and Interrupt signals from the peripheral modules are all inputs to the IRQC module, and may be configured to trigger the WM0011 Wake-Up sequence.

Note that, if DSPCLK or AHBCLK is disabled in Sleep mode, then the STANDBY pin is the only signal that can trigger the Wake-Up sequence.

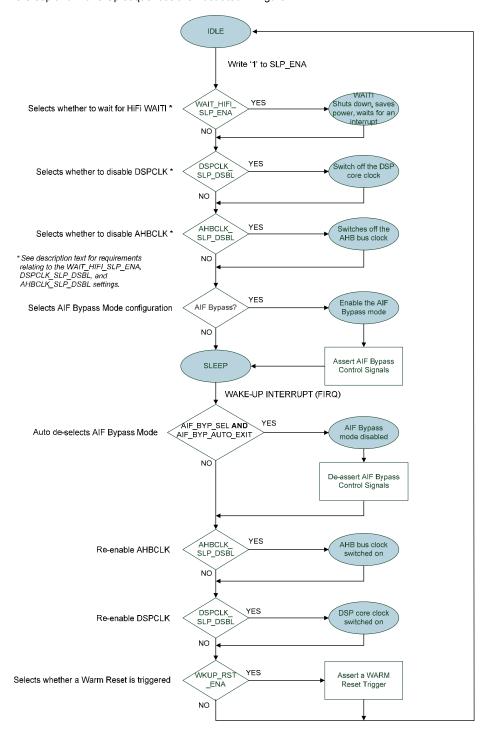
The AIF_BYP_AUTO_EXIT bit selects whether to exit the AIF Bypass mode (if applicable) as part of the Wake-Up sequence.

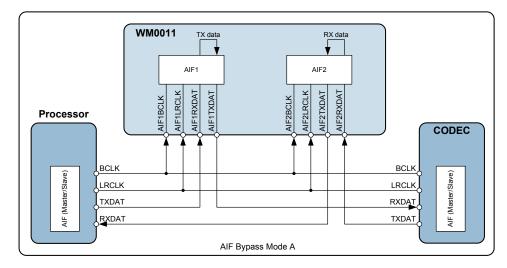
The AHBCLK and DSPCLK clocks are re-enabled as part of the Wake-Up sequence.

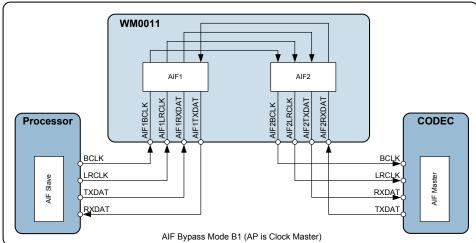
The WKUP_RST_ENA bit selects whether a Warm Reset is triggered as part of the Wake-Up.

On completion of the steps described above, the WM0011 will be in its normal operating state.

The Sleep and Wake-Up sequences are illustrated in Figure 21.




Figure 21 CCM Wake-up


AIF BYPASS MODE

When the WM0011 is in the Sleep mode, the AIF inputs/outputs can be configured in a Bypass mode, allowing AIF data to be looped through the device, with the AIF modules disabled.

The AIF Bypass modes are illustrated in Figure 22.

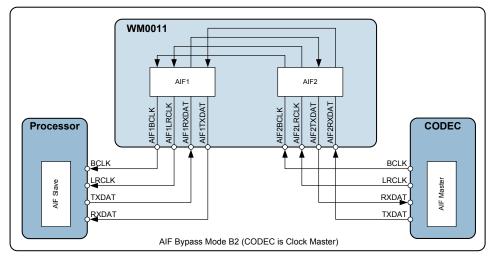


Figure 22 AIF Bypass Modes (Sleep Mode only)

Although the AIF Bypass Modes are intended for use when the WM0011 (including the HiFi2 EP^{TM} DSP core) are in Sleep mode, it is also possible to select AIF Bypass with the DSP core still enabled. This can be achieved using the Sleep and Wake-Up sequences, as described below.

Writing '1' to SLP_ENA will command the WM0011 Sleep mode, as described above. If the DSP "WAITI" command is not executed, and WAIT_HIFI_SLP_ENA, DSPCLK_SLP_DSBL, and AHBCLK_SLP_DSBL are all set to '0', then AIF Bypass can be achieved without interrupting the HiFi2 EP^{TM} DSP core operation. (The desired AIF Bypass mode is selected using the AIF_BYP_SEL field.)

If the Wake-Up sequence is triggered, and AIF_BYP_AUTO_EXIT=0, then the WM0011 will return to normal operation, with the AIF Bypass mode unchanged. Writing '1' to the AIF_BYP_FORCE_EXIT bit will de-select AIF Bypass mode.

CCM REGISTER MAP

The register map of the CCM module is illustrated in Table 15.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	CCM_CONTROL	General Control	0x001E_1E00
Base + 0x04	CCM_STATUS	General Status	0x8000_0000
Base + 0x0C	CCM_GPIO_SEL	Port Select	0x0000_0000
Base + 0x10	CCM_CLK_CTRL1	Clock Control 1	0x0000_0011
Base + 0x14	CCM_CLK_CTRL2	Clock Control 2	0x03DE_0000
Base + 0x18	CCM_CLK_CTRL3	Clock Control 3	0x0000_0000
Base + 0x1C	CCM_PLL_LOCK_CTRL	PLL Lock Detect Control	0x3312_0E00
Base + 0x24	CCM_CLK_ENA	Clock Enable	0x02BA_187F
Base + 0x28	CCM_SOFTRST	Software Reset	0x00BA_087F
Base + 0x30	CCM_WKUP_CTRL	Chip Wakeup Control	0x0001_0000
Base + 0x44	CCM_DB_STBY	Standby De-bounce Control	0x0000_0000
Base + 0x48	CCM_DB_GINT1	GINT1 De-bounce Control	0x0000_0000
Base + 0x4C	CCM_DB_GINT2	GINT2 De-bounce Control	0x0000_0000
Base + 0x50	CCM_SCRATCH1	Scratchpad 1	0x0000_0000
Base + 0x54	CCM_SCRATCH2	Scratchpad 2	0x0000_0000
Base + 0x58	CCM_SCRATCH3	Scratchpad 3	0x0000_0000
Base + 0x5C	CCM_SCRATCH4	Scratchpad 4	0x0000_0000
Base + 0x60	CCM_IOCTRL1	I/O Control 1	0x7777_0000
Base + 0x64	CCM_IOCTRL2	I/O Control 2	0xFF7F_FF7F
Base + 0x68	CCM_IOCTRL3	I/O Control 3	0x7777_7777
Base + 0x6C	CCM_IOCTRL4	I/O Control 4	0x7777_7700
Base + 0x70	CCM_IOCTRL5	I/O Control 5	0x7D77_7777
Base + 0x74	CCM_IOCTRL6	I/O Control 6	0x7777_7770
Base + 0x78	CCM_IOCTRL7	I/O Control 7	0x0707_0707
Base + 0x7C	CCM_IOCTRL8	I/O Control 8	0x0F07_0700
Base + 0x84	CCM_IOCTRL10	I/O Control 10	0x0707_0707
Base + 0x88	CCM_IOCTRL11	I/O Control 11	0x0F07_0700

Table 15 CCM Register Definition

CCM_CONTROL - GENERAL CONTROL REGISTER

The CCM_CONTROL register contains control fields relating to Warm Reset, Timer (TMR) control sources, Interface port selections and GINTn Interrupts.

See "Power-on and Reset Control" for more details of the Warm Reset function.

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

															_	COI																					
												GE	NER	AL C	C	ONTR	OL	RE	Ξ	SIS	TE	R						_									
Addre	ss =	0xF	-00	00_00	000)		1	1			<u> </u>		1	1							1	1	I		1		eta	ult	i v	alue	=	: 0x	00	1E_	_1E	:00
31 30	29	28	2	7 26	2	25	24	23	22	21	2	0 1	9 18	17	1	16 1	5 1	4	1	3	12	11	1	0	9	8	7		6	ţ	5 4		3	2	2	1	0
BITS				FIEL						S/W			ESET										_	\		EL											
				NAM	IE				AC	CES	00	V.	ALUE	Se	عاد	ects v	/het	the	ır	PI I	۱ '،	out-					PTIO Ars		/arı	m	Res						
31			Р	LL_N	181	K			F	RW			0x0			PLL '													an	•••	1103	Ci					
																PLL '																					
00			_	0D 1	40					314 /			00			ects v												rm	Re	ese	et						
30			U	CD_N	VIS	ĸ			'	₹W			0x0			TOC TOC												ese	et								
																ects v														٧a	rm F	les	set				
29			W	DT_N	ИS	K			F	₹W			0x0	0	=	Watc	hdo	g T	Tii	me	ou	t triç	ge	rs	a V	Var	m R	ese	t								
			_											1 :	= '	Watc	hdo	g ¯	Tiı	me	ou	t do	es	not	tri	gge	er a	Na	rm	R	eset						
28			H	Reser	ve	<u>a</u>							0x0	E	/tc	ernal	tria	nor		مام	oct	for	Tim	ner	Mc	du	7) ما	NIE	231								
																= CLk	٠.	gci	3	CIC	,01	101		ICI	IVIC	Juu	iC (i	IVII	(0)	'							
27:26		TMR3_EXT_SEL RW 0x0 01 = ALTCLK 10 = TMRCLK																																			
														10 = TMRCLK 11 = Reserved																							
													External trigger select for Timer Module (TMR2)																								
													External trigger select for Timer Module (TMR2) 00 = CLKIN																								
25:24		TM	1R	2_EX	Τ_	SE	EL		F	₹W			0x0																								
														0																							
														+		ernal			r s	ele	ect	for	Tim	ner	Мс	odu	le (1	MF	R1)								
																= CLk											`		,								
23:22		TM	1R	1_EX	Τ_	_SE	L		F	₹W			0x0			= ALT																					
																= TMF = Res																					
21			R	Reserv	ve	d							0x0			1100	0	ou																			
																ects t				•										•							
20:46			\sim 1	NITO	C I	-,				2147		١,	\1 F			to 10 M_GF												it a	ıssi	ig	nme	nts	of	th	е		
20:16			GI	NT2_	<u></u> 51	EL				₹W		'	x1E			vi_Gr i = Co					gı	SIEI	(56		ıaı	ле	10).										
																= Co																					
15:13			R	Reser	ve	d							0x0																								
																ects to to 10				•										•							
12:8			GI	NT1_	SE	EL			F	RW		(x1E			M_GF												/IL C	ادی	.Α	mile	113	, 01	CI II	•		
																= Co																					
												1		+		t 2 fui					nt.																
																t ∠ iui = UAF		JII	56	:ie(J																
7:6		F	PO	RT2_	_s	EL			F	RW			0x0	01	=	= Res	erv																				
																= I2C																					
														11	=	= I2C	ivia	ste	r																		

												GEN		CM	_					ST	ER	R														
Ad	ldre	ss =	0xF	000	_00	00																					De	efau	lt '	valu	ue	= 0	x00	1E_	_1E	00
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1	6	15	14	13	1	2	11	10	9)	8	7	6		5	4	3	2		1	0
BI	TS			F	IELI	D			S	S/W		RES	SET											F	ŦΙΕ	LD										
				N	AMI	E			AC	CES	S	VAL	LUE										DE	ES	CR	IPT	101	1								
		Port 1 function select PORT1_SEL RW 0x0 0 = SPI																																		
5	5		F	POR	T1_	SEL			F	RW		0x	(0	0 = SPI																						
														1 :	= /	٩IF٥	3 (12	2S/1	DM	1)																
4	4			Re	serv	ed						0x	(0																							
3	3		FU	SE_	_INI	T_S	ΓS		F	२०		0х	(0	Re	ese	erve	ed fo	or V	Volfs	soı	n u	se (only	,												
	`	FUSE_INIT_STS									۸.	. ^	Re	ese	erve	ed fo	or V	Volfs	SOI	n u	se (only	,													
2	2			FUS	SE_I	INI I			V	VO		0x	(U	Tr	nis	bit	sho	ould	not	be	e ch	nan	ged	fro	om	the	e de	faul	t v	alue	е					
•	1		FU	SE_	PGN	M_S	TS		F	2 0		0x	(0	Re	ese	erve	ed fo	or V	Volfs	soı	n u	se (only	,												
	`		-11	<u> </u>		4 -	N I A		-	2147		0.	۰,0	Re	ese	erve	ed fo	or V	Volfs	soı	n u	se (only	,												
(J		FU:	>E_	PGI	и_Е	NA		۲	RW		0x	(U	Tr	nis	bit	sho	ould	not	be	e ch	nan	ged	fro	om	the	e de	faul	t v	alue	е					

Table 16 CCM_CONTROL Register

CCM_STATUS - GENERAL STATUS REGISTER

The CCM_STATUS register contains general status bits relating to Warm Reset and PLL 'out-of-lock' conditions. See "Power-on and Reset Control" for more details of the Warm Reset function.

				CCM_STATUS AL STATUS REGISTER										
Addres	ss = 0xF000_0004			Default value = 0x8000_0000										
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION										
31	PLL 'out-of-lock' indicator. This bit is set when the PLL 'out-of-lock' conditions are met. The 'out-lock' detection must be enabled using PLL_LOCKDET_ENA (see Tat 22). This bit is set regardless of whether the PLL_MSK bit selects a Warm Reset. The bit is latched once set; Write '1' to clear. 0 = No PLL Out-of-Lock detected 1 = PLL Out-of-Lock detected													
30	OCD_FLAG	R/W1C	0x0	TOCDRST input indicator. This bit is set when the TOCDRST is asserted. This bit is set regardless of whether the OCD_MSK bit selects a Warm Reset. The bit is latched once set; Write '1' to clear. 0 = TOCDRST has not been asserted 1 = TOCDRST has been asserted										
29	WDT_FLAG	R/W1C	0x0	Watchdog Timeout indicator. This bit is set when the Watchdog Timer (WDT) module asserts the timeout indication. This bit is set regardless of whether the WDT_MSK bit selects a Warm Reset. The bit is latched once set; Write '1' to clear. 0 = WDT Timeout has not been asserted 1 = WDT Timeout has been asserted										

									GEI			_	STA			TE	R													
Addres	ss = 0xl	F000_00	04																		ı	Def	faul	t v	alue	=	0x	8000	_0	000
31 30	29 28	27 26	25	24	23	22	21	20	19	18	17	16	3 15	14	13	12	2 11	10	ć	8		7	6	5	5 4	3	3	2	1	0
BITS		FIELI NAM	_				/W CES		RES VAL									DE		FIEL		ON								
28	The bit is latched once set; Write '1' to clear. 0 = CLK_SEL has not been overridden 1 = CLK_SEL has been overridden Wakeup Reset indicator. This bit indicates when a Warm Reset has been triggered as part of a Wake-Up transition														f-															
											0 =	= V	oit is I Vake- Vake-	Up F	Rese	et h	as no	ot be	en	trigg	gere									
26:2		Reserv	/ed						0x	0																				
1						Ox0 PLL 'out-of-lock' indicator This is the output of the configurable 'out-of-lock' detection circuit. The function must be enabled using PLL_LOCKDET_ENA (see Table 22). 0 = PLL second stage is locked 1 = PLL second stage is out-of-lock																								
0	0 PLL_RAW_LOCK RO							0x	0	Th ou PL 0 =	iis i tpu L i = P	Lock is the ut sho s lock the	raw uld r ked. out-	indi not b	icat ce s	selec												_	the	

Table 17 CCM_STATUS Register

CCM_GPIO_SEL - PORT SELECT REGISTER

The CCM_GPIO_SEL register contains configuration bits for selecting the function of the GPIO pins. Note that the PORTn_SEL fields in the CCM_CONTROL register also determine the pin functionality in some cases.

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

				CM_GF	_		R										
Addres	ss = 0xF000_000C								D	efaul	lt va	lue	= 0x	000	0_0	000	
31 30	29 28 27 26 25 24 23	22 21 20	19 18	15 14	13	12 1	1 10	9	8 7	6	5	4	3	2	1	0	
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	•			DE	FIEL SCRI		ı							
31:29	Reserved		0x0														
28	GPIO28_CLKOUT	RW	0x0	0 = CL	nction se KOUT PIO28	lect:											
27:24	Reserved		0x0														

													C		_	GP EC		_			₹																
Addres	ss =	0xF	00	0_0	000	С																					De	efau	ılt	V	alue) =	= 0x	000	0_	000	00
31 30	29	28	27	, 2	6	25	24	23	22	21	20	1	9 18	17	1	6	15	14	13	,	12	11	10	ç)	8	7	6		5	4		3	2	1		0
BITS				FIE	LD ME					S/W CES		R	ESET ALUE										<u> </u>	F	FIE	LD	101			_	-						
														+-	in i	func	ction	n se	lec	t:																	
														0	= 1	UAF	RTT	X																			
23		GP	102	23_	UA	RT	TX		F	RW			0x0			GPI																					
																en P en P												_									
														_		func						, 10	iiotic	,,,	10 0	, 0.	.1 \Z	, 109	jui	I	000	01	CITIC	5 1010	•		
																UAF																					
22		GPI	102	22_	UA	RT	RX		F	RW			0x0			GPI																					
																en P												_									
21:20			D	000	erve	\d							0x0	V	vne	en P	'OR	(12_	_SE	EL:	=11	, tu	nctio	on	is S	SDA	12,	rega	arc	ale	SS (of t	nis	DIt.			
21.20			Г	ese	ive	u							UXU	P	in i	func	rtio	n se	lec	·+·																	
									_							SPII			100	٠.																	
19		GPI	lO′	19_	SP	IMI	SO		F	RW			0x0	1	= (GPI	01	9 (N	lote	e th	hat	РΟ	RT1	_s	EL	mι	ıst t	oe s	et	tc	0.)						
														_		en P			_		=1,	fun	ctior	ı is	ΑI	F3	RXE	DAT	, r	еς	jard	les	ss o	f thi	s b	it.	
																func			lec	t:																	
18		GPI	10	18_	SP	IMC	OSI		F	RW			0x0			SPII GPI			lote	s th	hat	D∩	DT1	9	ΕI	mı	iet k	200	Δŧ	to	. n \						
																en P																	s of	f this	s b	it.	
																func																					_
17		GF) 	17	SI	PIS	s			RW			0x0	0	= 3	SPI	SS																				
''		O.	10	, , ,	_0'	1 10	.0		'	.,,			OXO			GPI																					
40.45			_			ام							00	V	Vhe	en P	Юĸ	R I 1_	_SE	:L:	=1,	tun	ctior	า เร	AI	F3	_RC	LK,	re	eg	ardi	es	S 01	this	s b	ıt.	
16:15			K	ese	erve	ea							0x0		in i	func	rtio	n so	Jac	·+·																	
																GPI					d																
14		G	βPI	01	4_8	SEL	-		F	RW			0x0	1	= (GPI	O1	4 er	nab	lec	d																
																e tha																					r
																pull func					ire v	valio	ata	all	um	es,	reg	ardi	es	SS	of (۲د	ıU1	4_5	ı⊏l		_
																GPI					d																
13		G	βPI	01	3_8	SEL	-		F	RW			0x0	1	= (GPI	01	3 er	nab	lec	d																
																e tha																					r
	 															pull func					re v	valio	ata	all	tım	es,	reg	ardl	es	SS	ot (۲از	ıU1	კ_S	Εl		_
																tunc GPI					d																
12		G	βPI	01	2_8	SEL	_		F	RW			0x0			GPI																					
																e tha																					r
																pull					re v	valio	at	all	tim	es,	reg	ardl	les	SS	of (βP	101	2_8	EL		_
														- 1		func GPI					Ч																
11		G	SΡΙ	01	1_5	SEL	_		F	RW			0x0	_		GPI																					
					_									Ν	lote	e tha	at th	ne I/	O (cor	nfig																r
	<u> </u>													_		pull					re v	valio	l at a	all	tim	es,	reg	ardl	les	SS	of (βP	101	1_8	EL		
																func GPI					Ч																
10		G	βPI	01	0 8	SEL	_		F	RW			0x0			GPI																					
					_									Ν	lote	e tha	at th	ne I/	/O (cor	nfig																r
	<u> </u>													(6	eg.	pull	l-up	/do	wn)) a	re v	valio	at	all	tim	es,	reg	ardl	les	SS	of C	βP	101	0_S	EL		

													_	_	SPIO	_															
Addres	ss =	0xF	000	0_000	OC																		De	faul	lt v	alue	=	= 0x	0000	_00	000
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	3 15	14	13	3 12	11	10	9	8	7	6	5	5 4		3	2	1	0
BITS				FIELD					S/W CES	s		SET LUE					1			DE	FIE SCR		ION	<u> </u>	1						
9		(GPI	O9_\$	SEL			F	RW		0:	x0	0 = 1 = No	= 0 = 0 te	that t	disa ena he I/	able O	ed ed config													·r
8	Note that the I/O configuration settings in the CCM_IOCTRL8 regist (eg. pull-up/down) are valid at all times, regardless of GPIO9_SEL. Pin function select: 0 = GPIO8 disabled 1 = GPIO8 enabled Note that the I/O configuration settings in the CCM_IOCTRL7 regist (eg. pull-up/down) are valid at all times, regardless of GPIO8_SEL. Pin function select: 0 = GPIO7 disabled														ste	:r															
7		(GPI	07_9	SEL			F	RW.		0:	x0	0 = 1 = No	= C = C		disa ena he I/	able O	ed ed config				_				_			_		:r
6		(GPI	O6_\$	SEL			F	₹W		0:	x0	0 = 1 = No	= C = C	unctio SPIO6 SPIO6 that t pull-up	disa ena he I/	able O	ed ed config				_				_			_		:r
5		(GPI	O5_\$	SEL			F	₹W		0:	x0	0 = 1 = No	= 0 = 0 te	unctio SPIO5 SPIO5 that t pull-up	disa ena he I/	able O	ed ed config													:r
4		(04_9				F	₹W		0:	x0	0 = 1 = No	= 0 = 0 te	unctio SPIO4 SPIO4 that t pull-up	disa ena he I/	able O	ed ed config	,			_				_			_		:r
3:0			Re	eserv	ed						0:	x0																			

Table 18 CCM_GPIO_SEL Register

CCM_CLK_CTRL1 - CLOCK CONTROL 1 REGISTER

The CCM_CLK_CTRL1 register contains clocking configuration registers. See "Clocking" for more details of the Clocking architecture.

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

				M_CLK_CTRL1 CONTROL 1 REGISTER											
Addres	ss = 0xF000_0010			Default value = 0x0000_0011											
31 30	29 28 27 26 25 24 23	22 21 2	0 19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
BITS	FIELD		RESET	FIELD											
ыз	NAME	ACCESS	_	DESCRIPTION											
				Clock source select for AIF3_MSTR_CLK											
				00 = CLKIN											
				01 = MCLK_AIF3											
31:30	CLK_SEL_AIF3	RW	0x0	10 = ALTCLK 11 = Reserved											
				The ALTCLK source is selected using ALTCLK_REF_SEL.											
				The MCLK_AIF3 clock is derived from PLLOUT, via a configurable											
				divider (MCLK_DIV) in the AIF3 module.											
				Clock source select for AIF2_MSTR_CLK											
			01 = MCLK_AIF2												
29:28	CLK SEL AIE2	RW	0x0	10 = ALTCLK											
20.20	02.12_022_7 111 2		- OXO	11 = Reserved											
	CLK_SEL_AIF2 RW 0x0 10 = ALTCLK 11 = Reserved The ALTCLK source is selected using ALTCLK_REF_SEL.														
	CLK_SEL_AIF2 RW 0x0 10 = ALTCLK 11 = Reserved The ALTCLK source is selected using ALTCLK_REF_SEL. The MCLK_AIF2 clock is derived from PLLOUT, via a configurable divider (MCLK_DIV) in the AIF2 module.														
	CLK_SEL_AIF2 RW 0x0 10 = ALTCLK 11 = Reserved The ALTCLK source is selected using ALTCLK_REF_SEL. The MCLK_AIF2 clock is derived from PLLOUT, via a configura divider (MCLK_DIV) in the AIF2 module. Clock source select for AIF1_MSTR_CLK														
				00 = CLKIN											
				01 = MCLK_AIF1 10 = ALTCLK											
27:26	CLK_SEL_AIF1	RW	0x0	11 = Reserved											
				The ALTCLK source is selected using ALTCLK_REF_SEL.											
				The MCLK_AIF1 clock is derived from PLLOUT, via a configurable											
				divider (MCLK_DIV) in the AIF1 module. Clock source select for UART MSTR CLK											
				00 = CLKIN											
				01 = PLLOUT											
25:24	UART_CLK_SEL	RW	0x0	10 = ALTCLK											
				11 = Reserved The ALTCLK source is selected using ALTCLK_REF_SEL.											
				Only valid when UART_REF_SEL=0.											
23:22	Reserved		0x0												
				Pre-scaler for UART_MSTR_CLK.											
				The UART_MSTR_CLK source is selected using UART_CLK_SEL. The pre-scale division is controlled by this register.											
		514		00h = Divide by 1											
21:16	UART_CLK_PRESCALE	RW	0x00	01h = Divide by 2											
				3Fh = Divide by 64 Only valid when UART_REF_SEL=0.											
				Pre-scaler for DSPCLK.											
				The clock source is selected using CLK_SEL.											
	a			The pre-scale division is controlled by this register.											
15:8	CLK_MAIN_PRESCALE	RW	0x00	00h = Divide by 1 01h = Divide by 2											
				0 111 = Divide by 2											
				FFh = Divide by 256											
7	Reserved		0x0												

												CLC			-	L K_ (₹												
Ad	dres	ss =	0xF	000	00	10																		De	faul	t١	valu	e :	= 0x	000	0_0	011
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	5 4	1	3	2	1	0
Bľ	TS			-		_	1		_		s				ı						DE											•
6:	BITS FIELD S/W ACCESS VALUE DESCRIPTION APBCLK Clock Division. Sets the APBCLK frequency with respect to AHBCLK frequency. 000 = Divide by 1 001 = Divide by 2 011 = Divide by 4 011 = Divide by 8 100 = Divide by 16 101 = Divide by 32 11X = Reserved																															
3:	2			Re	serv	ed						0x	0																			
1:	0		CLM	(_Al	HB_S	SCA	ALE		F	RW		0x	1	Se 00 01 10	ets = =	CLK C the Al Divide Divide Divide Rese	HBC by by by	LK 1 1 2			y wi	th re	espe	ct to	DS	PC	CLK	fre	eque	ncy.		

Table 19 CCM_CLK_CTRL1 Register

CCM_CLK_CTRL2 - CLOCK CONTROL 2 REGISTER

The CCM_CLK_CTRL2 register contains clocking configuration registers, including some of the PLL controls. See "Clocking" for more details of the Clocking architecture.

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

												CLC	CC OCK	_	CLI	_				₹											
Ad	dres	ss =	0xF	:00	00_00	14																		De	fault	t val	ue	= 0x	03D	E_0	000
31	30	29	28	2	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIT	NAME ACCESS VALUE DESCRIPTION																•														
3	NAME ACCESS VALUE DESCRIPTION 1 Reserved 0x0																														
30)		CLK	_ .	JART _.	יום_	V27		F	RW		0×	:0	Th an Th 0 =	_	ART ART giste divi	Mas _CL er er sion	ster (K_S nable	cloc EL f	k so ields	urce 3.					g the	e UA	ART_	_REI	F_SE	EL
29	9			R	Reserv	ed						0x	0																		
28	3		UA	·R	T_REI	F_S	EL		F	RW		0x	:Ο	0 =	ART_ = Clc = CL	- ock s	our	ce is	sel	ecte	d by	UAF	_	•	_		is b	ypas	ssed)	
27:	26			R	Reserv	ed						0x	:0																		

				M_CLK_CTRL2 CONTROL 2 REGISTER
Addres	ss = 0xF000_0014			Default value = 0x03DE_0000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET	FIELD DESCRIPTION
	IVAIIL	AGGEGG	VALUE	Selects the GPIO pin used as the TMRCLK source. The TMRCLK
25:21	TMRCLK_REF_SEL	RW	0x1E	signal can be selected as an external trigger for the Timer (TMR) modules. 00h to 1Dh = Register coding follows the bit assignments of the CCM_GPIO_SEL register (see Table 18). 1Eh = Constant '0' 1Fh = Constant '1'
20:16	ALTCLK_REF_SEL	RW	0x1E	Selects the GPIO pin used as the ALTCLK source. The ALTCLK signal can be selected as the reference clock for one or more modules. 00h to 1Dh = Register coding follows the bit assignments of the CCM_GPIO_SEL register (see Table 18). 1Eh = Constant '0' 1Fh = Constant '1'
15	Reserved		0x0	
14:12	PLL2_FRANGE_MSK	RW	0x0	PLL2 Filter Range select Configures the 2nd stage PLL for the required frequency range. The register should select the highest valid range for the PLL2 reference frequency. Note that the reference frequency is the input frequency, after division by the PLL2_INDIV register setting. 000 = Bypass 001 = 5MHz to 10MHz 010 = 10MHz to 16MHz 011 = 16MHz to 26MHz 100 = 26MHz to 42MHz 110 = 68MHz to 108MHz 111 = 108MHz to 200MHz
11	Reserved		0x0	
10:8	PLL1_FRANGE_MSK	RW	0x0	PLL1 Filter Range select Configures the 1st stage PLL for the required frequency range. The register should select the highest valid range for the PLL1 reference frequency. Note that the reference frequency is the input frequency, after division by the PLL1_INDIV register setting. 000 = Bypass 001 = 5MHz to 10MHz 010 = 10MHz to 16MHz 011 = 16MHz to 26MHz 100 = 26MHz to 42MHz 101 = 42MHz to 68MHz 110 = 68MHz to 108MHz 111 = 108MHz to 200MHz
7	PLL2_BYPASS	RW	0x0	PLL2 Bypass 0 = Do not bypass PLL2 1 = Bypass PLL2
6	PLL1_BYPASS	RW	0x0	PLL1 Bypass 0 = Do not bypass PLL1 1 = Bypass PLL1
5	PLL2_RST	RW	0x0	PLL2 Reset 0 = No Reset 1 = Reset PLL2

				CM_CLK_CTRL2 CCONTROL 2 REGISTER											
Addres	ss = 0xF000_0014			Default value = 0x03DE_0000											
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
BITS	FIELD	S/W	RESET												
	NAME ACCESS VALUE DESCRIPTION PLL1_RST RW 0x0 0 = No Reset														
4	NAME ACCESS VALUE DESCRIPTION PLL1_RST RW 0x0 PLL1 Reset 0 = No Reset 1 = Reset PLL1														
3	Reserved		0x0												
2:0	CLK_SEL	RW	0x0	Clock source select for the main system clock. Note that a glitch-free switchover between CLK_SEL settings is implemented. 000 = CLKIN 001 = PLLOUT 010 = ALTCLK All other settings are Reserved. The ALTCLK source is selected using ALTCLK_REF_SEL.											

Table 20 CCM_CLK_CTRL2 Register

CCM_CLK_CTRL3 - CLOCK CONTROL 3 REGISTER

The CCM_CLK_CTRL3 register contains PLL configuration fields. See "Clocking" for more details of the PLL.

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

												CLC			CLI	_				R												
Ad	dres	ss =	0xF	-00	0_00	18																			Defa	ault	t val	lue	= 0	x00	00_	0000
31	30	29	28	27	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	7	6	5	4	3	2	1	0
ВГ	TS FIELD S/W RESET FIELD DESCRIPTION PLL2 frequency ratio Sets the ratio of Fvco/Fref for PLL2																															
31:	24		Ρ	'LL	2_FR	ATIO	O		F	RW		0x(00	00 01	ets th h = 1 h = 2	e ra 1 2		•		Fref t	for P	LL2										
23:	19		I	PLI	L2_IN	IDIV	,		F	RW		0x(00	00 01 	L2 ii h = I h = I h = I	Divid Divid	le by	y 1 y 2														

											CLC		_	CLI	_			.3 ISTE	R												
Addre	ss =	0xF	000	00	18																		De	fau	ılt	valu	e :	= 0x	(00	00_(0000
31 30			27			24	23	22	21	20	19	18	17	16	15	14	13	3 12	11	10	9	8	7	6		5 4	1	3	2	1	0
BITS			FIE NA				ı		S/W CES	s	RES VAL				ļ					DE		ELC RIP	TION	l		1				1	ı
18:16	18:16 PLL2_OUTDIV RW 0x0 3H 5H 6H 7H SH														utpu vide ivide ivide ivide ivide ivide eser	by by by by by by	1 2 4 8 16 32	i !													
15:8		Р	LL1_	FR⁄	ATIO)		F	₹W		0x(00	00 01	h = 1 h = 2	e ra I 2		-	atio Vco/	Fref	for F	PLL′	1									
7:3		ı	PLL1 <u>.</u>	_IN	DIV			F	₹W		0x(00	00 01	L1 ir h = [h = [h = [Divid Divid	le by le by	y 1 y 2	!													
2:0		Р	LL1_(DU'	TDI	V		F	₹W		0×	0	0h 1h 2h 3h 4h 5h 6h	L1 o = Di = Di = Di = Di = Di = Di = Re	vide vide vide vide vide vide	by by by by by by	1 2 4 8 16 32 64	i !													

Table 21 CCM_CLK_CTRL3 Register

CCM_PLL_LOCK_CTRL - PLL LOCK DETECT CONTROL REGISTER

The CCM_PLL_LOCK_CTRL register contains fields that control the PLL 'out-of-lock' detection function. See "Clocking" for more details of the PLL.

The PLL out-of-lock detection function is enabled using PLL_LOCKDET_ENA.

The PLL lock detection is derived by checking the ratio of the PLL2 output frequency with respect to the PLL1 input frequency; a count is maintained of instances when the ratio is outside the limits set by PLL_LOCKDET_MIN and PLL_LOCKDET_MAX.

If the frequency ratio exceeds $PLL_LOCKDET_MAX$, this is counted as an Overflow condition.

If the frequency ratio is below PLL_LOCKDET_MIN, this is counted as an Underflow condition.

In Absolute Mode (PLL_LOCKDET_MODE=0), the Overflow and Underflow occurrences are counted cumulatively (no distinction is made between Overflow and Underflow conditions); the PLL 'out-of-lock' condition is asserted if the count exceeds PLL_OVERFLOW_LIMIT.

In Plus/Minus Mode (PLL_LOCKDET_MODE=1), the difference in the number of overflows vs underflows is counted. In this mode, an Overflow detection effectively 'cancels out' an earlier Underflow detection, and vice versa. The PLL 'out-of-lock' condition is asserted if either of the count limits is reached.

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

									F	PLL I		_	_	L_L ct c		_	_			STI	ĒR												
Addre	ss =	0xF	000	_00	1C																				De	efau	ılt	va	lue	= 0	(33	12_0	E00
31 30	29	28	27	26	25	24	23	3 2	2 21	20	19	18	17	16	15	14	1:	3 1	12	11	10		9	8	7	6		5	4	3	2	1	0
BITS		ı	ı	FIE NAI						S/W CES	ss	RES						- 1				DE			_D PTI	ON							1
31:28	Р	LL_I	UNE	DERI	FLO	W_	LIM	ΙΤ	F	RW		0×	3	Vali Nur 0h: 1h: 2h: 3h: Dh Eh	id ir mbe = 16 = 15 = 14 = 13 = 2 = 1	er of 3 un 5 un 4 un 3 un und und	us/ Ui ide ide ide ider ler	Minnde erflo erflo erflo flow	ws ws ws ws ws	mo	peri	mi	tted	i b	efore	e 'o	ut-	of-	– lock	DDE: ' is ir	ndic	ated	
27:24	F	PLL_	_ov	ERF	LOV	W_L	_IMI	T	F	WS		0х	3	PLLL In F num In A cum 'out Oh: 2h: 3h: Dh Eh	Over 15 - Over 1	verfli/Mirr of oblute oblute over over over over over over over ove	ow Ov e n e ni e rflo rflo rflo rflo	/ Lind /	mit ode low e (I ober ode low	e (Prs p PLL of U	LL_I ermi _LC Jnde	LC itte oc erf	OCK ed t KD flow	(DI Def ET	ET_ ore Mo or O	_M(fout DDE verf	OE :-o: E= flov	DE= f-lo 0), ws	:1), t ck' i this perr	this sind sets sets mitte	sets lica the d b	the ted.	
23			F	Rese	rvec	t						0x	:0																				
22:16		PL	L_L	OCK	(DE	T_N	ЛIN		F	RW		0x ⁻	12	An	Unc	inim derfl esh	OW	/ is						out	out/i	npu	ıt f	req	uen	cy ra	atio	is be	elow
15			F	Rese	rvec	L						0x	:0																				
14:8		PLI	L(OCK	DET	Γ_Ν	1AX		F	RW		0x0	Œ	An	Ove	axim erflo esh	W	is d						ıtp	ut/in	put	fre	equ	enc	y rat	io is	abo	ove
7:2			F	Rese	rvec	t						0x0	00																				

										Р				-	_	LO	_	-			ΞR											
Ad	ldres	ss =	0xF	000	_00	1C																		De	faul	lt ۱	value) =	= 0x	3312	2_01	E00
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	3 15	14	13	12	11	10	9	8	7	6	-	5 4	ļ	3	2	1	0
ВІ	TS																•			•			FIEI CRI	D PTIC	ON			•	'	'		
	NAME ACCESS VALUE 1 PLL_LOCKDET_MODE RW 0x0													PLL Lo = Ab = Plo n 'abs counte count n 'plu under PLL_C excee	solu us/m solute ed cu exce s/mir lows	te months multiple description to the multiple description	node s mo ode' lativ PLI mod	e ode , the ely. L_O\ le', to ited.	nun The /ER ne d The	out FLC iffer ou	of-lo W_ ence t-of-	ock' LIMI e in t lock'	cond T. he n	diti nur idi	ion is mber tion i	of s a	ove sse	ted i erflov rted	f the vs v if th	s ie		
()		PLI	L_L(ОСК	(DET	Γ_EN	Α		R	RW		0x	0	1 1 1	PLL Lo = Di = Er Note to be write been verous complete complet	sable able hat th	ed d nis b as a	oit m	nust	be th								-			ıst

Table 22 CCM_PLL_LOCK_CTRL Register

CCM_CLK_ENA - CLOCK ENABLE REGISTER

The CCM_CLK_ENA register contains the enable bits for the clock signals to each peripheral module. The DSPCLK_SLP_DSBL and AHBCLK_SLP_DSBL bit select whether the respective clock is enabled in Sleep mode. See "Clocking" for more details of the Clocking architecture.

																		CLK																		
							_								CLOC	ΚE	N	ABLE	RE	G	IST	ER	!					_								
Addres	SS	; =	0xl	F0	00	_00	24				T	_	ı		1		1			1					<u> </u>			De	faul	t١	valu	ie :	= 0x	02B/	_1	187F
	2	9	28	2				24	4	23			20	\perp	19 18	17	1	16 15	14	1	13	12	2 11	10		9	8	7	6		5	4	3	2	1	0
BITS						IEL AM						S/W CES	ss		ESET ALUE									DE		FIE		101	١							
31		С	SP	C	LK.	_SL	.P_I	DSE	3L		F	₹W			0x0	0	=	PCLK DSP(DSP(CLK	er	nab	led	in S	leep	m											
30		A	НΒ	3C	LK.	_SL	.P_I	DSE	3L		ſ	₹W			0x0	Al 0	- E	BCLK AHB(AHB(con CLK	tro	ol in nab	SI led	eep in S	mod leep	e m	ode)									
29:26					Res	ser	/ed								0x0																					
25	ι	UA	RT.	N	ИS [.]	TR_	_CL	K_E	ΞN/	4	F	₹W			0x1	0	=	RT ma Disab Enab	led	rc	locl	k (l	JAR ⁻	Г_М	ST	R_	CLł	<) e	nab	le						
24					Res	ser	/ed								0x0																					
23	1 = Enabled																																			
22	Reserved																																			
21			TI	MI	R_(CLK	(_E	NA			F	RW			0x1	0	=	ble A Disab Enab	led	LI	K to	T	MR r	nodu	ıle	s (T	MF	R1,	TMF	R2	and	d TN	MR3)		
20			W	/D	T_(CLK	K_E	NA			ſ	RW			0x1	0	=	ible A Disab Enab	led	CLI	K to) W	/DT r	nodu	ule)										
19			IR	Q.	c_	CLł	<_E	ΝA			ſ	RW			0x1	Er 0	าa =	ble A Disab Enab	PBC led	CLI	K to) IF	RQC	mod	ule	Э										
18			GI	ΡI	0_	CLł	<_E	:NA			ſ	RW			0x0	0	=	ible A Disab Enab	led	CLI	K to	G	PIO	mod	ule	Э										
17			FL	JS	E_	CLI	K_E	ΕNΑ			F	RW			0x1	0	=	ible A Disab Enab	led	CLI	K to	F	USE	mod	lul	е										
16			12	20)_C	LK	_EN	NΑ			ſ	₹W			0x0	0	=	ible A Disab Enab	led	CLI	K to	12	C m	odule	Э											
15		ΑI	F3_	_N	IST	R_	CLŁ	K_E	NΑ	١.	F	₹W			0x0	0	=	3 mas Disab Enab	led	clc	ck	(Al	F3_I	MST	R_	_CL	K) 6	ena	ble							
14		ΑI	F2_	_N	IST	R_	CLF	<_E	NΑ	`	ı	RW			0x0	0	=	3 mas Disab Enab	led	clc	ck	(Al	F3_I	MST	R_	_CL	K) 6	ena	ble							
13		ΑI	F1_	_N	IST	R_	CLF	<_E	NΑ	`	ı	RW			0x0	0	=	3 mas Disab Enab	led	clc	ck	(Al	F3_I	MST	R_	_CL	K) 6	ena	ble							
12					Res	ser	/ed								0x1																					

																_	CLK	_			ER														
Addre	ss =	: 0:	xF0	00_	00	24																				Def	aul	t v	alue	-	0x0	02	BA_	18	7F
31 30							2	4 2	23	22	21	20	19	18	17	1	6 15	14	4	13	12	11	10		9 8	7	6		5 4		3		2 /	T	0
BITS					ELI AMI					S	 S/W CES	ss		SET				<u> </u>					DE	ES	FIEL	ION						<u> </u>	_		
11		ļ	SE	C_C	ĽK	_EN	۱A			F	RW		C)x1	0 =	= [ble Al Disab Enabl	led	CL	K to	SE	:C n	nodu	ıle	!										
10	Enable AHBCLK to RNG module 0x0 0 = Disabled 1 = Enabled Enable AHBCLK to AIF3 module 0x0 0 = Disabled 1 = Enabled 1 = Enabled																																		
9	1 = Enabled Enable AHBCLK to AlF3 module AIF3_CLK_ENA RW 0x0 0 = Disabled																																		
8	AIF3_CLK_ENA RW 0x0 Enable AHBCLK to AIF3 module 0 = Disabled 1 = Enabled Enable AHBCLK to AIF2 module																																		
7		,	AIF	1_0	CLK	_EN	۱A			F	RW		C)x0	En 0 =	nal = [ble Al Disab Enabl	HB0 led	CL	K to	Alf	-1 n	nodu	ıle	;										
6		į	SH	A_ C	ĽK,	_EN	۱A			F	RW		C)x1	0 =	= [ble Al Disab Enabl	led	CL	K to	SH	IA n	nodu	ıle	!										
5:4				Res	erv	ed							C)x3																					
3		F	ROI	M_C	CLK	_EN	NΑ			F	RW		C)x1	0 =	= [ble Al Disab Enabl	led	CL	K to	RC)M r	nod	ule	Э										
2		ı	RAI	M_C	CLK	_EN	NΑ			F	RW		C)x1	0 =	= [ble Al Disab Enabl	led	CL	K to	RA	M r	nodu	ule	9										
1			SP	I_C	LK_	_EN	Α			F	RW		C)x1	0 =	= [ble Al Disab Enabl	led	CL	K to	SP	'l m	odul	е											
0		I	DM.	A_C	CLK	_EN	NA			F	RW		C)x1	0 =	= [ble Al Disab Enabl	led	CL	K to	DM	ИA r	nodı	ule	è										

Table 23 CCM_CLK_ENA Register

CCM_SOFTRST - SOFTWARE RESET REGISTER

The CCM_SOFTRST register contains the software reset bits for each peripheral module. See "Power-on and Reset Control" for more details of the Software Reset function.

																_so																					
											С	HIP	SOI	TW	Α	RE R	ES	ΕT	R	EG	IS	TER	2														
Addres	ss =	0xl	00	0_0	28	3																					D	efa	ult	va	lue	=	0x0	0B	<u>A_</u>	087	′F
31 30	29	28	2	7 26	2	25	24	23	22	21	20	1	9 18	17	.	16 1	5	14	1	13	12	11	10)	9	8	7	,	6	5	4		3	2	1		0
BITS				FIEL	L D					S/W		RI	ESET	-	1										FIE	ELI)								<u> </u>		_
20				NAM						CES	S		ALUE										D	ES			TIO	N									
31:24			R	eser	vec	d						0	x00																								
														U	ΙA	RT S	oftv	ware	е	Res	set	cor	itrol														
23		UAF	RT_	SOF	TR	RST	_N		F	٩W		(Ox1	0	=	Rese	et																				
																Not r																					
00			.,	005												AX S		vare	е	Res	set	con	trol														
22		IKA	·X_	SOF	IK	(5)	_IN		ŀ	RW		(0x0			Rese		ot																			
														_		R1, T			т	MP	2 (Softs	ware	2 F	000	ot d	ont	rol									_
21		тм	R	SOF	ΓR	ST	N		F	RW			0x1			Rese		۱۷,	•	IVIIX		JOIL	wait	5 11	CS	CU	,0111	101									
			_						-							Not r		et																			
														٧	۷D	T So	ftw	are	F	Res	et (cont	rol														
20		WD	T_	SOF	ΓR	ST	_N		F	RW		(Ox1	0	=	Rese	et																				
	1 = Not reset IRQC Software F																																				
	1 = Not reset IRQC Software Reset control																																				
19	IRQC Software Reset control O IRQC_SOFTRST_N RW Ox1 O = Reset 1 = Not reset																																				
	IRQC_SOFTRST_N RW 0x1 IRQC Software Reset control 0 = Reset 1 = Not reset																																				
18	IRQC_SOFTRST_N RW 0x1 0 = Reset																																				
10		O	-	.00.			`		•			,	,,,,			Not r		et																			
														F	U	SE S	oftv	vare	е	Res	set	con	trol														
17		FUS	E_	SOF	TR	RST	_N		F	RW		(Ox1	0	=	Rese	et																				
														1	=	Not r	es	et																			
			_						_							Soft		re R	₹e	eset	CC	ntro	ol														
16		120)_S	OFT	RS	3Τ_	_N		F	RW		(0x0			Rese		۰.																			
15:12				eser	100	7							0x0	1	=	Not r	es	et																			
13.12				eserv	vec	J						,	JXU	9	F	C Sof	ft va/s	aro.	P	000	at c	onti	ol.														
11		SF	G :	SOF1	re:	ST	N		F	RW			0x1			Rese		aic	•	CSC	,	OHILI	Oi														
		_	_			٠.										Not r		et																			
														R	N	G So	ftw	are	F	Rese	et (cont	rol														\exists
10		RN	G_	SOF	ΓR	ST	_N		F	RW		(0x0			Rese																					
														_		Not r																					_
			^	00-		<u>~</u>			_	2144			- · · · ·			3 So		are	R	lese	et c	conti	ol														
9		AIF	პ_	SOF1	ı K	51	_N			RW		(0x0			Rese Not r		Δŧ																			
																2 Sof			P	966	ot r	nnti	nl														\dashv
8		AIF	2	SOF1	ΓR	ST	N		F	RW		(0x0			Rese		ai G	٠,		٠. ر	, OIIII	Ji														
			_													Not r		et																			
														Α	JF	1 So	ftwa	are	R	lese	et c	onti	ol														
7		AIF	1_	SOF1	ſR	ST.	_N		F	RW		(0x0			Rese																					
	-															Not r			_																		_
_		٥		00		<u>~</u>			_	2144			4			A Sof		are	R	ese	et c	onti	ol														
6		SH	4_	SOF1	IK:	S [_N		F	RW		(Ox1			Rese Not r		Ωŧ																			
5.4			P	eser	100	4						,	J^3		_	INUL I	ES.	eι																			
5:4			K	cser	ve(J						ı (0x3																								

	TS FIELD S/W RESET VALUE ROM Software Reset 1 = Not reset RAM Software Reset 1 = RAM Software Reset 1 = Not reset															GIS	STER																	
Ad	ldres	ss =	0xF	000	00_0	28																		[Def	ault	t v	alu	e =	= 0x	00E	BA_	087	F
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	ŧ	8	7	6	ţ	5	4	3	2	1	(0
BI	TS			F	IEL	D			S	/W												FI	EL	.D										
				N	MAI	E			AC	CES	S	VAL	LUE								DE	ESC	RII	PTI	ON									
3	3	ROM_SOFTRST_N RW 0x1 0 = Reset																																
		ROM_SOFTRST_N RW 0x1 0 = Reset 1 = Not reset																																
	,		RAN	1S	OF	TRS1	ΓΝ		F	sw.		Ох	1				vare	Res	set	cont	rol													
												•	•	-			set																	
														SF	l Sc	ftwa	are F	Rese	et c	contro	ol													
1	1		SP	LS0	OFT	RST	_N		F	RW		0х	(1	-	Re																			
														1 =	No	t res	set																	
																	vare	Res	set	cont	rol													
()		DM	A_S	OF	TRS1	Γ_N		F	RW		0х	(1	0 =	Re	set																		
														1 =	= No	t res	set																	

Table 24 CCM_SOFTRST Register

CCM_WKUP_CTRL - CHIP WAKEUP CONTROL REGISTER

The CCM_WKUP_CTRL register provides control of the Sleep and Wake-Up mode transitions. See "AIF Interface Modules" for details of the AIF Bypass modes.

The STATIC_VECT_SEL register bit selects the boot vector address for code execution following a Warm Reset (see "Power-on and Reset Control").

											Cŀ				_		_				TER													
Addres	ss =	0xF	00	0_00	30																					De	efa	ult	valu	е	= 0>	(00	01_	0000
31 30	29	28	27	26	2	5	24	23	22	21	20	19	18	17	7 16	15	14	,	13	12	11	10		9	8	7	6	6	5	4	3	2	1	0
BITS					_						s											DE				ION	ı							
31	S FIELD NAME ACCESS VALUE SLP_ENA WO 0x0 Sleep Mode select Write '1' to select Sleep mode. AIF_BYP_FORCE_EXIT WO 0x0 AIF Bypass Mode Forced Exit Write '1' to de-select the AIF Bypass mode. (This is typically used if when AIF_BYP_AUTO_EXIT=0, and the AII module remains in Bypass Mode after Wake-Up.) AIF Bypass Mode Auto Exit Selects whether the AIF Bypass mode is de-selected on Wake-Up.																																	
30:8	S FIELD S/W ACCESS VALUE DESCRIPTION SLP_ENA WO 0x0 Sleep Mode select Write '1' to select Sleep mode. AIF_BYP_FORCE_EXIT WO 0x0 Write '1' to de-select the AIF Bypass mode. (This is typically used if when AIF_BYP_AUTO_EXIT=0, and the AIR Bypass Mode after Wake-Up.) AIF_BYP_AUTO_EXIT RW 0x0 Sleep Mode select Write '1' to de-select the AIF Bypass mode. (This is typically used if when AIF_BYP_AUTO_EXIT=0, and the AIR Bypass Mode after Wake-Up.) AIF Bypass Mode Auto Exit Selects whether the AIF Bypass mode is de-selected on Wake-Up 0 = AIF Bypass not de-selected on Wake-Up																																	
7	S FIELD NAME ACCESS NAME ACCESS SIEED Mode select Write '1' to select Sleep mode. AIF_BYP_FORCE_EXIT AIF_BYP_AUTO_EXIT RW Ox0 Ox0 Ox0 Ox0 Ox0 Ox0 Ox0 Ox														IF																			
6	NAME SLP_ENA WO 0x0 Sleep Mode select Write '1' to select Sleep mode. AIF_BYP_FORCE_EXIT WO 0x0 AIF Bypass Mode Forced Exit Write '1' to de-select the AIF Bypass mode. (This is typically used if when AIF_BYP_AUTO_EXIT=0, and the module remains in Bypass Mode after Wake-Up.) AIF_BYP_AUTO_EXIT RW 0x0 AIF Bypass Mode Auto Exit Selects whether the AIF Bypass mode is de-selected on Wake-Up 1 = AIF Bypass not de-selected on Wake-Up AIF Bypass Mode control Selects whether one of the AIF Bypass Modes is selected when														Jр																			
5:4		A	IF_	BYF	 s	EL	-		F	RW		0x	0	0	Selectenter 00 = 01 = 10 = 10 = 10 = 10 = 10 = 10	ts whing S	etholeep pas ss N	er ss //o	mod node	e of e. A B1		AIF	В	Bypa	ss	Mod	des	s is	sele	cte	ed w	hen		

	1 = Wait for HiFi WAITI to complete before entering Sleep mode																														
Ad	CHIP WAKEUP CONTROL REGISTER Address = 0xF000_0030															000															
31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 SITS FIELD NAME S/W ACCESS VALUE FIELD DESCRIPTION WAIT_HIFL_SLP_ENA RW 0x0 0 = Do not wait for HiFi WAITI to complete before entering Sleep model.															0															
ВГ	TS	TS FIELD S/W RESET FIELD DESCRIPTION WAIT_HIFI_SLP_ENA RW 0x0 0 = Do not wait for HiFi WAITI to complete before entering Sleep mode																													
3	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														de																
2	2		WK	UP_	RS1	Γ_ΕΙ	NA		F	RW		0x	:0	0 =	= W	ake-	Up d	loes	not	trigg	jer a	Wa	rm R		,	ggei	s a	War	m R	eset	t
()	Ş	STA	TIC_	VE(CT_S	SEL		F	RW		0x	:0	Or 0 =	nly v = B	ts the	whe the	n W	KUF nary	RS stat	ST_E	NA:	=1.	ing a	a Wa	ake-	Up t	rans	ition		

Table 25 CCM_WKUP_CTRL Register

CCM_DB_STBY - STANDBY DE-BOUNCE CONTROL REGISTER

The CCM_DB_STBY register configures the de-bounce circuit for the STANDBY input pin. The debounced STANDBY is an input to the IRQC module, and also one of the DSP core interrupt inputs. See "Interrupts" for details of the DSP core interrupts.

										STA	AND	BY I			I_D INCI	_			RE	GIS [.]	TER										
Ad	dres	S FIELD S/W RESET ACCESS VALUE STAN																						De	faul	t val	lue	= 0x	000	0_0	000
31	30	STBY_DB_BYP RW Ox0 Ox4 Ox4 Ox4 Ox5 Ox5														15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bľ	BITS FIELD S/W RESET ACCESS VALUE																		DE	FIE SCF	ELD										
3	30 29 28 27 26 25 24 23 22 21 20 19 18 17 BITS												0 :	= De	-bou	ınce		blec	1		s)										
30:	24			Res	serv	ed						0x	:0																		
23	0:8		SI	ГВҮ_	DB.	_CN	Т		F	RW		0x0 000	_					boug the							er o	f API	BCL	K cl	ock (cycle	es

Table 26 CCM_DB_STBY Register

CCM_DB_GINT1 - GINT1 DE-BOUNCE CONTROL REGISTER

The CCM_DB_GINT1 register configures the de-bounce circuit for the GINT1 interrupt signal. The GPIO pin used as the GINT1 source is selected by the GINT1_SEL register. The de-bounced GINT1 is one of the DSP core interrupt inputs. See "Interrupts" for details of the DSP core interrupts.

										G	INT	1 DE			_DB	_			EG	ISTE	ER.										
Add	ress	s =	0xF	000	_004	48																		De	faul	t va	lue	= 0>	(000	0_0	000
31 3	0 2	GINT1 DE-B ess = 0xF000_0048 29 28 27 26 25 24 23 22 21 20 19 18 FIELD S/W RESET													16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BITS	GINT1 DE-BO ress = 0xF000_0048 0 29 28 27 26 25 24 23 22 21 20 19 18 S FIELD S/W RESET NAME ACCESS VALUE GINT1_DB_BYP RW 0x0 4 Reserved 0x0 Ox00_												,				•	DE	FIE SCR			,			•						
31			GII	NT1	_DB	B_BY	/P		F	RW		0x	0	0 :	NT1 = De- = De-	bou	ınce	ena	ble	d	/pas	s)									
30:2	4			Res	serv	ed						0x	0																		
23:0)		GIN	NT1 _.	_DB	CN	١T		F	RW				de	NT1 -boui selec	ncin	g th	e GI	NT1	l inp	ut. T	he G	PIC) pir					•		

Table 27 CCM_DB_GINT1 Register

CCM_DB_GINT2 - GINT2 DE-BOUNCE CONTROL REGISTER

The CCM_DB_GINT2 register configures the de-bounce circuit for the GINT2 interrupt signal. The GPIO pin used as the GINT2 source is selected by the GINT2_SEL register. The de-bounced GINT2 is one of the DSP core interrupt inputs. See "Interrupts" for details of the DSP core interrupts

										G	INT	2 DE			_	_			EGI	STE	ER.										
Ad	ldre	GINT2 DE-BOUNCE ress = 0xF000_004C 0 29 28 27 26 25 24 23 22 21 20 19 18 17 2 GINT2_DB_BYP RW 0x0 0 = 1 =																						De	faul	t va	alue	= 0	c 000	0_0	000
31	30	## STATE STA														15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS	GINT2 DE-BO GINT2 DE-BO GINT2 DE-BO GINT2 DB BYP RW Ox0 GINT2 DB BYP RW Ox0 Ox00																		DE	FIE SCR					•	•	•		•	
3	1	TS FIELD NAME AC										0x	0	0 =	= De	2 de- e-bou e-bou	ınce	ena	bled	d	ypas	s)									
30	:24			Res	erv	ed						0x	0																		
23	3:0		GII	NT2_	DB	CN	١T		F	RW				de	-boı	uncir	ng th	e GI	NT2	2 inp	ut. T		PIC) pir			LK cleas the		•		

Table 28 CCM_DB_GINT2 Register

WM0011

CCM_SCRATCH1 - SCRATCHPAD 1 REGISTER

The CCM_SCRATCH1 registers is a general-purpose scratchpad register. Note that the default value (the value of this register at reset) may vary, depending on the applicable boot process.

												so		_	_	RA D 1			ER												
Ac	ldre	ss =	0xF	000	_00	50																		De	faul	t va	lue	= 0>	c 000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS				IEL[_				S/W CES		RES VAL									DE	FIE	LD								
31	1:0			SCR	RATO	CH1			F	RW	C	000 000	_	Sc	rato	hpa	d 1														

Table 29 CCM_SCRATCH1 Register

CCM_SCRATCH2 - SCRATCHPAD 2 REGISTER

The CCM_SCRATCH2 registers is a general-purpose scratchpad register. Note that the default value (the value of this register at reset) may vary, depending on the applicable boot process.

												so		_	_	RA D 2 I			ER												
Ac	ldre	ss =	0xF	000	_00	54																		De	faul	t va	lue	= 0>	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS			-	IELI AMI	_			_	S/W CES		RES VAL									DE	FIE SCR		ION							
31	1:0			SCF	RATO	CH2			F	RW	(00x0 000	-	Sc	rato	hpad	d 2														

Table 30 CCM_SCRATCH2 Register

CCM_SCRATCH3 - SCRATCHPAD 3 REGISTER

The CCM_SCRATCH3 registers is a general-purpose scratchpad register. Note that the default value (the value of this register at reset) may vary, depending on the applicable boot process.

												so		_	_	CRA															
Ad	dre	ss =	0xF	000	_00	58																		De	faul	t va	lue	= 0>	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS				IELI AMI	_				S/W CES		RES VAL									DE	FIE	ELD								
31	:0			SCR	RATO	CH3			F	RW	(00x0 000	-	Sc	rato	hpa	d 3														

Table 31 CCM_SCRATCH3 Register

CCM_SCRATCH4 - SCRATCHPAD 4 REGISTER

The CCM_SCRATCH4 registers is a general-purpose scratchpad register. Note that the default value (the value of this register at reset) may vary, depending on the applicable boot process.

												so		_	_	RA D 4 I												
Ac	.ddress = 0xF000_005C																		De	faul	t va	lue	= 0>	c 000	0_0	000		
														3	2	1	0											
ВІ	TS				IEL[_				S/W CES		RES VAL							DE	FIE SCR	 ION							
31	1:0		,	SCR	RATO	CH4			F	RW	(00x0 000	-	Sc	rato	hpa	d 4											

Table 32 CCM_SCRATCH4 Register

CCM_IOCTRL1 - I/O CONTROL 1 REGISTER

								1/0			I_IC				TEF	R																	
Ad	dre	ss =	0x	F00	0_00	60																			D	efau	lt	value	, =	= 0x	777	7_0	000
31	30	29	28	3 27	26	25	24	23	22	21	20	19	18	17	16	15	14	1:	3 1	12	11	10	9	8	7	6		5 4		3	2	1	0
BI	ΓS		•	-	IELI	_			_	S/W CES	s	RES VAL										DE		IELI RIP) TIOI	1		•		'			
3	1			Re	eserv	ed																											
30)			RE	SET_	_DS			F	RW		0x	1	0 = 1 =	SET = Red = Ful ote -	duce I str	ed si engt	tre th	engt	th	only	; this	s bi	t ha	s no	effe	ct						
2!	9			RE	SET_	_PU			F	RW		0x	1	0 =	SET Dis Ena	able	ed	C	ontr	rol													
28	3			RE	SET	_IE			F	RW		0x	1	0 = 1 =	SET Dis Ena	able	ed d				s en	able	ed f	or in	put;	this	bi	t has i	no	effe	ect		
2	7			Re	eserv	ed						0x	0																				
20	3		8	STA	NDBY	Y_D:	S		F	RW.		0x	1	0 = 1 =	FANI Rec Ful	duce I str	ed s engt	tre th	engt	th		only;	th	s bit	has	no e	eff	ect					
2	5		5	STAI	NDB	Y_PI	U		F	RW		0x	1	S1 0 =	TANI = Dis = Ena	OBY able	pul ed																
24	4			STA	NDB	Y_IE	≣		F	RW		0x	1	0 = 1 =	FAND Dis Ena ote -	able able	ed d					s en	abl	ed fo	or inp	out; t	thi	s bit h	nas	s no	effe	ct	
2:	3			CLK	OUT	_OE			F	RW		0x	0	CL 0 =	KOU Dis	JT/C	SPIC ed (t)2	8 oı	utp	_				<u>'</u>								

				CM_IOCTRL1 DNTROL 1 REGISTER
Addres	ss = 0xF000_0060			Default value = 0x7777_0000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
22	CLKOUT_DS	RW	0x1	CLKOUT/GPIO28 output drive strength 0 = Reduced strength 1 = Full strength
21	CLKOUT_PD	RW	0x1	CLKOUT/GPIO28 pull-down control 0 = Disabled 1 = Enabled
20	CLKOUT_IE	RW	0x1	CLKOUT/GPIO28 input enable 0 = Disabled 1 = Enabled
19	Reserved		0x0	
18	IRQ_DS	RW	0x1	IRQ output drive strength 0 = Reduced strength 1 = Full strength
17	IRQ_PU	RW	0x1	IRQ pull-up control 0 = Disabled 1 = Enabled
16	IRQ_IE	RW	0x1	IRQ input enable 0 = Disabled 1 = Enabled Note - IRQ is output only; this bit has no effect
15:0	Reserved		0x0000	

Table 33 CCM_IOCTRL1 Register

CCM_IOCTRL2 - I/O CONTROL 2 REGISTER

												I/	0 0 C		I_IC				ΞR															
Add	dres	ss = (0xF	000	0_00)64																			De	efau	ılt	val	ue	= 0	хF	F7	F_F	F7F
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	0	9	8	7	6	3	5	4	. 3	3	2	1	0
BITS FIELD S/W RESET FIELD DESCRIPTION																																		
31			Al	F1E	BCL	K_0	E		F	RW		0×	1	0 = 1 = Va		able able or B	ed (t d ypas	ri-sta ss M	ate od			•							•	pas	s N	Лod	e B	2.
30)		Al	F1E	3CL	K_D	S		F	RW		0×	c1	0 =	F1B = Re = Fu	duce	ed s	trenç		/e st	reng	gth												
29)		Al	F1E	3CL	K_P	D		F	RW		0×	(1	0 =	F1B = Dis = En	able	ed	-dov	vn	cont	rol													

												() I/O C			IO				EF	₹													
Addre	ss =	0xF	-000	0_00	64									•	Ī	_ • •				-					De	fau	lt ۱	val	ue	= 0x	FF7I	F_I	FF7F
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	1	16 1	15	14	13	1	12 1	11	10	9	8	7	6		5	4	3	2	1	0
BITS	-0	1-0	F	FIELD	<u> </u>	1			/W		RE	SET	· · ·			. •		1.0		.			FIE SCR	ELD)			_			_	<u> </u>	
				.,				,,,,,		_	-		Α	JF′	1BC	LK	inpı	ut e	na	ble													
28		Α	AIF1	BCLI	K IE	E		F	w		()x1	0	=	Disa Enal	able	ed																
													1							AIF1 he B									,				
															1LR0 Disa			•		enab e)	le												
27		ΑI	F1L	.RCL	K_C	DE		F	W		()x1	1	=	Enal	ble	d			de B	2 n	nlv	Mus	st b	e en	able	ed	in	Byn	ass	Mode	e F	32
													Ν	ote	e tha	at ir	n All	F M	las	ter r	noc	de, t	his b										, <u> </u>
26		ΑI	F1L	.RCL	K_C	os		F	W		()x1			1LR0 Red			•		drive :h	str	eng	th										
													+		Full				lov	vn co	antr	rol .											
25		ΑI	F1L	.RCL	K_F	PD		F	W		()x1	0	=	Disa	able	d	an-u	۱U۷	vii CC	JIILI	UI											
	_												+		Enal	_	_	put	er	nable													
24		Δ	IE1I	LRCL	k i	ı⊏			w		()x1	1		Disa Enal			•															
				LINOL	-'`_'	_		, r	. v v			,	M	lus	st be	en	able			AIF1									,				
23			Re	eserv	ed						(0x0	m	100	ie, th	nis	ena	e	s t	he L	KC	LK	as ai	n ir	put	to th	ne	١X	UΑ	ı ge	nera	tor	.)
													1							reng	jth												
22		All	F1R	RXDA	\T_E	os		F	W		()x1			Red Full				ngt	n													
																				s inp			; this	s bi	t ha	s no	е	ffe	ct				
21		All	F1R	RXDA	T_F	PD		F	W		()x1	0	=	Disa	able	ed .	un-C	۱۰۱	7911 C	JIII	. 01											
	-												+		Enal 1RX			put	er	nable	<u> </u>												
20		Al	IF1F	RXDA	AT_I	ΙE		F	W		()x1			Disa Enal																		
					_			_					Α	lF′	1TXI	DA	Τοι	•		enab	le												
19		Al	⊢1T	XDA	.I_C	JE		F	W)x1			Disa Enal		•	rı-s	tat	e)													
18		ΔΙ	F1T	XDA	ТГ	ns		Б	w		()x1			1TXI Red					drive h	str	eng	th										
		А		אטא				,				,,, i	1	=	Full	stre	engt	th	_														
17		Al	F1T	XDA	.T_F	PD		F	W		()x1	1		1TXI Disa			ull-c	lov	vn co	ontr	rol											
	1												+		Enal			nut	er.	nahla													
16		Д	IF1T	TXDA	λΤ I	ΙE		F	w		()x1	0	=	Disa	able	ed	μuί	cí	nable	;												
		, 41			'	_		•	•						Enal e - A			DA ⁻	Τi	s out	tput	t onl	y; th	nis I	oit ha	as n	10	effe	ect				
													Α	IF2	2BC	LK	out	put	er	nable													
15		Α	IF2I	BCL	<u>_</u> 0	E		F	W		()x1	1	=	Disa Enal	ble	d `			,													
													1			-				de B ster r		-							Вур	ass	Mod	e E	31.

	CCM_IOCTRL2 I/O CONTROL 2 REGISTER address = 0xF000_0064 1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12																																			
Addres	ss =	0xF	:00	00_	00	64																					De	fau	ılt	va	lue	=	0xI	F71	F_F	F7F
31 30	29	28	2	7 2	26	25	24	4 2	3	22	21 2			17	1	6 1	15	14	1	3	12	11	10	ć	9	8	7	6	;	5	4		3	2	1	0
BITS				FIE							/W CESS	- 1	RESET VALUE										DI		FIE			NI.								
				NA	AIVI I				-	ACI	JE 33	+	VALUE	٨١	E2	DC.	ık	Out	nu	+ 4	rive	otr	engt	_	CKI	IP	ΓΙΟΙ	N								
14		Α	IF2	2BC	CLŁ	\ _D	s			F	RW		0x1	0 =	= F	Red	uc	ed s eng	stre			: 511	engi	.11												
13		Α	IF2	2BC	CLŁ	K_ P	D			F	RW		0x1	AII 0 =	F2 = [LK	pul ed		ow	n c	onti	ol													
12		Α	ΝF	2B(CL	K_II	E			F	RW		0x1	0 = 1 = Mt	= [= E ust	Disa Ena t be	able ble er	d nabl	ed	in	AIF	-2 N										•				er
11	Must be enabled in AIF2 Master or AIF2 Slave modes. mode, this enables the BCLK as an input to the LRCLF AIF2LRCLK output enable 0 = Disabled (tri-state)																			31.																
10		Al	F2	LR	CL	K_[os			F	RW		0x1	0 =	= F	Red	uc	K ored seng	stre			e s	tren	gth												
9		Al	F2	LR	CL	K_F	PD			F	RW		0x1	0 =	= [LR Disa Ena	able	ed.	ull-	·do	wn	con	itrol													
8		Α	IF2	2LR	CL	_K_	ΙE			F	RW		0x1	0 = 1 = Mt	= [= E ust	Disa Ena t be	able ble e er	d nabl	ed	in	AIF	-2 N	1aste CLK									•				
7			R	lese	erv	ed							0x0		-	o,		0					<u> </u>		<u> </u>		put				,,,,,	<u></u>	3 0.			·,
6		All	F2	RX	DA	ΛΤ_[os		Ī	F	RW		0x1	0 = 1 =	= F = F	Red Full	uc str	T d ed s eng 2RX	tre th	eng	th		t onl	y; 1	this	s bi	t ha	ıs no	0 6	effe	ect					
5		All	F2	RX	DΑ	AT_F	PD			F	RW		0x1	AII 0 =	F2 = [DA able	T p					ntrol													
4		Al	F2	!RX	(DA	ΔT_	ΙE			F	RW		0x1	0 =	= [RX Disa Ena	able		npu	ıt e	nal	ole														
3		Al	F2	TXI	DA	T_C	DΕ			F	RW		0x1	0 =	= [able	T o				able	!													
2		AI	F2	TX	DA	λΤ_[os			F	RW		0x1	AII 0 =	F2 = F	TX Red	DA		stre			/e s	tren	gth												
1		Al	F2	TX	DA	AT_F	PD			F	RW		0x1	AII 0 =	F2 = [DA	T p		-do	wn	cor	itrol													

												1/0		CN	_				ĒR												
Ad	ddress = 0xF000_0064																						Def	ault	valu	ue =	= 0x	FF7	F_FF	F7F	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS				IEL[-			_	S/W CES		RES VAL									DE	FIE SCF	LD	ION							
(0 AIF2TXDAT_IE RW										0x	:1	0 = 1 =	= Dis = En	sable able	ed ed	put o			ut on	ly; th	nis b	it ha	s no	effe	ect					

Table 34 CCM_IOCTRL2 Register

CCM_IOCTRL3 - I/O CONTROL 3 REGISTER

CCM_IOCTRL3 I/O CONTROL 3 REGISTER																																		
Addre	ss =	= ()xF	000	_00	68																				De	faul	lt	value	-	0x	777	7_	7777
31 30	29	2	28	27	26	25	24	23	22	21	2	0 19	18	17	1	16 15	14	1	3	12	11	10	ç	9	8	7	6		5 4		3	2	1	0
BITS				F	IELI					S/W		RE	SET				<u> </u>	<u> </u>					F	FIEL	D		<u> </u>		I					l .
									1		S		_									DE				ION								
31				Re	serv	ed						C	x0																					
														Al	F	3BCLK	out	рι	ut dr	ive	stre	ength	h											
30			ΑI	F3E	3CLł	<_D	S		F	₹W		0	x1						_	th														
														_	_			_																
20			٨١	⊏ 3[ו יים	/ DI	n			۸۸/			v1				•	l-C	lowr	n c	ontr	Ol												
23			Λı	1 31	JOLI	`_' '			'	\ V V		"	^ 1	_																				
														+			_	ut	ena	able														
28			Α	IF3	BCL	K_IE	Ξ		F	₹W		C	x1				-																	
																st be er														•				
27				Do	serv	rod.							x0	mo	oc	de, this	ena	IDI	es t	ne	BCI	_ĸ a	S	an II	npı	ut to	tne	<u>_</u>	RCLK	. g	ene	rato	r.)	
21				ΚE	Serv	eu							XU	ΔΙ	F	3LRCL	Κοι	ıtı	out c	driv	e et	reno	ıth											
26			AIF	-3L	RCL	ΚC	s		F	RW			x1			Reduc					CSI	reng	,											
																Full str			_															
														Al	F	3LRCL	Кρι	اار	-up	cor	ntrol													
25			AIF	3L	RCL	K_F	U		F	₹W		C	x1	_		Disable																		
																Enable																		
																3LRCL Disable		рι	ıt er	nab	le													
24			ΑI	F3I	RCL	ΚI	F			RW			x1	_		Enable																		
			,			\	_						Λ.			st be er	-	ec	l in /	٩IF	3 M	aste	er c	or A	IF3	3 Sla	ıve r	m	odes.	(In	ı Al	FΜ	ast	ter
														m	oc	de, this	ena	ıbl	les t	he	LRO	CLK	as	an	in	put t	o th	е	TXDA	ÌΤ	ger	nera	tor	.)
23				Re	serv	ed						C	x0																					
																3RXDA					ngth													
22			AIF	3R	XDA	T_E	os		F	RW		C	x1						-	th														
						_											_			ie ii	nnut	only	,. ı	thic	hiŧ	has	nc	۰	ffect					
22			AIF	3R	XDA	AT_E	os		F	RW		C	x1	1 :	=	Reduc Full str e - AIF	engt	th			nput	only	y; 1	this	bit	t has	no	e	ffect					

												I/O C		_		TR		ΓΕΙ	R															
Addre	ss =	0xF	000	0_00	068																			C	Def	aul	t v	alu	е	= 0>	(77	77_	77	77
31 30	29	28	27	26	25	24	23	22	21	20	1	19 18	17	16	15	14	1.3	3	12	11	10	9	8			6	5		4	3	2	T	1	0
BITS	-0			IEL					/W	1-0		ESET	<u> </u>	'0	10	1-7	1.0				1.5		IELI			ŭ	L		•	<u> </u>	L			
ыз				IAM					OES	ss		ALUE									DE			ט TIO	N									
											_		_	IF3F	RXD	AT p	ull-	do	wn	con														
21		ΑI	F3R	XD	AT_F	PD		F	RW			0x1	0	= D	sab	led		-	-		-													
													1	= E	nabl	led																		
																AT i	npu	t e	nal	ole														
20		Al	IF3F	RXD	AT_	ΙE		F	RW			0x1		= D																				
10			D-		امدا							00	1	= E	nabi	lea																		
19			Re	eser	vea							0x0	_	IE31	.VD	ΛT 0	utni	ut.	driv	/O. C1	rone	ath												
18		ДІ	F3T	יחאַ	AT_C	าร		F	RW			0x1				AT o				/C SI	ıı eri(JUI												
.0		, u	. 51			- 0		ı '				J. 1				trenç		9																
	1															AT p		do	wn	con	trol													
17		ΑI	F3T	XD/	AT_F	PD		F	RW			0x1		= D																				
	<u> </u>												+-	= E																				
																AT ir	nput	t e	nat	ole														
16		Α	IF31	ΓXD	AT_I	ΙE		F	RW			0x1		= D																				
														= Ei		iea F3T>	(DA	Τi	is c	utni	ut or	ılv. t	this	bit h	าลร	s no) e	ffer	t					
15			Re	ser	ved							0x0	.,	3.0	, 111	017	۲۰۰۰		.0 0	Japa		,, (., ., 0	ا ۱۰	,ac				<u>. </u>					
												<i>3.</i> 0	S	CLK	2 01	utput	driv	ve	str	enat	th													
14			SCI	LK2	_DS			F	RW			0x1				ced				9														
													1	= Fı	ıll s	trenç	jth																	
					_											ull-do	own	CC	onti	ol														
13			SCI	LK2	_PD			F	RW			0x1	1	= D																				
	1												+-	= E			nc'	hl-																
														CLK = D		put e ded	ııal	υie	;															
12			SC	LK2	2_IE			F	RW			0x1		= E																				
																CLK2	is c	out	tput	onl	y; th	is b	it ha	as n	о е	effe	ct							
11			Re	ser	ved							0x0																						
					_	_						_				tput o				ngth	1		_	_	_	_		_	_		_	_	_	
10			SD	A2_	_DS			F	RW			0x1				ced		ng	th															
	1												_			trenç			-4															
9			SD	Δ2	_PD			_	RW			0x1		DA2 = D		ll-dov	vn c	cor	itro	11														
			JD	·/\	ם י				. v v			JA 1		= E																				
	1												+			ut er	nabl	е																
8			SE)A2	_IE			F	RW			0x1	0	= D	sab	led																		
													1	= E	nabl	led																		
7			Re	ser	ved							0x0																						
																rive s		_																
6			SCI	LK1	_DS			F	RW			0x1				ced s trens		ng	th															
																trenç CLK1		ทท	ut a	onlv	: this	s bit	has	s no	eff	fect								
	1															ull-do		_		_	,			0	J11	300								
5			SCI	LK1	_PD			F	RW			0x1		= D	•					•														
					_								1	= E	nabl	led																		
																put e	enal	ble	•															
4			SC	LK1	_IE			F	RW			0x1		= D																				
													1	= E	nabl	led																		

												1/0			_	IOC			ΕR													
Ac	ldre	FIELD S/W RESET																						D	efau	ılt	val	ue	= 0	K77 7	7_7	7777
31	30															6 15	14	13	12	2 11	10	9	8	7	6		5	4	3	2	1	0
ВІ	TS																		·	DE	FI SC	ELD		NI.								
	3				eserv				70.	CLS	,5	0x									<u> </u>	_30	IXIF	1101								
•)			Г	eserv	eu						UX	.0	CL	٠.	1 0tr	t d	ri. (0	o t r	onatl												
2	2			SI	DA1_	DS			F	W		0x	:1	0 =	= F	1 outp Reduc Full str	ed s	trenç		•	1											
														_		1 pull-			nt	rol												
	1			SI	DA1_	PD			F	RW		0x	1			Disabl																
														1 :	= E	Enable	ed															
(0			S	DA1_	ΙE			F	RW		0x	:1	0 =	= [1 inpu Disabl Enable	ed	able														

Table 35 CCM_IOCTRL3 Register

CCM_IOCTRL4 - I/O CONTROL 4 REGISTER

				CM_IOCTRL4 DITTROL 4 REGISTER
Addres	ss = 0xF000_006C			Default value = 0x7777_7700
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31	Reserved		0x0	
30	SPISCLK_DS	RW	0x1	SPISCLK output drive strength 0 = Reduced strength 1 = Full strength
29	SPISCLK_PD	RW	0x1	SPISCLK pull-down control 0 = Disabled 1 = Enabled
28	SPISCLK_IE	RW	0x1	SPISCLK input enable 0 = Disabled 1 = Enabled
27	Reserved		0x0	
26	SPIMOSI_DS	RW	0x1	SPIMOSI/GPIO18 output drive strength 0 = Reduced strength 1 = Full strength
25	SPIMOSI_PD	RW	0x1	SPIMOSI/GPIO18 pull-down control 0 = Disabled 1 = Enabled
24	SPIMOSI_IE	RW	0x1	SPIMOSI/GPIO18 input enable 0 = Disabled 1 = Enabled
23	Reserved		0x0	
22	SPIMISO_DS	RW	0x1	SPIMISO/GPIO19 output drive strength 0 = Reduced strength 1 = Full strength

												1/0			I_IC				ER													
Addres	ss =	0xF	=0(00_0	006	C																		C)ef	aul	t va	lue	= 0	(777	7_7	700
31 30	29	28	2	7 2	6	25	24	23	3 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	,	6	5	4	3	2	1	0
BITS				FIE NA					1	S/W CES	ss	RES VAL									DE	-	IELE RIP		N							
21		Ş	SP	IMIS	SO_	_PC)		F	RW		0x	:1	0 :	PIMIS = Dis = En	able	ed)19	pull	l-dow	n co	ontr	ol									
20			SF	PIMIS	so	_IE			F	RW		0x	:1	0 :	PIMIS = Dis = En	able	d)19	inpi	ut en	able	!										
19			F	Rese	rve	ed						0x	:0																			
18			S	PISS	3_[os			F	RW		0x	:1	0 :	PISS = Re = Ful	duce	ed s	tren	•	t driv	e str	enç	gth									
17			S	PISS	S_F	⊃U			F	RW		0x	:1	0 :	PISS = Dis = En	able	ed	' pu	ıll-up	o con	itrol											
16			S	PIS	S_	ΙE			ŀ	₹W		0x	:1	0 :	PISS = Dis = En	able	ed	inp	out e	enab	le											
15:0			F	Rese	rve	ed						0x7	700																			

Table 36 CCM_IOCTRL4 Register

CCM_IOCTRL5 - I/O CONTROL 5 REGISTER

				CM_IC				R												
Addres	ss = 0xF000_0070												Def	fault	val	ue	= 0x	7D7	7_7	777
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE							DE	FIE SCR		ION							
31	Reserved		0x0																	
30	UARTRX_DS RW 0x1 UARTRX/GPIO22 output drive strength 0 = Reduced strength 1 = Full strength UARTRX/GPIO22 pull-down control UARTRX/GPIO22 pull-down control																			
29	1 = Full strength UARTRX/GPIO22 pull-down control																			
28	UARTRX_IE	RW	0x1	UARTE 0 = Dis 1 = Ena	able	d)22 i	npui	t ena	able										
27	UARTTX_OE	RW	0x1	UARTT 0 = Dis 1 = Ena	able	d (tr			ut er	nable)									
26	UARTTX_DS	RW	0x1	UARTT 0 = Red 1 = Ful	duce	d st	reng		ut dr	ive s	stren	gth								

												1/0		CN	_			.5 ISTE	ER												
Ad	dre	ss =	0xF	000	0_00	70																		De	faul	t val	lue	= 0x	7D7	7_7	777
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
BI	TS	FIELD S/W RESET FIELD DESCRIPTION UARTTX/GPIO23 pull-down control																													
2	5		L	JAR	RTTX	_PD)		F	RW		0x	:0	0 =	ART = Dis = En	sable	ed)23 p	oull	l-dow	n co	ntrol									
2	4		l	UAF	RTTX	(_IE			F	RW		0x	:1	0 =	RT Dis	sable	ed)23 i	npı	ut ena	able										
23	3:0			Re	eserv	ed						0x7	_																		

Table 37 CCM_IOCTRL5 Register

CCM_IOCTRL6 - I/O CONTROL 6 REGISTER

										1/0			I_IO ROL				ΞR														
Addres	ss = 0	xF0	00_00	74																			De	faul	t va	alue	= 0	x7	777	_77	770
31 30	29 2	28 2	27 26	25	24	4 23	22	21	20	19	18	17	16	15	14	13	12	11	10	ę	9 8	3	7	6	5	4	3		2	1	0
BITS			FIEL NAM	_			_	S/W CES		RES VAL									DE		FIEL CRIF		NC								
31		TD	EBUG	S_OE	E		F	RW		0x	0	0 =	EBU Disa Ena	able	d (tr				put e	ena	able										
30		TC	EBUG	6_D8	S		F	RW		0x	1	0 =	EBU Red	luce	d st	ren		3 out	put c	driv	e st	ren	gth								
29	1 = Full strength TDEBUG_PU RW 0x1 0 = Disabled 1 = Enabled TDEBUG/TMSDEBUG input enable																														
28		ΤI	DEBU	G_IE	Ξ		F	RW		0x	1	0 =	EBU Disa Ena	able	d	DEE	BUC	inp	ut er	nak	ole										
27		F	Reserv	/ed						0x	0																				
26		то	CDRS	T_D	S		F	RW.		0x	1	0 = 1 =	CDR Red Full te - T	luce stre	d st ngtl	ren h	gth	•	only;	; th	is bi	t ha	as r	по е	ffed	ct					
25		то	CDRS	T_P	U		F	RW		0x	1	TC 0 =	CDR Disa Ena	RST able	pull d																
24			CDRS		E		F	RW		0x		0 =	CDR Disa Ena	able	d .	ut e	nab	ole													
23		I	Reser	/ed						0x	0																				

				CM_IOCTRL6 DITROL 6 REGISTER
Addres	ss = 0xF000_0074			Default value = 0x7777_7770
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD	S/W	RESET	FIELD
	NAME	ACCESS	VALUE	TCK drive strength
				0 = Reduced strength
22	TCK_DS	RW	0x1	1 = Full strength
				Note - TCK is input only; this bit has no effect
				TCK pull-up control
21	TCK_PU	RW	0x1	0 = Disabled 1 = Enabled
				TCK input enable
00	TO1/ 15	DIA	0.4	0 = Disabled
20	TCK_IE	RW	0x1	1 = Enabled
				Note - TCK is always enabled for input; this bit has no effect
19	Reserved		0x0	
				TMSDFT drive strength 0 = Reduced strength
18	TMSDFT_DS	RW	0x1	1 = Full strength
				Note - TMSDFT is input only; this bit has no effect
				TMSDFT pull-up control
17	TMSDFT_PU	RW	0x1	0 = Disabled
				1 = Enabled
				TMSDFT input enable
16	TMSDFT_IE	RW	0x1	0 = Disabled 1 = Enabled
				Note - TMSDFT is always enabled for input; this bit has no effect
15	Reserved		0x0	
				TDI drive strength
14	TDI_DS	RW	0x1	0 = Reduced strength
	.550		•	1 = Full strength
				Note - TDI is input only; this bit has no effect TDI pull-up control
13	TDI_PU	RW	0x1	0 = Disabled
	.5 0		•	1 = Enabled
				TDI input enable
12	TDI_IE	RW	0x1	0 = Disabled
	_			1 = Enabled Note: TDL is always enabled for input; this bit has no effect.
11	Reserved		0x0	Note - TDI is always enabled for input; this bit has no effect
	Neserveu		0.00	TRST drive strength
1,0	TDOT DO	D)A	0.4	0 = Reduced strength
10	TRST_DS	RW	0x1	1 = Full strength
				Note - TRST is input only; this bit has no effect
	TDOT DO	D)A	0.4	TRST pull-down control
9	TRST_PD	RW	0x1	0 = Disabled 1 = Enabled
				TRST input enable
	TD07 15	D)A	0.4	0 = Disabled
8	TRST_IE	RW	0x1	1 = Enabled
				Note - TRST is always enabled for input; this bit has no effect
7	Reserved		0x0	

													I/			_	IOC			ER	₹													
Α	dd	res	s =	0xF	00	0_00	74																			De	faul	t va	lue	= ()x7	777	7_7	770
31	3	30	29	28	27	7 26	25	24	23	22	21	20	19	18	17	16	3 15	14	13	1	2	1	10	9	8	7	6	5	4	3		2	1	0
В	IT	S				FIELD NAME	_			_	S/W CES	ss	RES VAI				•						DE		ELD		l							
	6		NAME ACCESS VALUE DESCRIPTION TDO_DS RW 0x1 Description TDO_DS Reduced strength 1 = Full strength																															
	5				TI	DO_F	D			F	RW		0>	(1	0 :	= D	pull- Disabl Enable	ed	COI	ntr	ol													
	4				Т	DO_I	E			F	RW		0>	1	0 = 1 =	= C = E	input Disabl Enable - TD	ed ed		out	: onl	y; t	his l	oit h	as n	o ef	fect							
3	3:0				R	eserv	ed						0>	(0	М	ust	be s	et to	0x0	fo	r no	rm	al o _l	pera	tion									

Table 38 CCM_IOCTRL6 Register

CCM_IOCTRL7 - I/O CONTROL 7 REGISTER

				CM_IOCTRL7 DINTROL 7 REGISTER
Addres	ss = 0xF000_0078			Default value = 0x0707_0707
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31:29	Reserved		0x0	
28	GPIO8_OP_CFG	RW		GPIO8 output configuration 0 = CMOS 1 = Open Drain
27	GPIO8_PULL_DIR	RW	0x0	GPIO8 pull-up/pull-down select 0 = Pull-down 1 = Pull-up
26	GPIO8_DS	RW	0x1	GPIO8 output drive strength 0 = Reduced strength 1 = Full strength
25	GPIO8_PULL_ENA	RW		GPIO8 pull-up/pull-down enable 0 = Disabled 1 = Enabled
24	GPIO8_IE	RW		GPIO8 input enable 0 = Disabled 1 = Enabled
23:21	Reserved		0x0	
20	GPIO7_OP_CFG	RW	I I	GPIO7 output configuration 0 = CMOS 1 = Open Drain
19	GPIO7_PULL_DIR	RW	0x0	GPIO7 pull-up/pull-down select 0 = Pull-down 1 = Pull-up

																	IOC				_																	
۸۵	dros	ss =	0vE	=_	00 (10-	70							I/O C	ONT	R	OL 7	RE	GI	STI	EF	₹) of	iaul	4 v	alu		- 0	(070	17	070	07
				П	T										l I	Ī					Г				T											T		
31	30	29	28	2				24	23	22	21	20			17	1	6 15	5 1	4	13	1	12	11	10		9	8	7		6	5	4	1	3	2	1		0
BI.	TS				FIE						/W			ESET										-		FIE												
					NA	ME	-			AC	CES	S	V	ALUE		DI	27.5	4		l		-4			:5	Сн	(IP	TIO	N									
1	g.			G	PIO	7	ns			-	RW		١,	Ox1			O7 o Redu						ngt	n														
				_	,, 10	'-	DO						`	J			Full s				gı																	
															_		Э7 pı		_		l-d	ow	n e	nabl	е													
1	7		GPI	О	7_P	UL	L_E	ΝA		F	RW		(Ox1			Disat																					
															1 :	= E	Enab	led																				
																	O7 in			abl	le																	
1	6			C	SPIC	7_	_IE			F	RW		(Ox1			Disab																					
15:	40			_			اء ۔						١,	20	1 :	= E	Enab	iea																				
15:	13			r	Rese	:IV	ea						-	0x0		DI	26.00	utni	ıt c	onf	fic	urc	tion															
1:	2		GE	210	D6_0	٦P	CF	-G		F	RW		۱,	0x0			O6 o CMO		ut C	OH	ng	ura	lliOi	1														
'	_		Oi.		JU_()	_0'	O					'				Open		ain																			
																	Э6 рі				l-d	ow	n se	elec	t													
1	1		GP	Ю	6_P	UL	_L_[OIR		F	RW		(0x0			- ⊃ull-c																					
															1 :	= F	⊃ull-ເ	ιр																				
				_													O6 0						ngt	h														
1	0			G	PIO	6_	DS			F	RW		(Ox1			Redu				ıgt	:h																
															_		Full s				١ ٨	014	n 0	aabl	_													
ę	,		GPI	O	6_P	Ш	ı F	NA		F	RW			Ox1			O6 pı Disat			Juli	i-u	OW	II E	Iabi	е													
	,		O	_	- -	_		, .		·				<i>5</i> ,7,1			Enab																					
															GI	PI	O6 in	put	en	abl	le																	
8	}			C	SPIC	6_	ΙE			F	RW		(0x1	0 :	= [Disab	oled	l																			
															1 :	= E	Enab	led																				
7:	5			F	Rese	rve	ed						(0x0																								
			0.5	ייר	<u>-</u>	ر		-0		_	214			20			05 o		ut c	onf	fig	ura	tior	1														
4	٠		GF)ار	O5_(J٢	_CI	-G		F	RW		'	0x0			CMO Open		ain																			
													<u> </u>		+		Эреп Э5 рі				_d	O\\\	n s	elec	t													
3	3		GP	IO	5 P	UL	L [OIR		F	RW		(0x0			⊃o pi ⊃ull-c			Juil	. u	v v		,,,,,	•													
L		L		_	_		_										⊃ull-u																	_	_			
															GI	PIC) 5 o	utp	ut c	lrive	e s	stre	ngt	h														
2	2			G	PIO	5_	DS			F	RW		(Ox1			Redu				gt	h																
													<u> </u>		_		-ull s		_																			
			CD		E D			-		_	214		,	1 14			O5 pi			oull	l-d	ow	n e	nabl	е													
1			GPI	U	5_P	UL	.L_E	AVI		F	RW		'	Ox1			Disat Enab																					
													<u> </u>				25 in			ahl	le																	
C)			C	SPIC)5	ΙE			F	RW		(Ox1			Disat	•		JUDI	.0																	
		L			_	_	_										∃nab																	_	_			

Table 39 CCM_IOCTRL7 Register

CCM_IOCTRL8 - I/O CONTROL 8 REGISTER

				CM_IOCTRL8
			I/O CC	ONTROL 8 REGISTER
Addres	ss = 0xF000_007C			Default value = 0x0F07_0700
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31:29	Reserved		0x0	
28	GPIO4_OP_CFG	RW	0x0	GPIO4 output configuration 0 = CMOS 1 = Open Drain
27	GPIO4_PULL_DIR	RW	0x1	GPIO4 pull-up/pull-down select 0 = Pull-down 1 = Pull-up
26	GPIO4_DS	RW	0x1	GPIO4 output drive strength 0 = Reduced strength 1 = Full strength
25	GPIO4_PULL_ENA	RW	0x1	GPIO4 pull-up/pull-down enable 0 = Disabled 1 = Enabled
24	GPIO4_IE	RW	0x1	GPIO4 input enable 0 = Disabled 1 = Enabled
23:14	Reserved		0x01C	
13	GPIO9_OE	RW	0x0	GPIO9 output enable 0 = Disabled (tri-state) 1 = Enabled
12	GPIO9_OP_CFG	RW	0x0	GPIO9 output configuration 0 = CMOS 1 = Open Drain
11	GPIO9_PULL_DIR	RW	0x0	GPIO9 pull-up/pull-down select 0 = Pull-down 1 = Pull-up
10	GPIO9_DS	RW	0x1	GPIO9 output drive strength 0 = Reduced strength 1 = Full strength
9	GPIO9_PULL_ENA	RW	0x1	GPIO9 pull-up/pull-down enable 0 = Disabled 1 = Enabled
8	GPIO9_IE	RW	0x1	GPIO9 input enable 0 = Disabled 1 = Enabled
7:0	Reserved		0x00	

Table 40 CCM_IOCTRL8 Register

CCM_IOCTRL9 - I/O CONTROL 9 REGISTER

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

It is recommended to configure the default value of this register only.

												1/0		CN	_				ER.												
Ad	dre	ss =																						De	faul	t va	lue	= 0>	(070	7_0 [.]	700
31	30	ess = 0xF000_0080 0 29 28 27 26 25 24 23 22 21 20 19 18														15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS				IEL[-			_	S/W CES		RES VAL									DE	FIE SCR	LD	ION							
31	:0			Re	serv	ed						0x07 _07																			

Table 41 CCM_IOCTRL9 Register

CCM_IOCTRL10 - I/O CONTROL 10 REGISTER

											I/C			_IOC				ER	ł													
Addre	ss =	0xF	000	000	84																			De	fau	lt '	valu	e :	= 0x	070)7_(0707
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16 1	5	14	13	12	2 11	10		9	8	7	6		5 4	4	3	2	1	0
BITS			-	IELE	_			_	S/W CES	s	RES VAL								•	DE		FIE		ION								
31:29			Re	eserv	ed						0x	0																				
28		GP	IO1	4_OF	P_C	FG		F	RW		0x	0	0 =	PIO14 = CMC = Ope	S			nfig	urati	on												
27		GPI	O14	I_PU	LL_	DIR		F	RW		0x	0	0 =	Pull-	dov		/pu	ll-d	lown	sele	ct											
26		(GPI	O14_	_DS			F	GPIO14 pull-up/pull-down select																							
25	(GPI(D14	_PUI	LL_F	ΞNΑ		F	RW		0x	1	0 =	PIO14 Disa Enat	bled	· k	/pu	ll-d	lown	enal	ble)										
24			GР	IO14	_IE			F	RW		0x	1	0 =	PIO14 = Disa = Enal	bled	t	nat	ole														
23:21			Re	eserv	ed						0x	0																				
20		GP	101	3_OF	C	FG		F	RW		0x	0	0 =	PIO13 CMC Ope	S			nfig	urati	on												
19		GPI	O13	3_PU	LL_	DIR		F	RW		0x	0	0 =	PIO13 Pull- Pull-	dow		/pu	ll-d	own	sele	ct											
18		(GPI	O13_	_DS			F	RW		0x	1	0 =	PIO13 Redu Full	uce	d st	ren			gth												_

															1/0		CM	_						- P	ı.														
Ad	dres	ss =	0xF	F0	00	0(084								1/0	50	IN I F	ΚC	<u> </u>	0 1	KEU	JI:	311	ER							De	faul	lt v	/alu	ie	= 0x	070	7 0	707
				Т			3 25	2	4 2	23	22	21	20) 1	9 1	8	17	10	6 1	5	14	1	13	12	2 1	1 -	10	9	8		7	6	5		4	3	2	1	0
	TS		<u> </u>			EL						/W			ESE													FI	ELI	D D									1
						ΑN					AC	CES	S		ALU												DE	sc	RIP	TIC	N								
1	7	(GPI(0′	13_	P۱	JLL_	EN	Α		F	RW			0x1		0 =	= [D13 Disa Enal	ble	ed	ıp/	pul	l-d	owr	n er	nab	le											
1	6			G	PΙ	Э1	3_IE				F	RW			0x1		0 =	= [D13 Disa Enal	ble	ed	er	nab	le															
15	:13			F	Res	ser	ved								0x0																								
1	2	GPIO12_OP_CFG																																					
1	1	GPIO12_OP_CFG RW 0x0 0 = CMOS 1 = Open Drain GPIO12 pull-up/pull-down select																																					
1	0			G	PIC)12	2_D\$	6			F	RW			0x1		0 =	= F	D12 Red	uc	ed s	str	enç			ngt	h												
ę	9	(GPI	0′	12_	Pl	JLL_	EN	Α		F	RW			0x1		0 =	= [D12 Disa Enal	ble	ed	ıp/	pul	l-d	owr	n er	nab	le											
8	3			G	PΙ	Э1	2_IE				F	RW			0x1		0 =	= [D12 Disa Enal	ble	ed	er	nab	le															
7	:5			F	Res	ser	ved								0x0																								
4	1		GP	'IC)11	_c	OP_C	CFG	i		F	RW			0x0		0 =	= (O11 CMC Ope	os			con	ıfig	ura	tion	1												
3	8	,	GPI	0	11_	_PI	ULL ₋	_DII	₹		F	RW			0x0		0 =	= F	O11 Pull- Pull-	do	wn	ıp/	pul	l-d	owr	า รั	elec	t											
2	2			G	PIC)1′	1_D\$	6			F	RW			0x1		0 =	= F	D11 Red	uc	ed s	str	eng			ngt	h												
,	I	(GPI	0′	11_	Pl	JLL_	EN	A		F	RW			0x1		0 =	= [D11 Disa Enal	ble	ed	ıp/	pul	l-d	owr	n er	nab	le											
()			G	PΙ) 1	1_IE				F	RW			0x1		0 =	= [D11 Disa Enal	ble	ed	er	nab	le															

Table 42 CCM_IOCTRL10 Register

CCM_IOCTRL11 - I/O CONTROL 11 REGISTER

				CM_IOCTRL11 NTROL 11 REGISTER											
Addres	ss = 0xF000_0088			Default value = 0x0F07_0700											
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION											
31:29	Reserved		0x0												
28	GPIO10_OP_CFG RW 0x0 0 = CMOS 1 = Open Drain GPIO10 pull-up/pull-down select														
27	GPIO10_PULL_DIR	1 = Open Drain GPIO10 pull-up/pull-down select													
26	GPIO10_DS	RW	0x1	GPIO10 output drive strength 0 = Reduced strength 1 = Full strength											
25	GPIO10_PULL_ENA	RW	0x1	GPIO10 pull-up/pull-down enable 0 = Disabled 1 = Enabled											
24	GPIO10_IE	RW	0x1	GPIO10 input enable 0 = Disabled 1 = Enabled											
23:0	Reserved		0x07_ 0700												

Table 43 CCM_IOCTRL11 Register

WM0011 Production Data

TIMER (TMR) MODULES

TIMER 1 - BASE ADDRESS 0xF001_0000

TIMER 2 - BASE ADDRESS 0xF001_0020

TIMER 3 - BASE ADDRESS 0xF001_0040

TIMER DESCRIPTION

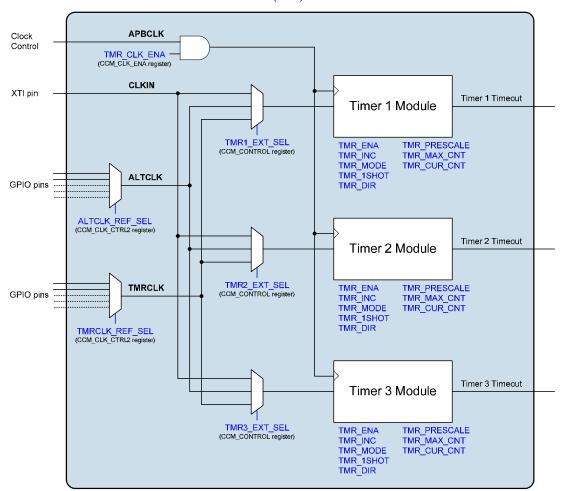
The WM0011 provides three timers, which count up from 0, or count down from TMR_MAX_CNT. The counters are enabled using the TMR_ENA bit, and count direction is selected using the TMR_DIR bit (see Table 49).

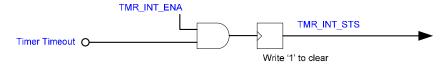
The number of APBCLK clock cycles per count is determined by the TMR_PRESCALE register. When TMR_PRESCALE = 00h, the module will count at the APBCLK clock rate.

The TMR_MODE bit enables a selectable external trigger to be used to start the timer count. The TMC_INC bit configures the external trigger either as a 'start' trigger or as an alternate 'clock' signal. When TMR_MODE=1 and TMR_INC=0, the count rate is controlled only by the external trigger (ie. not by APBCLK).

The TMR_1SHOT bit selects whether the Timer automatically re-starts after the 'end of count' condition has been reached.

Note that the timer clock enable bit (TMR_CLK_ENA) is on the CCM_CLK_ENA register, and the timer reset bit (TMR_SOFTRST_N) is in the CCM_SOFTRST register. Note that these signals are common to all three Timer (TMR) modules.




Figure 23 Timer (TMR) Modules Block Diagram

TIMER INTERRUPTS

The Timer module can generate an interrupt when the 'end of count' condition occurs.

The Timer module interrupt control registers are illustrated in Figure 24.

The interrupt control functions are replicated for each of the 3 Timer modules.

Figure 24 Timer Interrupts

TIMER REGISTER MAP

The register map of the Timer module is illustrated in Table 44.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	TMR_PRESCALE	Timer Prescale	0x0000_0000
Base + 0x04	TMR_MAX_CNT	Timer Maximum Count	0x0000_00FF
Base + 0x0C	TMR_CUR_CNT	Timer Current Count	0x0000_0000
Base + 0x10	TMR_CTRL	Timer Control	0x0000_0000
Base + 0x14	TMR_INT_STATUS	Timer Interrupt Status	0x0000_0000

Table 44 Timer Register Definition

TMR_PRESCALE - TIMER PRESCALE REGISTER

												TIM	TN IER	_	•	ES			TEF	₹											
Addr Addr Addr	es	s =	0xF	001	_00	20 (Time	er 2)																De	efaul	t va	lue	= 0;	(000	0_0	0000
31 3	S FIELD S/W RESET															15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BITS FIELD S/W RESET FIELD DESCRIPTION															l																
31:8				Res	serv	/ed						0x0	_																		
7:0			TM	R_P	RE:	SCA	ιLE		F	RW		0x(00	Th acc TM No coi	e procord IR cote the ote the	ing to ount nat, v led c	o the free when	is us e fol quer n TM by t	llow ncy /IR_ he	ving = [A _MO exte	a divi	ılatio LK] 1 an trigg	on: / (Tl d Tl er (i	MR_ MR_ e. no	PREINC:	SC <i>F</i> =0, t	ALE he c	+ 1) ount			

Table 45 TMR_PRESCALE Register

WM0011

TMR_MAX_CNT - TIMER MAXIMUM COUNT REGISTER

											TIM	ИER		MR XIM	_			NT REG	SIST	ΓER											
Ad	ldres	Iress = 0xF001_0004 (Timer 1) Iress = 0xF001_0024 (Timer 2) Iress = 0xF001_0044 (Timer 3)																						De	faul	t val	lue	= 0>	(000	0_0	0FF
31	30	0 29 28 27 26 25 24 23 22 21 20 19 18 17 16															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS	0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FIELD S/W RESET VALUE																			DE		ELD								
31	:24			Re	serv	ed						0x0	00																		
23	3:0		ΤM	1R_1	мах	_CN	١T		F	RW		0x(_00		Th co TN	nfigu /IR_I	gist ured MAX	er in as a	dica an u NT v	p co alue	unte	maxi er, th nen on	e co confi	unte gure	er wi	ll inc	rem lowr	ent t	from	0 to)	en

Table 46 TMR_MAX_CNT Register

TMR_CUR_CNT - TIMER CURRENT COUNT REGISTER

											TII	MER		MR RRE	_	_		NT REG	ISI	ER											
Ad	dre	ess = 0xF001_000C (Timer 1) ess = 0xF001_002C (Timer 2) ess = 0xF001_004C (Timer 3) 29 28 27 26 25 24 23 22 21 20 19 18 17 10																						De	faul	t va	lue	= 0>	(000	0_0	000
31	30	ess = 0xF001_004C (Timer 3)															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bľ	TS				IELI AMI	_				S/W CES		RES VAL									DE	FIE SCF	LD	ION							
31:	24			Res	serv	ed						0x0	00																		
23	:0		TM	1R_0	CUR	_CN	IT		F	RO		0x0 _00		Th	e va	lue	of th	Cour ie cu ne Af	rren	t co	unte		is v	alue	rep	rese	ents t	he v	/alue	of t	he

Table 47 TMR_CUR_CNT Register

TMR_CTRL - TIMER CONTROL REGISTER

This Timer Control register provides control of the timing function.

When using the down-counter (TMR_DIR = 1), it is important to set the register bits in the sequence described in Table 48 in order to guarantee correct operation:

The counter value (TMR_CUR_CNT described in Table 47) must be set to a non-zero value before asserting the timer interrupt bit (TMR_INT_ENA). If TMR_CUR_CNT = 0 at the point that TMR_INT_ENA is asserted, an interrupt event will be generated immediately as the interrupt detection logic interprets the zero value as 'end of down-count sequence'. The correct sequence of events is summarised below in Table 48:

STEP	REGISTER SETTINGS	DESCRIPTION
	TMR_DIR = 1	Set the timer direction to 'down'
Step 1	TMR_ENA = 0	Disable the counter, and load the initial count value into TMR_CUR_CNT
Step 2	TMR_INT_ENA = 1	Enable the timer interrupt. Note that, as TMR_CUR_CNT has already been set to a non-zero value in Step 1, an interrupt event will not be generated immediately.
Step 3	TMR_ENA = 1	Enable the counter and start counting.

Table 48 Setting the Downtimer

			TIMER	TMR_	•		SIST	ER													
Addres	ss = 0xF001_0010 (Timer 1 ss = 0xF001_0030 (Timer 2 ss = 0xF001_0050 (Timer 3))											De	efau	lt v	alue	, =	0х	0000)_0(000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16	15	14	13	12	11	10	9	8	7	6	5	4		3	2	1	0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE							DE	-	IELE		1	1	ı					
31:7	Reserved		0x000_ 0000																		
6	Timer Enable																				
5	TMR_INC	RW	0x0	_	alid wher in all trigeners so trigeners so trigeners so trigeners so trigeners so the south of t	vheincre gger tarts gger SCA	n TM men s inc (Co LE i	IR_nts become a contract of the contract of th	MOI by or nenti t rate ster sele	ne co ng o e is s) cted	n ti set us	he fir by A sing t	st ris PBC	sing : LK a	sigi and	nal e	edg	e o	f the		
4	TMR_MODE	RW	0x0	Timer I 0 = Tin 1 = Tin signal i	ner s ner b	tarts eha	s cou	ır is	con	trolle	ed ı	using	TM	R_IN		An	exto	ern	al tri	gge	r
3	Reserved		0x0																		
2	TMR_1SHOT	RW	0x0	Timer (0 = Dis condition 1 = End	able on is	d (T rea	ime	r au d).	itom	atica	•										d).

WM0011 Production Data

												TIF	MER			R_CT			ΓEF	2											
Ad	dre	ss =	0xF	001_	00	30 (⁻	Time Time Time	er 2))														D	efau	lt	valı	ae	= 0x	(000	0_0	0000
31	30	FIELD S/W RESET															14	13	12	2 11	10	9 8	7	6		5	4	3	2	1	0
BI	TS																				DE	FIEL SCRIF		١							
1	l			TMF	R_D	IR			F	RW		0x	:0	0 = 1 = WI	= C = C hei	Count Count n set	Up Dow to 1,	n the	CO	unter		nts dov				_		_	NT (s	see	:
C)		ΤN	/IR_I	NT_	_EN	Α		F	RW		0x	:0	0 = 1 = WI of	= E hei	unt' c	ed ed this ondi	bit a	allo is r	ws re each	ed. \	ation c When s er Inte	et to	0, n	eit	ther	the	:	en tl	ne '	'end

Table 49 TMR_CTRL Register

TMR_INT_STATUS - TIMER INTERRUPT STATUS REGISTER

											TIM			_		_		TUS S RE		STEI	₹										
Ad	dre	dress = 0xF001_0014 (Timer 1) dress = 0xF001_0034 (Timer 2) dress = 0xF001_0054 (Timer 3)																						De	faul	t va	lue	= 0	k000	0_0	000
31	30	0 29 28 27 26 25 24 23 22 21 20 19 18 17 16															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	TS	29 28 27 26 25 24 23 22 21 20 19 18 17 16																			DE		ELD RIPT	ION							
3	1:1			Re	serv	ed					(00x0 000	_																		
	0		TI	MR_	INT_	_ST	S		R/\	W1C	;	0x	:0	0 = 1 =	= Tir	ner I ner I	Inter Inter	rupt	is d		serte										

Table 50 TMR_INT_STATUS Register

WM0011 Production Data

I²C INTERFACE MODULE

BASE ADDRESS 0xF002_0000

I2C FEATURES

The I^2C Controller Module is an APB peripheral with two independent I^2C buses. These are configured as one master and one slave. Note that the external pins are multiplexed such that only one of the I^2C Master, the I^2C slave, or the UART can be configured at any one time.

The following I²C specification features are supported by the I²C Controller Module.

I²C Master:

- Normal (100kHz) and Fast Mode (400kHz and 1MHz) operation
- · Both Single and Multi-master

I²C Slave:

- Normal (100kHz) and Fast Mode (400kHz and 1MHz) operation
- Clock Stretching

I2C TRANSFERS

The I²C Controller supports Read and Write functions on the Master and Slave interfaces.

Typical protocols for these transfers are described in Figure 25 through to Figure 29. Note that only a high-level description is provided here; further details of each of the I2C control registers are provided later in this section.

Note that, in a typical implementation, the Master and Slave devices should both have prior knowledge of the number of bytes to be transferred. This is especially relevant to the Slave device in I^2C Read operations, as the Slave must provide the required number of data bytes as expected by the Master

A typical protocol for an I²C Master Write is illustrated and summarised in Figure 25.

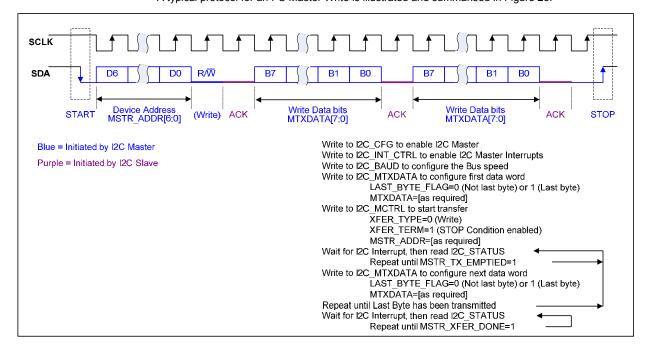
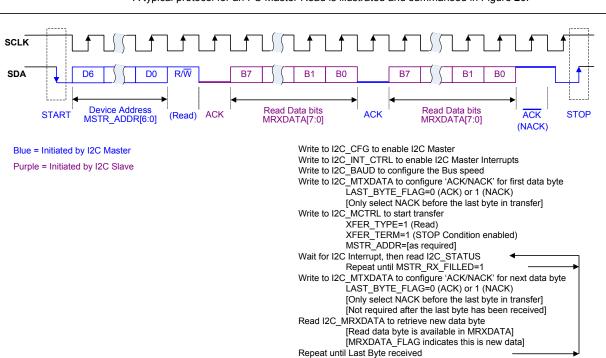



Figure 25 I2C Master Write

A typical protocol for an I²C Master Read is illustrated and summarised in Figure 26.

Figure 26 I2C Master Read

A typical protocol for an I²C Master Write, followed by Master Read is illustrated in Figure 27. Note that this transfer makes use of the "Repeated START Condition" before the Master Read.

Wait for I2C Interrupt, then read I2C_STATUS

Repeat until MSTR_XFER_DONE=1

The implementation of this transfer is as described above for the Write and Read actions, except for setting XFER_TERM=0 for the I^2C Write - this configuration selects the "Rpt START" at the end of the I^2C Write.

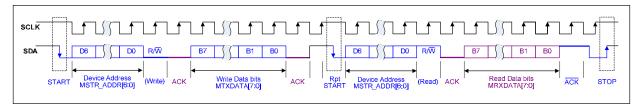


Figure 27 I2C Master Write & Read

A typical protocol for an I²C Slave Write is illustrated and summarised in Figure 28.

Note that the 'I²C Write' transfer describes a data transfer from the Master to the Slave. Accordingly, this transfer relates to Received (RX) data in the Slave module.

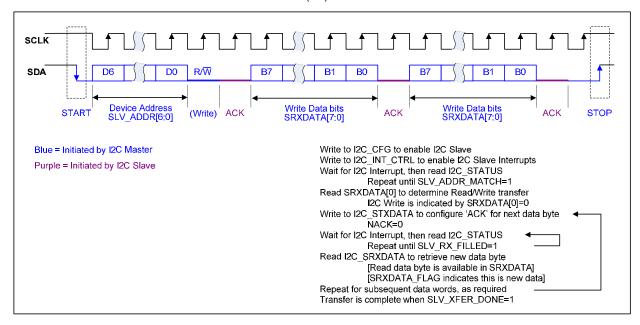


Figure 28 I2C Slave Write

A typical protocol for an I²C Slave Read is illustrated and summarised in Figure 29.

Note that the 'l²C Read' transfer describes a data transfer from the Slave to the Master. Accordingly, this transfer relates to Transmit (TX) data in the Slave module.

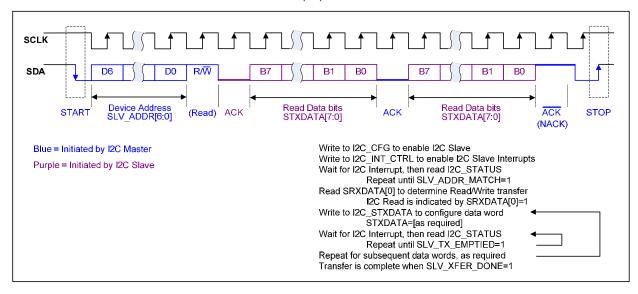


Figure 29 I2C Slave Read

I2C INTERRUPTS

The I2C module can generate an interrupt when any of the conditions described in the I2C_STATUS register occurs. The interrupt conditions provide status indications of the I2C bus transactions.

The I2C interrupt control registers are illustrated in Figure 30.

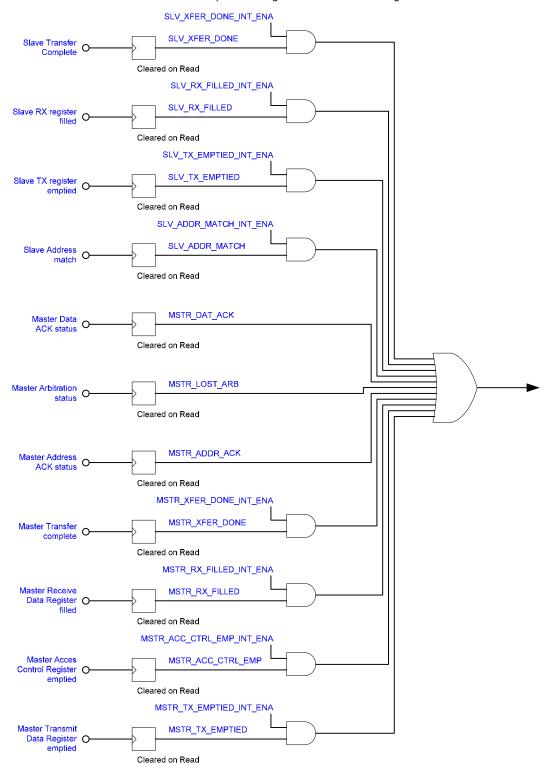


Figure 30 I2C Interrupts

12C REGISTER MAP

The register map of the I2C module is illustrated in Table 51.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	I2C_CFG	I2C Configuration	0x0000_0020
Base + 0x04	I2C_STATUS	I2C Status	0x0000_0000
Base + 0x08	I2C_INT_CTRL	I2C Interrupt Control	0x0000_0000
Base + 0x30	I2C_MCTRL	I2C Master Access Control	0x0000_0000
Base + 0x34	I2C_MRXDATA	I2C Master Receive Data	0x0000_0000
Base + 0x38	I2C_MTXDATA	I2C Master Transmit Data	0x0000_0000
Base + 0x40	I2C_BAUD	I2C Baud Rate	0x01EC_01EC
Base + 0x70	I2C_SRXDATA	I2C Slave Receive Data	0x0000_0000
Base + 0x74	I2C_STXDATA	I2C Slave Transmit Data	0x0000_0000
Base + 0x78	I2C_SLV_ADDR	I2C Slave Address	0x0000_0000

Table 51 I2C Register Definition

I2C_CFG - I²C CONFIGURATION REGISTER

A pulse filter is provided to remove spikes on the I^2C bus input signal. The operation of the pulse filter is dependent on the frequency of the main controller clock (APBCLK), with wider pulses being filtered out on slower running clocks. Pulses shorter than 50ns are always filtered, in accordance with I^2C standards. Pulses shorter than the minimum SCLK High Pulse-Width (identified as t_2 in Figure 6) are always filtered.

Note that, when setting the I2C baud rate (see Table 59), the I2C_BAUD register must take account of the Pulse Filter selection.

The I^2C controller has two independent buses; these are enabled using the MSTR_ENA and SLV_ENA fields, as described in Table 52.

The external pins are multiplexed such that only one of the l^2C Master, the l^2C slave, or the UART can be configured at any one time. (The applicable function is selected using the PORT2_SEL field in the CCM_CONTROL register - see Table 16). The MSTR_ENA and SLV_ENA fields should be set consistent with the PORT2_SEL selection.

Note that the I²C clock enabling bit I2C_CLK_ENA is on the CCM_CLK_ENA register (see Table 23).

												I2C (CON		2C_ URA			EGIS	STE	R											
Ad	dre	ss =	0xF	002	2_00	00																		De	faul	t va	lue	= 0	c 000	0_0	020
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВГ	ΓS	NAME ACCESS VALUE																			DE		LD						•		
31	:6	Reserved 0x00_ 0000 Pulse filter select																													
5	Comparison of the control of the con																														
4				Re	eserv	ed						0>	(0																		
3:	2			MS ⁻	TR_I	ΞΝÆ	λ.		F	RW		0>	¢Ο	00 01 10	= D = R = R	isab eser eser	led ved ved	-ena	ble												
1:	0			SL	V_E	NA			F	RW		0>	¢Ο	00 01 10	Sla = D = E = R	isab nabl eser	led ed ved	enabl	е												

Table 52 I2C_CFG Register

I2C_STATUS - I2C STATUS REGISTER

The active bits in this register indicate the status of most I^2C operations. All bits are cleared on read unless otherwise stated. Note that this register must be cleared (by reading) after every I^2C transfer; subsequent I^2C transfers will be inhibited if this register is not clear.

The I2C_STATUS register provides a status indication for each data byte transmitted or received via the relevant TX/RX register. Additional status bits indicate when the full I2C transfer is complete. Interrupt flags, corresponding to each of these conditions, can be enabled using the control fields in the I2C_INT_CTRL register (see Table 54).

On the Slave I2C interface, the SLV_ADDR_MATCH field indicates receipt of a Device Address that matches the 7-bit SLV_ADDR (see Table 63).

On the Master I2C interface, the Device Address contained in the MSTR_ADDR field (see Table 56) is transmitted at the start of an I2C transfer. The MSTR_ACC_CTRL_EMP field indicates that the Device Address has been transmitted.

On the Master I2C interface, the remote (Slave) device must acknowledge each byte received. (This includes the receipt of the Device Address for Read or Write operations.) The received ACK/NACK status is contained in the MSTR_ADDR_ACK and MSTR_DAT_ACK bits.

														_	STA [*] JS RE			R													
Addre	ss =	0xF	002	_000	04																		De	fau	lt	value	=	0x	0000	0_0	000
31 30	29	28	27	26	25	24	23	22	21	20	19	18	1	7 16	15	14	13	12	11	10	9	8 (7	6		5 4	3	3	2	1	0
BITS				IELC					S/W		RES									-		IELD									
5.10				AME	-			_	CES	s	VAL									DE		CRIP									
31:25			Res	serv	ed						0x0	00																			
24		SLV	_XF	ER_	_DO	NE		F	RC		0x	0	(This clear 0 = 12 1 = 12	bit is ed wh 2C tra 2C tra	set c ien t nsfe nsfe	on s he i er no	ucce regis ot cor omple	ssfu ter is mple ete	l cor s rea ete	np ad.	letion	of a	Sla	ve	e trans	fer	. Т	his t	oit is	6
23:19	0 = I2C transfer not complete 1 = I2C transfer complete Only valid when I2C Slave is enabled. 0 Reserved Slave Receive Data Register full.																														
18	0 = I2C transfer not complete 1 = I2C transfer complete Only valid when I2C Slave is enabled. 19 Reserved Ox00 Slave Receive Data Register full. This bit is asserted when the Slave Receive Data Register I2C_SRXDATA (see Table 60) has been filled with data from the I²C bus. This bit is cleared when the register is read. 0 = No new I2C data received since last status register read 1 = I2C_SRXDATA has new data since last status register read Only valid when I2C Slave is enabled. Slave Transmit Data Register empty. This bit is asserted when the Slave Transmit Data Register I2C_STXDATA (see Table 61) has been emptied by the I²C controlle																														
17		SLV _.	_TX	_EM	ИРТІ	IED		F	RC.		0x	0	I f r ()	This I2C_: for tra read. 0 = N 1 = I2	bit is STXD ansmi	ATA SSIO V 120	erted A (se n oi C da ATA	d where Ta n the ata tra A em	en thable I ² C ansr	ne SI 61) bus mitte	ha:	e Tra s bee his bi since lasts	n en t is c last	nptie lear	ed ec		e I²(n th	C o	egis		
16	Ş	SLV_	,ADI	DR_	MA ⁻	ТСН		F	RC		0x	0	t (Slave This the S 0 = n 1 = n	Add	ress set o DDF ch dete	Ma on s R fie	tch s ucce eld. T	statu ssfu his	s I rec bit is	eip	ot of a				ddres: regis					nes
15:12			Res	serv	ed						0x	0																			

I2C STATUS I2C STATUS REGISTER Address = 0xF002 0004 Default value = 0x0000 0000 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 3 2 1 0 BITS **FIELD** S/W RESET **FIELD** NAME **ACCESS VALUE DESCRIPTION** Master data ACK or NACK status 0 = ACK response received RC 0x0 11 MSTR_DAT_ACK 1 = ACK not received to Master Data byte Only valid when I2C Master is enabled. Master arbitration error status 0 = No errorRC 10 0x0 MSTR_LOST_ARB 1 = Master lost arbitration Only valid when I2C Master is enabled. Master address ACK or NACK status 0 = ACK response received 9 MSTR ADDR ACK RC 0x0 1 = ACK not received to Master Device Address Only valid when I2C Master is enabled. Master transfer transmission status This bit is set on successful transmission of a STOP condition, or by loss of arbitration where the current master lost the arbitration. Note that this bit is not set on transmission of a Repeated START condition. RC 0x0 8 MSTR XFER DONE This bit is cleared when the register is read. 0 = I2C transfer not complete 1 = I2C transfer complete Only valid when I2C Master is enabled. 7:3 Reserved 0x0 Master Receive Data Register full. This bit is asserted when the Master Receive Data Register I2C_MRXDATA (see Table 57) has been filled with data from the I²C bus. This bit is cleared when the register is read. 2 MSTR RX FILLED RC 0x0 0 = No new I2C data received since last status register read 1 = I2C MRXDATA has new data since last status register read Only valid when I2C Master is enabled. Master Access Control Register cleared. This bit is asserted when the I2C MCTRL register is cleared (following final ACK/NACK of the I2C transfer). This bit is cleared when the register is read. MSTR_ACC_CTRL_EM 1 RC 0x0 0 = Master Access Control Register (I2C_MCTRL) not cleared since last status register read 1 = Master Access Control Register (I2C_MCTRL) cleared since last status register read Only valid when I2C Master is enabled. Master Transmit Data Register empty. This bit is asserted when the Master Transmit Data Register I2C_MTXDATA (see Table 58) has been emptied by the I²C controller, for transmission on the I²C bus. This bit is cleared when the register is 0 MSTR_TX_EMPTIED RC 0x0 0 = No new I2C data transmitted since last status register read 1 = I2C_MTXDATA emptied since last status register read Only valid when I2C Master is enabled.

Table 53 I2C_STATUS Register

I2C_INT_CTRL - I²C INTERRUPT CONTROL REGISTER

There are eight I^2C Controller interrupts which can be enabled or disabled with the bits on this $I2C_INT_CTRL$ register.

Note that bits [11:9] of the I2C Status register (I2C_STATUS) will always generate an I2C Interrupt; there are no enable control bits corresponding to these signals.

											120	CINT			C_IN	_			EGIS	TEF	₹												
Addre	ss =	0)	κF(002	_00	08																		D	ef	ault	va	alue	= 0	хC	0000	_0	000
31 30	29	28	8	27	26	25	24	23	22	21	20	19	18	1	7 16	15	14	13	3 12	11	10	9	8	7		6	5	4	3		2	1	0
BITS					ELI				_	S/W CES	s	RES VAL				ı					DE		ELC RIP		N								
31:25				Res	serv	ed						0x0	00																				
24	SL	.V_	_XF		L_D(ENA	ONE	<u> </u>	NT_	F	RW		0×	:0	(0 = d	sable	ed	Co	omple	ete ir	nterr	upt	enal	ole									
23:19	3:19 Reserved 0x00 Slave Receive Data Register Full interrupt enable																																
18	1 = enabled 19 Reserved 0x00 SLV_RX_FILLED_INT_E NA 0x0 Slave Receive Data Register Full interrupt enable 0 = disabled 1 = enabled SLV_TX_EMPTIED_INT Slave Transmit Data Register Empty interrupt enable																																
17	SLV_RX_FILLED_INT_E NA Slave Receive Data Register Full interrupt enable 0 = disabled 1 = enabled Slave Transmit Data Register Empty interrupt enable																																
16	SL	_V_	_AI		R_N _EN	IAT(A	CH_	_IN	F	RW		0×	:0	(Slave 0 = d 1 = e	sable	ed	Ma	atch i	nter	rupt	ena	ble										
15:9				Res	serv	ed						0x0	00																				
8	MS	ST	R_		ER_ EN	DOI A	NE.	_IN	F	RW		0x	:0	(Maste 0 = d 1 = e	sable	ed	er C	Comp	lete	inter	rup	t ena	able	!								
7:3				Res	serv	ed						0x0	00																				
2	M	ST	R_		_FII ENA	LLEI A	D_I	NT	F	RW		0×	:0	(Maste 0 = d 1 = e	sable	ed	e C	Oata F	Regi	ster	Full	inte	rrup	ot e	enab	le						
1	M	ST				CTR ENA		ΞM	F	RW		0×	:0	(Maste 0 = d 1 = e	sable	ed	Co	ontrol	Re	giste	r Er	npty	inte	err	upt (en	able					
0	MS	STI	R_		_EM	IPTI A	ED.	_IN	F	RW		0×	:0	(Maste 0 = d 1 = e	sable	ed	nit [Data	Reg	ister	Em	pty i	nter	rru	pt e	na	ble					

Table 54 I2C_INT_CTRL Register

I2C_MCTRL - I²C MASTER ACCESS CONTROL REGISTER

The Master Access Control Register configures the I2C Master module for Read or Write operations, and is used to initiate an I²C Master transfer.

Writing to the I2C_MCTRL register initiates an I2C Master transfer. The MODULE_BUSY bit indicates that the I^2C transfer has been correctly configured, and that the I^2C controller will initiate the transfer. Note that the I2C_STATUS register must be cleared (by reading) before initiating an I2C Master transfer.

XFER_TYPE determines whether the I^2C action to be performed is a read or a write. XFER_TERM specifies whether a STOP Condition should be issued at the end of the current transfer.

The I²C address of the target Slave device is held in the MSTR_ADDR register. (This identifies the remote device that the I2C transfer is intended for.)

Note that MSTR_ADDR is the 7-bit Device Address, and does not include the Read/Write bit. The equivalent 8-bit Device Address comprises the 7 bits of MSTR_ADDR, and the R/W bit in the LSB position. This is illustrated by an example in Table 55.

I ² C ACTION	MSTR_ADDR	8-BIT DEVICE ADDRESS
Write	0v29 (hov) 011 1000 (hinom)	0x70 (hex), 0111 0000 (binary)
Read	0x38 (hex), 011 1000 (binary)	0x71 (hex), 0111 0001 (binary)

Table 55 Illustration of 7-bit MSTR_ADDR compared with 8-bit Device Address

The I2C_MCTRL register is cleared (to default) after the final ACK/NACK of the I²C Master transfer. The MSTR_ACC_CTRL_EMP bit in the I2C_STATUS register (see Table 53) indicates when the I2C_MCTRL register has been cleared. A corresponding interrupt can also be enabled if required.

The I2C_MCTRL register will be cleared (and the MSTR_ACC_CTRL_EMP bit set) as described above. Note that the MSTR_XFER_DONE bit, indicating completion of the I²C Master transfer, will be set at approximately the same time if XFER_TERM=1. The MSTR_XFER_DONE bit will not be set if XFER_TERM=0 for the current transfer.

		I2C N	IASTER A	I2C_M				RE	GIST	ER											
Addres	ss = 0xF002_0030												De	efa	ult	val	ue	= 0×	0000	_00	000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16	15	14	13	12	11	10	9	8	7	6	;	5	4	3	2	1	0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE							DE		IELD RIP		ı							
31:14	Reserved		0x0_ 0000																		
13	MODULE_BUSY	RO	0x0	This bit indicate 0 = Reg 1 = Mo Note the	es th giste dule	at tl er cle bus	he h eare sy (l2	ard d (fo 2C t	ware ollow trans	is ir ing t fer in	nitia fina	ating al AC	an I	2C	Ма	ste	r tra	nsfe	er	r)	
12	Reserved		0x0																		
11	XFER_TYPE	RW	0x0	Selects 0 = Wri 1 = Rea	te	ad c	or W	rite	for I2	2C M	las	ter tr	ansf	er							
10	XFER_TERM	RW	0x0	Transfe Selects 0 = No 1 = ST	a S STC	TOI	P Co	ondi ditio	n. (N	ext t	trar	nsfer	use	s a	Re	pea	ated		ART.)		
9:7	Reserved		0x0																		
6:0	MSTR_ADDR	RW	0x00	This is remote (Note t	dev	rice	that	the	I2C	trans	sfe	r is ir	ntend				e, ic	lenti	fying	the	;

Table 56 I2C_MCTRL Register

12C MRXDATA - I²C MASTER RECEIVE DATA REGISTER

The Master Receive Data Register (I2C_MRXDATA) holds the byte of data received (MRXDATA) in the $\rm I^2C$ Master Read operation.

The MRXDATA_FLAG bit indicates when a new byte of data has been successfully received. This bit is cleared when the register is read.

Note that the MSTR_RX_FILLED bit in the I2C_STATUS register (see Table 53) also indicates when new data has been received. The associated interrupt may also be enabled.

Each received data byte must be acknowledged by the I²C Master module, using the ACK/NACK response. The response is configured by writing to the I2C_MTXDATA register (see Table 58), setting the LAST_BYTE_FLAG bit to 0 or 1 (for ACK/NACK respectively). For further details, see the following section, describing the I2C MTXDATA register.

The last byte of the I^2C Master Read operation is acknowledged with the NACK response from the I^2C Master. An I^2C STOP Condition will normally be transmitted after the final NACK, thus completing the I^2C Read. Note that the action taken on termination of the transfer is configurable, using the XFER_TERM bit in the I^2C _MCTRL register (see Table 56).

The MSTR_XFER_DONE bit in the I2C_STATUS register indicates when an I²C Master transfer has completed.

										ı	2C	MAS		_	•	RXD IVE I			EGI	STE	R										
Ad	dres	ss =	0xF	002_0	034	4																		De	faul	lt v	alue	= 0	x000	0_0	0000
31	30	29	28	27 2	6 2	25 2	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BI	BITS FIELD S/W RESET NAME ACCESS VALUE																				DE	FIE SCF	ELD RIPT								
31	0x00																														
8	8 MRXDATA_FLAG RC 0x0 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1													= Re	s ass egiste egiste hat t	er er er fu	npty II (ne	ew d	lata	rece	ived		t byt	e of	da	ta ha	s be	en r	ece	ived	
7:	0			MRXE	AT	Ā			F	₹О		0x0	00			r Da hat t	•				field	d									

Table 57 I2C_MRXDATA Register

I2C_MTXDATA - I2C MASTER TRANSMIT DATA REGISTER

The Master Transmit Data Register (I2C_MTXDATA) holds the byte of data (MTXDATA) for transmission in the I^2 C Master Write operation. The I2C_MTXDATA register also controls the ACK/NACK response in I^2 C Master Read operations.

The MTXDATA_FLAG bit indicates when a byte of data has been loaded, ready for transmission. This bit is set to '0' after the byte has been transmitted, indicating that the register has been emptied and is ready for the next data byte to be loaded. The MTXDATA_FLAG is a Read-Only bit.

Note that the MXTR_TX_EMPTIED bit in the I2C_STATUS register (see Table 53) also indicates when the I2C MTXDATA register has been emptied. The associated interrupt may also be enabled.

The first byte to be transmitted must be written to MTXDATA before the Master Write transfer is initiated. Each subsequent data byte for transmission should be written to MTXDATA as soon as possible after the MSTR_TX_EMPTIED bit is asserted.

For I²C Master Write operations, the LAST_BYTE_FLAG bit indicates whether the associated data byte is the last byte to be transferred. For I²C Master Read operations, the ACK/NACK response is configured by writing to the LAST_BYTE_FLAG bit.

Each transmitted word must be acknowledged by the remote (Slave) device. This includes the transmission of the Device Address for Read or Write operations. The received ACK/NACK status is provided in the I2C_STATUS register (see Table 53).

For I²C Master Write, setting LAST_BYTE_FLAG=1 will complete the transfer after the associated data byte has been transmitted.

For I²C Master Read, the I2C_MTXDATA register must be written to configure the ACK/NACK response for each received data word. Setting LAST_BYTE_FLAG=0 will configure the 'ACK', indicating readiness for more data bytes. Setting LAST_BYTE_FLAG=1 will configure the 'NACK', completing the transfer, and indicating that no further data is expected.

For I²C Master Read, the ACK/NACK response for the first data byte must be written to MTXDATA before the Master Read transfer is initiated. For subsequent data bytes, the LAST_BYTE_FLAG should be written following each received data byte (MSTR_RX_FILLED=1); writing to the LAST_BYTE_FLAG bit configures the ACK/NACK status for the next word that is received.

Note that the LAST_BYTE_FLAG bit must be written before reading the received data byte from I2C_MRXDATA.

The ACK/NACK status is configured in advance of each byte received, as described above. Accordingly, there is no requirement to write to the LAST_BYTE_FLAG bit after receipt of the last byte of the transfer.

The last byte of the I^2C Master Write operation is acknowledged with the ACK response from the I^2C Slave. An I^2C STOP Condition will normally be transmitted after the final ACK, thus completing the I^2C Write. Note that the action taken on termination of the transfer is configurable, using the XFER_TERM bit in the I^2C _MCTRL register (see Table 56).

The MSTR_XFER_DONE bit in the I2C_STATUS register indicates when an I²C Master transfer has completed.

										12	C N	1AS		_	MT				RE	GIST	ER												
Add	dres	ss =	0xF	:00	2_00	38																		D	efa	ault	t va	alue	= ()x0	0000	_0(000
31	30	29	28	27	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	3 1:	2 11	10	9	8	3 7	. (6	5	4	3		2	1	0
ВІТ	S	NAME ACCESS VALUE DESCRIPTION 0 Reserved 0x00_																															
31:	0x00																																
9			LAS	Τ_	BYTE	E_FL	_AG		F	RW		0x	0	wr 0 =		last	t byt		byte	e of a	tran	sfer	fro	m ei	the	r aı	n I ²	C re	ead	or a	an I ^ʻ	²C	
8			МТ	ΧC	DATA_	_FL/	ΑG		F	RO		0x	:0	tra 0 = 1 =	nsmi = Reg = Reg	ssio jiste jiste	n. er er er fu	npt II (r	ty reac	giste	trans			load	ed a	and	d is	rea	dy f	or			
7:0)			M	TXDA	TΑ			F	RW		0x0	00	Ma	aster	Data	a by	/te	for	trans	miss	ion ((I ² C	writ	te)								

Table 58 I2C_MTXDATA Register

I2C_BAUD - I2C BAUD RATE REGISTER

The SCLK output frequency must be configured when using the I2C Master module.

The INP_CLK_HIGH_DIV and INP_CLK_LOW_DIV register fields set the number of APBCLK cycles in the SCLK High Phase and SCLK Low Phase respectively.

For example, if 100kHz SCLK is required, and the APBCLK frequency is 100MHz, this is a frequency ratio of 1000, ie. the total number of APBCLK cycles in the SCLK High / Low phases is 1000. Assuming 50% duty cycle, INP_CLK_HIGH_DIV and INP_CLK_LOW_DIV should each be set to 500 cycles, which is coded as 0x1F3 (note the -1 offset).

If the I2C Pulse Filter is enabled (see the I2C_CFG register, described in Table 52), then the INP_CLK_HIGH_DIV and INP_CLK_LOW_DIV should be adjusted by subtracting 7 from each.

In the above example, if the I2C Pulse Filter is enabled, then INP_CLK_HIGH_DIV and INP CLK LOW DIV should each be set to 0x1EC.

The I2C_BAUD register settings must be consistent with the Signal Timing Requirements illustrated in Figure 6.

			I2C BA	I2C_B			STE	R														
Addres	ss = 0xF002_0040												Def	fau	lt v	alı	ie :	= 0x	01	EC_	01	EC
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16	15 1	4	13	12 1	1 1	0	9	8	7	6	3	5	4	3		2	1	0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE							DES		LD	ION	1								
31:27	Reserved		0x00																			
26:16	INP_CLK_HIGH_DIV	RW	0x1EC	Clock E APBCL 000h = 001h = 002h = FFFh = Note th INP_CL required (eg. 500	K cyc. 1 clos 2 clos 3 clos 4096 at, wh LK_HI d puls	ck (ck (ck (deck (in the cycle cycle cycle cycle ock of the H_DI' engtle	ne SC es es cycles 12C F V sho	S Pulse ould	(Hi e F be	gh) ilter con	is enpe	enab	oleo ted	d, th	ner su	laste n ibtra	er M	loc	le ou		
15:11	Reserved		0x00																			
10:0	INP_CLK_LOW_DIV	RW	0x1EC	Clock D APBCL 000h = 001h = 002h = FFFh = Note th INP_CL required (eg. 500	K cyc 1 clo 2 clo 3 clo 4096 at, wh LK_LC d puls	ck (ck (ck (deck (in the cycle cycle cycle ock of the '_DI\ engtl	ne SC es es cycles 12C F / sho h.	S Pulse	e F	ilter	is e	enab	oleo ed	d, th	ner su	aste	er Mo	od	e ou		

Table 59 I2C_BAUD Register

I2C_SRXDATA - I²C SLAVE RECEIVE DATA REGISTER

The Slave Receive Data Register (I2C_SRXDATA) holds the byte of data received (SRXDATA) in the I^2C Slave Write operation. (The I^2C Master initiates the Write operation, and the associated data is received by the I^2C Slave.)

The Device Address and I^2C Read/Write bit is also received in the SRXDATA field for I^2C Write and I^2C Read operations. The I^2C Read/Write bit (in the LSB position) indicates whether a Write or a Read will follow.

The SRXDATA_FLAG bit indicates when a new byte of data has been successfully received. This bit is cleared when the register is read.

Note that the SLV_RX_FILLED bit in the I2C_STATUS register (see Table 53) also indicates when new data has been received. The associated interrupt may also be enabled.

Each received word must be acknowledged (ACK) by the I²C Slave module. The ACK response is configured by writing to the I2C_STXDATA register (see Table 61), setting the NACK bit to 0.

Note that the ACK response must be configured (by writing to the I2C_STXDATA) before reading the received data byte from I2C_SRXDATA.

For further details, see the following section, describing the I2C_STXDATA register.

New data is only indicated/available following receipt of a matching Device Address (SLV_ADDR). The SLV_ADDR_MATCH bit in the I2C_STATUS register indicates when a matching Device Address is detected; an associated interrupt may also be enabled.

The SLV_XFER_DONE bit in the I2C_STATUS register indicates when an ${\rm I}^2{\rm C}$ Slave transfer has completed.

									120	SLA		_	_	RXD			EGIS	STEI	₹											
Addre	ess =	0xF	002_00	70																		De	faul	t v	alue	= ()x(0000	0_0	000
31 30	29	28	27 26	25	24	23	22	21	20	19	18	17	16	3 15	14	13	12	11	10	9	8	7	6	5	6 4	3		2	1	0
BITS			FIELD	_			AC	/W CES	s	RES VAL									DE		ELD RIP	ΓΙΟΝ			·					
31:9	This is asserted to indicate that the 8-bit byte of data has been																													
31:9 Reserved 0000															SS															
7:0			SRXDA	·ΤΑ			F	RO		0x0	00	Wh 8-b Wh this bit tra	her bit her s fi (b	e Data n a da data n a m ield h it [0]) fer wi	ata b word atch olds The	yte l. ed I the e Re	is re Devi 7-b ead/	eceiv ce A it De Write	ed (ddre vice bit	SLV ess is Add indic	_RX s red lress	_FIL ceive s (bit	LEC d (S s [7:)=1 6LV 1])	I), th /_AD and	DR _.	_M Re	AT(CH= Wri	:1),

Table 60 I²C_SRXDATA Register

I2C_STXDATA - I2C SLAVE TRANSMIT DATA REGISTER

The Slave Transmit Data Register (I2C_STXDATA) holds the byte of data (STXDATA) for transmission in the I^2C Slave Read operation. (The I^2C Master initiates the Read operation, and the associated data is transmitted by the I^2C Slave.) The I2C_STXDATA register also controls the ACK response in I^2C Slave Write operations.

The STXDATA_FLAG bit indicates when a byte of data has been loaded, ready for transmission. This bit is set to '0' after the byte has been transmitted, indicating that the register has been emptied and is ready for the next data byte to be loaded. The STXDATA_FLAG is a Read-Only bit.

Note that the SLV_TX_EMPTIED bit in the I2C_STATUS register (see Table 53) also indicates when the I2C_STXDATA register has been emptied. The associated interrupt may also be enabled.

The next data byte for transmission should be written to STXDATA as soon as possible after the $SLV_TX_EMPTIED$ bit is asserted. Note that, in normal I^2C Read operations, the Slave device must have prior knowledge of the number of bytes to be transferred. (This is because the STOP Condition, indicating completion of the transfer, occurs later than the time at which the next data bit would otherwise be transmitted.)

For I²C Slave Write transfers, the I2C_STXDATA register must be written to configure the ACK response for each received data byte. Setting NACK=0 will configure the 'ACK' response for the next received data byte.

The NACK bit should be written following a matching Device Address (SLV_ADDR_MATCH=1), and following a received data byte (SLV_RX_FILLED=1); writing to the NACK bit configures the ACK status for the next word that is received.

Note that the NACK bit must be written before reading the received data byte from I2C_SRXDATA.

The Device Address is acknowledged automatically by the l^2C Slave module (if the received address matches the SLV_ADDR field). The NACK bit is configured in advance of each byte received, as described above. Accordingly, there is no requirement to write to the NACK bit after receipt of the last byte of the transfer.

Data is only transmitted following receipt of a matching Device Address (SLV_ADDR). The SLV_ADDR_MATCH bit in the I2C_STATUS register indicates when a matching Device Address is detected; an associated interrupt may also be enabled.

The SLV_XFER_DONE bit in the I2C_STATUS register indicates when an $\rm I^2C$ Slave transfer has completed.

										ı	2C	SLA		_	_ST				EG	ISTE	R												
Ad	dres	ss =	0xF	002	_00	74																		D	efa	ult	val	lue	= 0)x0	000	_00	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	6	3	5	4	3	2	2	1	0
BIT	ΓS				IELI IAMI	_			_	S/W CES	s	RES VAI									DE	FIE SCF		D PTIO	N								
31:	0x00																																
9	1		ST	XDA	ATA_	_FLA	۸G		F	RO		0>	(Ο	tra 0 = 1 =	nsm = Re = Re	issio giste giste	on. er er er fu	npty II (re	, ead	gister y to t ad on	rans		en I	load	ed a	anc	l is i	rea	dy fo	or			
8				N	IACI	<			F	RW		0>	κ0	0 =	CK o = AC = NA	K	CK	conf	figu	uratio	n for	I ² C	Sla	ave \	Vrit	e t	rans	sfer	s				
7:	0			STX	XDA	ΤA			F	RW		0x	00	Sla	ave l	Data	byt	e for	r tra	ansm	issio	n (l²	C	read)								

Table 61 I2C_STXDATA Register

I2C_SLV_ADDR - I²C SLAVE ADDRESS REGISTER

The I²C slave address is held in the SLV_ADDR register. Note that this is the 7-bit Device Address, and does not include the Read/Write bit. The equivalent 8-bit Device Address comprises the 7 bits of SLV_ADDR, and the R/W bit in the LSB position. This is illustrated by an example in Table 62.

I ² C ACTION	SLV_ADDR	8-BIT DEVICE ADDRESS
Write	0.20 (hay) 044 4000 (hinam)	0x70 (hex), 0111 0000 (binary)
Read	0x38 (hex), 011 1000 (binary)	0x71 (hex), 0111 0001 (binary)

Table 62 Illustration of 7-bit SLV_ADDR compared with 8-bit Device Address

											I2C	SL		C_		_		OR A RE	GIS	TER	R										
Ac	ldre	ss =	0xF	002	_00	78																		De	faul	t va	lue	= 0	x000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	BITS FIELD S/W RESET NAME ACCESS VALUE														DE	FIE SCF	LD														
31:7 Reserved 0x000_ 0000																															
6	6:0 SLV_ADDR[6:0] RW 0x00												s the s not																		

Table 63 I2C_SLV_ADDR Register

FUSE MEMORY

The WM0011 incorporates a one-time-programmable (OTP) fuse memory. The fuse data can be used to select which interface will be used for software/configuration download. The fuses also allow the start-up condition of selected control registers to be configured.

Note that the fuse data capability is supported on custom-programmed devices only. Un-programmed devices do not support these options. Fuse programming by users is not supported.

As part of the boot sequence, the WM0011 will determine whether the Custom fuses have been programmed. If the Custom fuses have been programmed, then the fuse data will select the desired clocking configuration, and also select the desired boot method for software/configuration download.

Note that the Custom fuse data includes parameters that are held in the WM0011 control registers. The fuse settings will be loaded as initial start-up values of the corresponding registers, but these can be updated during normal operation later if required.

See "Boot Sequence Control" for further details of the WM0011 boot-up process.

The integrated fuse memory holds 512 bytes of configuration data, including:

- Software Authentication Key
- Boot-up & Clocking configuration
- Cyclic Redundancy Check (CRC)
- Custom-defined data
- JTAG de-bug module configuration

A full definition of the Custom fuse memory contents is provided in Table 64.

See below for further details of the CRC and the Software Authentication Key.

FUSE MEMORY DEFINITION

The memory map of the Custom fuse region is provided in Table 64. See below for further details of the CRC value, and the Software Authentication key fields that are held within the fuse memory.

BYTE ADDRESS	SIZE (BYTES)	DESCRIPTION	COMMENT
0x000	256	PUB_KEY_MOD	Public Key (Modulus), for Software Authentication
0x100	4	PUB_KEY_EXP	Public Key (Exponent), for Software Authentication
0x104	1	BOOT_SRC	Selects the boot method: 0h = SPI (Slave) port 1h = SPI (Master) port, eg. SST Flash Memory All other codes are Reserved
0x105	1	UART_DLL	UART Divisor (LSW), for debug messaging. Setting UART_DLL and UART_DLH to 0xFF will disable debug messaging.
0x106	1	UART_DLH	UART Divisor (MSW), for debug messaging. Setting UART_DLL and UART_DLH to 0xFF will disable debug messaging.
0x107	1	Reserved	
0x108	4	CCM_CONTROL	General Control Register - see Table 16
0x10C	4	CCM_GPIO_SEL	Port Select Register - see Table 18
0x110	4	CCM_CLK_CTRL1	Clock Control 1 Register - see Table 19
0x114	4	CCM_CLK_CTRL2	Clock Control 2 Register - see Table 20
0x118	4	CCM_CLK_CTRL3	Clock Control 3 Register - see Table 21
0x11C	4	CCM_PLL_LOCK_CTRL	PLL Lock Detect Control Register - see Table 22
0x120	4	CCM_IOCTRL1	I/O Control 1 Register - see Table 33
0x124	4	CCM_IOCTRL2	I/O Control 2 Register - see Table 34
0x128	4	CCM_IOCTRL3	I/O Control 3 Register - see Table 35
0x12C	4	CCM_IOCTRL4	I/O Control 4 Register - see Table 36
0x130	4	CCM_IOCTRL5	I/O Control 5 Register - see Table 37
0x134	4	CCM_IOCTRL6	I/O Control 6 Register - see Table 38
0x138	4	CCM_IOCTRL7	I/O Control 7 Register - see Table 39
0x13C	4	CCM_IOCTRL8	I/O Control 8 Register - see Table 40
0x140	4	CCM_IOCTRL9	I/O Control 9 Register - see Table 41Table 41
0x144	4	CCM_IOCTRL10	I/O Control 10 Register - see Table 42
0x148	4	CCM_IOCTRL11	I/O Control 11 Register - see Table 43
0x14C to 0x18C	68	Reserved	
0x190	4	SPI_SCLKDIV	SPI Clock Division Register - see Table 123 Selects the SCLK frequency for SPI (Master) boot-up. The maximum clock rate of 40MHz must not be exceeded.
0x194 to 0x1A3	16	Reserved	
0x1A4	4	CRC	CRC value, calculated over byte addresses 0x000 to 0x1A3.
0x1A8	80	(undefined)	Available for custom use. This region is not used by the boot process, and is not protected by the CRC.

Table 64 Fuse Memory Definition

CYCLIC REDUNDANCY CHECK (CRC)

The Custom fuse memory is protected by a CRC, which is calculated using the IEEE 802.3 polynomial over byte addresses 0x000 to 0x1A3.

An error condition will be detected during start-up if the Custom fuse CRC value does not match the CRC value calculated by the WM0011.

SOFTWARE AUTHENTICATION

Software Code authentication is implemented, to ensure that the WM0011 will only execute code that has been supplied by an approved vendor.

All Software Code downloads must include an authentication signature. The signature (SHA-256) is contained within the Software Header download. The WM0011 will check the downloaded signature against an internally-generated signature, and will only execute the code if the signatures match.

As an option, the authentication signature may be encrypted. In this case, the code will only be executed if the correct Public Key data is configured in the Custom fuse memory. Secure authentication ensures that the WM0011 will only execute code that has been supplied by an approved vendor with the correct Private Key required to encrypt the signature.

Note that PKA-encryption of the image signature can only be supported on custom-programmed devices. This is not supported on un-programmed devices.

If the JTAG function has been disabled (custom-programmed devices only), then the WM0011 will only execute code that includes a PKA-encrypted (secure) signature.

The supported options for software authentication are shown in Table 65.

DEVICE TYPE	JTAG CONFIGURATION	UNENCRYPTED SIGNATURE	ENCRYPTED SIGNATURE
Custom	Disabled		✓
Custom	Enabled	✓	✓
Un-programmed	Enabled	✓	

Table 65 Software Authentication support

GENERAL PURPOSE INPUT/OUTPUT (GPIO) MODULE

BASE ADDRESS 0xF004_0000

GPIO FEATURES

- 17 configurable GPIO pins (multiplexed with other functions)
- Configurable Interrupt logic using edge or level detection
- Individual Mask control for each GPIO
- Interrupt output (to IRQC module)

The GPIO module supports 17 configurable GPIO pins. These can be configured as Input or Output. Any pins configured as Input may be selected as interrupt sources for the GPIO module. The interrupt sources can be edge or level sensitive; the active polarity is also selectable. A priority-encoded readback is available on the occurrence of a GPIO interrupt.

INPUT / OUTPUT CONTROL

Each bit may serve as either a programmed input or programmed output in this mode.

The GPIO_DIR register configures each bit as an input or an output. The system powers up with each input configured as an input (the register bits are cleared). By setting the associated bit in GPIO_DIR, the bit is controlled as an output.

The logic level each input is observable after de-metastability logic and inversion logic by reading GPIO_IN. When input inversion is selected (using GPIO_INV), value read from GPIO_IN will be the opposite logic level from that appearing at the external pin.

When any GPIO is configured as an output, the logic level at the pad will be controlled by the respective GPIO OUT register bit. Note that GPIO output is not affected by the GPIO INV bits.

LEVEL/EDGE INTERRUPT CONTROL

The interrupt inputs are configured as level sensitive or edge sensitive using the GPIO_EDGE1 and GPIO_EDGE0 registers.

In Level-sensitive configuration, the interrupt is asserted when the applicable logic level is detected. Active High is selected when GPIO_INV=0; Active Low is selected when GPIO_INV=1. Note that the interrupt cannot be cleared whilst the Active logic level is present (and unmasked) on the respective GPIO

In Edge-sensitive configuration, the interrupt is asserted when the applicable logic transition is detected. This may be the rising (leading) edge, falling (trailing) edge, or both edges. The active edge(s) will cause the respective GPIO_INT_STS bit to be set. Note that the active edge(s) are inverted when GPIO_INV=1.

In each case, the interrupt status bits in the GPIO_INT_STS register are latching bits, and are only cleared when a '1' is written to the respective bit in the GPIO_INT_CLR register. To observe successive interrupts, the GPIO_INT_STS bit must be cleared before another interrupt event can be registered.

To avoid false interrupts, the input signals must be in their respective de-asserted logic states when the interrupts are enabled. Note that the input inversion must be considered when determining the de-asserted logic state.

When a rising-edge interrupt is enabled and unmasked, the corresponding interrupt status will be asserted if the relevant input signal is logic 1. Similarly, when a falling-edge interrupt is enabled and unmasked, the corresponding interrupt status will be asserted if the relevant input is logic 0. In other words, the behaviour is effectively level-triggered at the point when the interrupt is initially configured.

If necessary, the interrupt service routines should take account of the behaviour described above, and should clear the respective interrupt(s) immediately after they are enabled, before they are unmasked.

The control sequence below is recommended to ensure false interrupts are avoided.

- Mask the interrupt using GPIOn_INT_MSK=1
- Configure the GPIO interrupt registers (including GPIOn_INT_ENA=1)
- Clear the interrupt using GPIOn_INT_CLR=1
- Unmask the interrupt using GPIOn_INT_MSK=0

GPIO INTERRUPTS

An input is considered part of the interrupt system when the associated enable bit in GPIO_INT_CTRL is set. The register is cleared at reset. Consequently, no input bits are considered interrupt sources at reset.

The interrupt inputs are configured as level sensitive or edge sensitive using the GPIO_EDGE1 and GPIO_EDGE0 registers.

Each GPIO may be individually masked from the interrupt structure by setting the corresponding GPIO_INT_MSK bit. The Mask bits are set by default, so the interrupt structure is disabled until the corresponding bit is enabled (using GPIO_INT_CTRL) and unmasked (using GPIO_INT_MSK).

When a valid level or edge is detected on an interrupt input, the corresponding GPIO_INT_STS bit is set (provided that the corresponding input is enabled and unmasked). These bits are latching bits, and are only cleared when a '1' is written to the respective bit in the GPIO_INT_CLR register.

The GPIO_INT_STS register provides readback of all the enabled and unmasked GPIO interrupts. The GPIO_INT_VECT register provides a readback of the single, highest priority unmasked & asserted GPIO interrupt. Highest priority is implemented as the interrupt in the lowest-numbered bit position of the GPIO_INT_STS register. For example, the GPIO 4 Interrupt (in bit [4]), is given higher priority than the GPIO5 Interrupt (in bit 5).

When one or more bit in the GPIO_INT_STS register is set, the GPIO Interrupt input to the IRQC Module is asserted. Note that the GPIO Interrupt input to the IRQC Module is Active Low.

The GPIO interrupt control registers are illustrated in Figure 31.

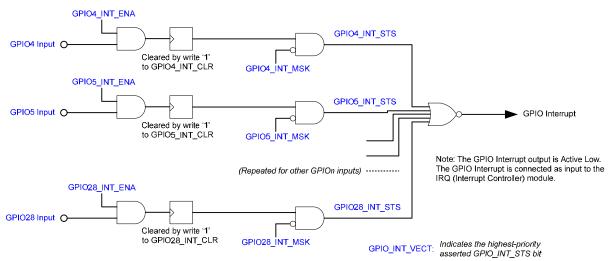


Figure 31 GPIO Interrupts

GPIO REGISTER MAP

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	GPIO_OUT	GPIO Output	0x0000_0000
Base + 0x04	GPIO_IN	GPIO Input	Undefined
Base + 0x08	GPIO_DIR	GPIO Direction	0x0000_0000
Base + 0x0C	GPIO_INV	GPIO Inversion	0x0000_0000
Base + 0x10	GPIO_EDGE0	GPIO Edge Detection 0	0x0000_0000
Base + 0x14	GPIO_EDGE1	GPIO Edge Detection 1	0x0000_0000
Base + 0x18	GPIO_INT_CTRL	GPIO Interrupt Control	0x0000_0000
Base + 0x1C	GPIO_INT_CLR	GPIO Interrupt Clear	0x0000_0000
Base + 0x20	GPIO_INT_MSK	GPIO Interrupt Mask	0xFFFF_FFFF
Base + 0x24	GPIO_INT_VECT	GPIO Interrupt Vector	0x0000_0000
Base + 0x28	GPIO_INT_STS	GPIO Interrupt Status Register	0x0000_0000

Table 66 GPIO Register Definition

GPIO_OUT – GPIO OUTPUT REGISTER

											G	PIO			O_C UTU			TEI	R														
Addre	ss =	0xF	004	4_0	000																				De	fau	lt	val	ue	= 0×	(000	0_0	000
31 30	29	28	27	26	25	24	23	3 22	21	20	19	18	17	16	3 15	14	,	13	12	11	10		9	8	7	6		5	4	3	2	1	0
BITS			-	IEL				1	S/W CES	s	RES VAL				•			•			DE		FIE		ION			•					
31:29			Re	eser	ved						0x	0																					
28		G	PIC	D28 _.	_OU	Т		F	RW		0x	0	Со	nt	rols t	he Io	ogi	ic le	eve	l of (SPIC)2	8 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
27:24			Re	ser	ved						0x	0																					
23		G	PIC)23	_OU	Т		F	RW		0x	0	Co	ntı	rols t	he Io	ogi	ic le	eve	l of (SPIC)2	3 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
22	GPIO22_OUT RW 0x0 Controls the logic level of GPIO22 when configured as output Reserved 0x0																																
21:20			Re	eser	served 0x0																												
19	GPIO19_OUT RW 0x0 Controls the logic level of GPIO19 when configured as output																																
18		G	PIC	D18	_OU	Т		F	RW		0x	0	Со	nt	rols t	he Io	ogi	ic le	eve	l of (SPIC	21	8 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
17		G	PIC	D17 _.	_OU	Т		F	RW		0x	0	Со	nt	rols t	he Io	ogi	ic le	eve	l of (SPIC	21	7 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
16:15			Re	ser	ved						0x	0																					
14		G	PIC	D14 _.	_OU	Т		F	RW		0x	0	Со	nt	rols t	he Io	ogi	ic le	eve	l of (SPIC	21	4 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
13		G	PIC	D13 _.	_OU	Т		F	RW		0x	0	Со	ntı	rols t	he Io	ogi	ic le	eve	l of (SPIC	21	3 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
12		G	PIC	D12	_OU	Т		F	RW		0x	0	Co	ntı	rols t	he Io	ogi	ic le	eve	l of (SPIC	21	2 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
11		G	PIC	D11 _.	_OU	Т		F	RW		0x	0	Со	nt	rols t	he Io	ogi	ic le	eve	l of (SPIC	21	1 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
10		G	PIC	D10	_OU	Т		F	RW		0x	0	Со	ntı	rols t	he Io	ogi	ic le	eve	l of (SPIC	21	0 w	her	n co	nfigu	ur	ed a	as o	utpu	ıt		
9		(ЭΡΙ	O9_	_OU1	Γ		F	RW		0x	0	Co	ntı	rols t	he lo	ogi	ic le	eve	l of (SPIC)9	wh	en	con	figur	re	d as	ou	tput			
8		(3PI	O8_	_OU1	Γ		F	RW		0x	0	Со	ntı	rols t	he Ic	ogi	ic le	eve	of (SPIC	28	wh	en	con	figur	re	d as	ou	tput			
7		(3PI	07_	_OU1	Γ		F	RW		0x	0	Со	ntı	rols t	he lo	ogi	ic le	eve	l of (SPIC)7	wh	en	con	figur	re	d as	ou	tput			
6		(3PI	O6_	_OU1	Γ		F	RW		0x	0	Со	ntı	rols t	he lo	ogi	ic le	eve	of (SPIC	26	wh	en	con	figur	re	d as	ou	tput			
5		(3PI	O5_	_OU1	Γ		F	RW		0x	0	Со	ntı	rols t	he Ic	ogi	ic le	eve	of (SPIC)5	wh	en	con	figur	re	d as	ou	tput			
4		(3PI	04_	_OU1	Γ		F	RW		0x	0	Со	ntı	rols t	he Ic	ogi	ic le	eve	of (SPIC)4	wh	en	con	figur	re	d as	ou	tput			
3:0			Re	ser	ved						0x	0																					

Table 67 GPIO_OUT Register

GPIO_IN - GPIO INPUT REGISTER

																		PIC																					
٨؞١	4		٥٧٢			00	0.4								GP	IO IN	۱P	TU	RI	EGIS	ST	ER									· • • •	.14) v (100		000
		ss =						1													T	1		T				1			T			lue				<u></u> u	000
31	30	29	28	2	7 2	26	25	2	24	23	22	21	2	1	9 18	17	1	6	15	14	1	3	12	1	1	10	9)	8	7	6		5	4	3		2	1	0
BI	rs				FIE NA							S/W			ESET ALUE											DE			LD IPT	101	1								
31:	29			R	ese	erv	ed								0x0																								
28	3			GI	PIO	28	_IN	l				RO			0x0					the l	_											_							
27:	24			R	ese	erv	ed								0x0																								
23	3			GI	PIO	23	_IN	l				RO			0x0					the I																			
22	2			GI	PIO	22	_IN					RO			0x0					the l																			ack
21:	20			R	ese	erv	ed								0x0																								
19	9	GPIO19_IN GPIO18_IN										RO			0x0					the le																			
18	3			GI	PIO	18	_IN	l				RO			0x0					the l																			
17	is after de-metastability logic and GPIO_INV inversion (if applicable 17 GPIO17_IN RO 0x0 Indicates the logic level of GPIO17 when configured as input. Read is after de-metastability logic and GPIO_INV inversion (if applicable																																						
16:	15			R	ese	erv	ed								0x0																								
14	4			GI	PIO	14	_IN	l				RO			0x0					the le																			ack
1:	3			GI	PIO	13	_IN	I				RO			0x0					the I	_											_							ack
12	2			GI	PIO	12	_IN					RO			0x0					the l																			ack
1	1			GI	PIO)11	_IN					RO			0x0	In	dio	cate	es 1		og	ic l	eve	el o	f G	PIC)1	1 w	vhe	n c	onfi	gu	red	as	inpı	ut.	Re	adb	ack
10)			GI	PIO	10	_IN					RO			0x0	In	dio	cate	es 1		og	ic l	eve	el o	f G	PIC)1	0 w	vhe	n c	onfi	gu	red	as	inpı	ut.	Re	adb	ack
9				G	PIC	09_	_IN					RO			0x0	In	dio	cate	es t	the l	og	ic l	eve	el o	f G	PIC)9	wł	nen	COI	nfig	ure	ed a	as ir	nput	t. F	Rea	dba	ıck
8				G	PIC	08_	_IN					RO			0x0					the l																			
7				G	PIC	D7_	_IN					RO			0x0					the l	_										_				•				
6				G	PIC	06_	_IN					RO			0x0					the l																			
5				G	PIC)5_	_IN					RO			0x0					the l																			
4				G	PIC	04_	_IN					RO			0x0	In	dio	cate	es 1	the l	og	ic l	eve	el o	f G	PIC)4	wł	nen	COI	nfig	ure	ed a	as ir	nput	i. F	Rea	dba	ıck
3:	0			R	ese	erv	ed								0x0																								

Table 68 GPIO_IN Register

GPIO_DIR - GPIO DIRECTION REGISTER

			GPIO D	GPIO_DIR DIRECTION REGISTER														
Addres	ss = 0xF004_0008			Default value = 0x0000_0000														
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION														
31:29	Reserved		0x0															
28	GPIO28_DIR	RW	0x0	Selects GPIO28 direction. 0 = input. 1 = output.														
27:24	Reserved		0x0															
23	GPIO23_DIR	RW	0x0	Selects GPIO23 direction. 0 = input. 1 = output.														
22	GPIO22_DIR	RW 0x0 Selects GPIO22 direction. 0 = input. 1 = output. 0x0																
21:20	Reserved		0x0	0x0														
19	GPIO19_DIR	RW	0x0	0x0 Selects GPIO19 direction. 0 = input. 1 = output.														
18	GPIO18_DIR	RW	0x0	Selects GPIO18 direction. 0 = input. 1 = output.														
17	GPIO17_DIR	RW	0x0	Selects GPIO17 direction. 0 = input. 1 = output.														
16:15	Reserved		0x0															
14	GPIO14_DIR	RW	0x0	Selects GPIO14 direction. 0 = input. 1 = output.														
13	GPIO13_DIR	RW	0x0	Selects GPIO13 direction. 0 = input. 1 = output.														
12	GPIO12_DIR	RW	0x0	Selects GPIO12 direction. 0 = input. 1 = output.														
11	GPIO11_DIR	RW	0x0	Selects GPIO11 direction. 0 = input. 1 = output.														
10	GPIO10_DIR	RW	0x0	Selects GPIO10 direction. 0 = input. 1 = output.														
9	GPIO9_DIR	RW	0x0	Selects GPIO9 direction. 0 = input. 1 = output.														
8	GPIO8_DIR	RW	0x0	Selects GPIO8 direction. 0 = input. 1 = output.														
7	GPIO7_DIR	RW	0x0	Selects GPIO7 direction. 0 = input. 1 = output.														
6	GPIO6_DIR	RW	0x0	Selects GPIO6 direction. 0 = input. 1 = output.														
5	GPIO5_DIR	RW	0x0	Selects GPIO5 direction. 0 = input. 1 = output.														
4	GPIO4_DIR	RW	0x0	Selects GPIO4 direction. 0 = input. 1 = output.														
3:0	Reserved		0x0															

Table 69 GPIO_DIR Register

GPIO_INV - GPIO INVERSION REGISTER

			GPIO II	GPIO_INV NVERSION REGISTER											
Addres	ss = 0xF004_000C			Default value = 0x0000_0000											
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
BITS	NAME ACCESS VALUE DESCRIPTION														
31:29															
28	GPIO28_INV	RW	0x0	Selects GPIO28 input inversion. 0 = no inversion. 1 = inversion.											
27:24	Reserved		0x0												
23	GPIO23_INV	RW	0x0	Selects GPIO23 input inversion. 0 = no inversion. 1 = inversion.											
22	GPIO22_INV	RW	0x0	Selects GPIO22 input inversion. 0 = no inversion. 1 = inversion.											
21:20	Reserved		0x0												
19	GPIO19_INV	RW	0x0	Selects GPIO19 input inversion. 0 = no inversion. 1 = inversion.											
18	GPIO18_INV	RW	0x0	Selects GPIO18 input inversion. 0 = no inversion. 1 = inversion.											

			GPIO II	GPIO_INV INVERSION REGISTER											
Addres	ss = 0xF004_000C			Default value = 0x0000_0000											
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
BITS	FIELD	S/W	RESET												
	NAME	ACCESS	VALUE	DESCRIPTION											
17	GPIO17_INV	RW	0x0	Selects GPIO17 input inversion. 0 = no inversion. 1 = inversion.											
16:15															
14	GPIO14_INV RW 0x0 Selects GPIO14 input inversion. 0 = no inversion. 1 = inversion.														
13	GPIO13_INV RW 0x0 Selects GPIO13 input inversion. 0 = no inversion. 1 = inversion.														
12	GPIO12_INV	RW	0x0	Selects GPIO12 input inversion. 0 = no inversion. 1 = inversion.											
11	GPIO11_INV	RW	0x0	Selects GPIO11 input inversion. 0 = no inversion. 1 = inversion.											
10	GPIO10_INV	RW	0x0	Selects GPIO10 input inversion. 0 = no inversion. 1 = inversion.											
9	GPIO9_INV	RW	0x0	Selects GPIO9 input inversion. 0 = no inversion. 1 = inversion.											
8	GPIO8_INV	RW	0x0	Selects GPIO8 input inversion. 0 = no inversion. 1 = inversion.											
7	GPIO7_INV	RW	0x0	Selects GPIO7 input inversion. 0 = no inversion. 1 = inversion.											
6	GPIO6_INV	RW	0x0	Selects GPIO6 input inversion. 0 = no inversion. 1 = inversion.											
5	GPIO5_INV	RW	0x0	Selects GPIO5 input inversion. 0 = no inversion. 1 = inversion.											
4	GPIO4_INV	RW	0x0	Selects GPIO4 input inversion. 0 = no inversion. 1 = inversion.											
3:0	Reserved		0x0												

Table 70 GPIO_INV Register

EDGE DETECTION

The interrupt inputs are configured as level sensitive or edge sensitive using the GPIO_EDGE1 and GPIO_EDGE0 registers, as described in Table 71.

GPIO_EDGE1	GPIO_EDGE0	DESCRIPTION
0	0	Level Sensitive
0	1	Leading Edge
1	0	Trailing Edge
1	1	Dual Edge Interrupt

Table 71 GPIO Edge Detection Control

In Level-sensitive configuration, the interrupt is asserted when the applicable logic level is detected. Active High is selected when GPIO_INV=0; Active Low is selected when GPIO_INV=1. Note that the interrupt cannot be cleared whilst the Active logic level is present (and unmasked) on the respective GPIO.

In Edge-sensitive configuration, the interrupt is asserted when the applicable logic transition is detected. This may be the rising (leading) edge, falling (trailing) edge, or both edges. The active edge(s) will cause the respective GPIO_INT_STS bit to be set. Note that the active edge(s) are inverted when GPIO_INV=1.

GPIO_EDGE0 - GPIO EDGE DETECTION 0 REGISTER

		G		PIO_E			GISTE	ĒR												
Addres	ss = 0xF004_0010											De	faul	lt ۱	/alue	9 =	0x	000	0_0	0000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15	5 14	13	12 1	1 1	10	9	8	7	6	5	5 4		3	2	1	0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE					ı	DES	FIE SCRI		ION			·					
31:29	Reserved		0x0																	
28	GPIO28_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt (dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
27:24	Reserved		0x0																	
23																n *l	ED	GE′	1	
22	GPIO22_EDGE0 RW 0x0 Selects Level or Edge interrupt detection, depending on *EDGE1 Reserved 0x0																			
21:20	Reserved 0x0																			
19	Reserved 0x0 GPIO19_EDGE0 RW 0x0 Selects Level or Edge interrupt detection, depending on *EDGE1																			
18	GPIO18_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt (dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
17	GPIO17_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt (dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
16:15	Reserved		0x0																	
14	GPIO14_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt (dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
13	GPIO13_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt d	dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
12	GPIO12_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt (dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
11	GPIO11_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt d	dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
10	GPIO10_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt d	dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
9	GPIO9_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt d	dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
8	GPIO8_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt (dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
7	GPIO7_EDGE0	RW	0x0	Selects L	evel o	or Ed	lge int	terru	ıpt (dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
6	GPIO6_EDGE0	RW	0x0	Selects L	evel	or Ed	lge int	terru	ıpt o	dete	ctio	n, d	eper	ndi	ng o	n *I	ED	GE′	1	
5	GPIO5_EDGE0	RW	0x0	Selects L	evel	or Ed	lge int	terru	ıpt o	dete	ctio	n, d	eper	ndi	ng o	n *I	ED	GE′	1	
4	GPIO4_EDGE0	RW	0x0	Selects L	evel	or Ed	lge int	terru	ıpt o	dete	ctio	n, d	eper	ndi	ng o	n *l	ED	GE′	1	
3:0	Reserved		0x0																	

Table 72 GPIO_EDGE0 Register

GPIO_EDGE1 - GPIO EDGE DETECTION 1 REGISTER

		Gi		SPIO_EDGE1 DETECTION 1 REGISTER											
Addre	ss = 0xF004_0014			Default value = 0x0000_0000											
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
BITS	S FIELD S/W RESET FIELD NAME ACCESS VALUE DESCRIPTION														
31:29	Reserved		0x0												
28	GPIO28_EDGE1	RW	0x0	Selects Level or Edge interrupt detection, depending on *EDGE0											
27:24	Reserved		0x0												
23	GPIO23_EDGE1	RW	0x0	Selects Level or Edge interrupt detection, depending on *EDGE0											
22	GPIO22_EDGE1	RW	0x0	Selects Level or Edge interrupt detection, depending on *EDGE0											
21:20	Reserved		0x0												
19	GPIO19_EDGE1	RW	0x0	Selects Level or Edge interrupt detection, depending on *EDGE0											
18	GPIO18_EDGE1	RW	0x0	Selects Level or Edge interrupt detection, depending on *EDGE0											

												GI	PIO E				_EI				GIS	TER	!											
Add	dres	ss =	0xF	00	4_00	014	4																			De	faul	t va	alue	= 0	x00	00_	00	00
31	30	29	28	27	26	5 2	25	24	23	22	21	20	19	18	17	16	3 15	5 1	4	13	12	11	10	9	8	7	6	5	4	3	2	1		0
BIT	S				FIEL NAM	_				_	S/W CES	s		SET									DE		ELD				•					
17	'	NAME ACCESS VALUE DESCRIPTION GPI017_EDGE1 RW 0x0 Selects Level or Edge interrupt detection, depending on *EDGE0 Reserved 0x0																																
16:1	15	NAME ACCESS VALUE DESCRIPTION GPIO17_EDGE1 RW 0x0 Selects Level or Edge interrupt detection, depending on *EDGE0 Reserved 0x0 VALUE Ox0																																
14			GF	PIO	14_I	ED	GE	1		F	RW		0>	0	Se	ele	cts L	eve	l o	r Ed	dge	inter	rupt	det	ectio	n, d	eper	ndin	g or	ı *El	OGI	Ξ0		
13	}		GF	PIO	13_I	ED	GE	1		F	RW		0>	(0	Se	ele	cts L	.eve	l oı	r Ec	dge	inter	rupt	dete	ectio	n, d	eper	ndin	ıg or	ı *El	OGI	Ξ0		
12			GF	PIO	12_I	ED	GE	1		F	RW		0>	(0	Se	ele	cts L	.eve	l oı	r Ec	dge	inter	rupt	dete	ectio	n, d	eper	ndin	ıg or	ı *El	OGI	Ξ0		
11			GF	PIO	11_	ED	GE	1		F	RW		0>	0	Se	ele	cts L	eve	l o	r Ed	dge	inter	rupt	det	ectio	n, d	eper	ndin	g or	ı *El	OGI	Ξ0		
10	1		GF	PIO	10_I	ED	GE	1		F	RW		0>	0	Se	ele	cts L	eve	Ιoι	r Ed	dge	inter	rupt	det	ectio	n, d	eper	ndin	ıg or	ı *El	OGI	Ξ0		
9			GI	PIC)9_E	DO	GE′	1		F	RW		0>	(0	Se	ele	cts L	eve	Ιoι	r Ed	dge	inter	rupt	det	ectio	n, d	eper	ndin	ıg or	ı *El	OGI	Ξ0		
8			GI	PIC)8_E	DO	GE′	1		F	RW		0>	0	Se	ele	cts L	eve	Ιoι	r Ed	dge	inter	rupt	dete	ectio	n, d	eper	ndin	ıg or	ı *El	OGI	Ξ0		
7			GI	210)7_E	DO	GE′	1		F	RW		0>	(0	Se	ele	cts L	eve	Ιοι	r Ec	dge	inter	rupt	dete	ectio	n, d	eper	ndin	ıg or	ı *El	OGI	Ξ0		
6			GI	PIC)6_E	DO	GE′	1		F	RW		0>	(0	Se	ele	cts L	eve	l oı	r Ec	dge	inter	rupt	dete	ectio	n, d	eper	ndin	ıg or	*El	OGI	Ξ0		
5			GI	210)5_E	DO	GE′	1		F	RW		0>	(0	Se	ele	cts L	eve	l o	r Ec	dge	inter	rupt	dete	ectio	n, d	eper	ndin	g or	ı *El	OGI	Ξ0		
4			GI	PIC)4_E	DO	GE′	1		F	RW		0>	(0	Se	ele	cts L	eve	Ιοι	r Ec	dge	inter	rupt	dete	ectio	n, d	eper	ndin	ıg or	ı *El	OGI	Ξ0		
3:0)			R	eser	ve	d						0>	(0																				

Table 73 GPIO_EDGE1 Register

GPIO_INT_CTRL - GPIO INTERRUPT CONTROL REGISTER

											GI	210	IN			IO_ UP1	•	_				GI	STE	R														
Addres	ss =	0xF	00	4_00	18	}																						D)ef	au	lt va	alι	ıe	= 0	x0	000	_00	000
31 30	29	28	27	26	2	25	24	23	22	21	2	0	19	18	1	7 1	6	15	14	1	13	12	11	10)	9	8	7	,	6	5		4	3		2	1	0
BITS		F	IEI	D N	Αľ	ИE			AC	S/W CE		1 -		ET .UE									F	ELI	DΙ	DES	SCF	RIP	TI	ON								
31:29			Re	eser	/ec	t							0x	0																								
28		GPIO28_INT_ENA RW 0x0 Enables GPIO28 as an input to the GPIO Interrupt logic Reserved 0x0 GPIO23_INT_ENA RW 0x0 Enables GPIO23 as an input to the GPIO Interrupt logic																																				
27:24	Reserved 0x0 GPIO23_INT_ENA RW 0x0 Enables GPIO23 as an input to the GPIO Interrupt logic																																					
23	Reserved 0x0																																					
22	Reserved 0x0 GPIO23_INT_ENA RW 0x0 Enables GPIO23 as an input to the GPIO Interrupt logic GPIO22_INT_ENA RW 0x0 Enables GPIO22 as an input to the GPIO Interrupt logic																																					
21:20			Re	eser	/ec	t							0x	0																								
19		GP	101	9_IN	IT_	_EN	NΑ		F	RW			0x	0		Ena	ble	es G	PIO	19	9 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
18		GP	101	8_IN	IT_	_EN	NΑ		F	RW			0x	0		Ena	ble	es G	PIO	18	8 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
17		GP	101	7_IN	IT_	_EN	NΑ		F	RW			0x	0		Ena	ble	es G	PIO	17	7 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
16:15			Re	eser	/ec	t							0x	0																								
14		GP	101	4_IN	IT_	_EN	NΑ		F	RW			0x	0		Ena	ble	es G	PIO	14	4 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
13		GP	101	3_IN	IT_	_EN	NΑ		F	RW			0x	0		Ena	ble	es G	PIO	1	3 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
12		GP	101	2_IN	IT_	_EN	NΑ		F	RW			0x	0		Ena	ble	es G	PIO	12	2 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
11		GP	101	1_IN	IT_	_EN	NΑ		F	₹W			0x	0		Ena	ble	es G	PIO	11	1 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
10		GP	101	0_IN	IT_	E	۱A		F	₹W			0x	0		Ena	ble	es G	PIO	1(0 as	ar	inp	ut t	o t	he	GΡ	Ю	Int	err	upt	lo	gic					
9		GF	PIOS)_IN	T_	ΕN	Α		F	₹W			0x	0		Ena	ble	es G	PIO	9	as a	an i	inpu	t to	th	e G	PIC) Ir	nte	rru	ot Ic	ogi	ic					
8		GF	PIO	3_IN	T_	ΕN	Α		F	RW			0x	0		Ena	ble	es G	PIO	8	as a	an i	inpι	t to	th	e G	PIG) Ir	nte	rru	ot Ic	ogi	ic					
7		GF	Ol	7_IN	T_	ΕÑ	Α		F	RW			0x	0		Ena	ble	es G	PIO	7	as a	an i	npu	t to	th	e G	PIG) Ir	nte	rru	ot Ic	ogi	ic					
6		GF	PIO	3_IN	T_	ΕÑ	Α		F	RW			0x	0		Ena	ble	es G	PIO	6	as a	an i	npu	t to	th	e G	PIG) Ir	nte	rru	ot Ic	ogi	ic					

										(GPIC	O IN			_	_	CTI		EGIS	STE	R										
A	Address = 0xF004_0018 Default value															lue	= 0>	(000	0_0	000											
31	30	0 29 28 27 26 25 24 23 22 21 20 19 18 17 16															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	TS		F	IEL	D N	AME				S/W CES		RES VAL								FII	ELD	DES	SCR	IPTI	ON						
	5		GP	105	_INT	[_EN	NΑ		F	RW		0x	:0	Er	able	es G	PIO	5 as	an i	npu	to t	he G	PIC	Inte	errup	t log	gic				
	4		GP	104	_INT	_EN	NΑ		F	RW		0x	:0	Er	able	es G	PIO	4 as	an i	npu	to t	he G	PIC	Inte	errup	t log	gic				
3	:0			Re	serv	ed						0x	:0																		

Table 74 GPIO_INT_CTRL Register

GPIO_INT_CLR - GPIO INTERRUPT CLEAR REGISTER

		G		PIO_INT_CLR RRUPT CLEAR REGISTER
Addres	ss = 0xF004_001C			Default value = 0x0000_0000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31:29	Reserved		0x0	
28	GPIO28_INT_CLR	WO	0x0	Write '1' to clear GPIO28 interrupt (GPIO_INT28_STS)
27:24	Reserved		0x0	
23	GPIO23_INT_CLR	WO	0x0	Write '1' to clear GPIO23 interrupt (GPIO_INT23_STS)
22	GPIO22_INT_CLR	WO	0x0	Write '1' to clear GPIO22 interrupt (GPIO_INT22_STS)
21:20	Reserved		0x0	
19	GPIO19_INT_CLR	WO	0x0	Write '1' to clear GPIO19 interrupt (GPIO19_INT_STS)
18	GPIO18_INT_CLR	WO	0x0	Write '1' to clear GPIO18 interrupt (GPIO18_INT_STS)
17	GPIO17_INT_CLR	WO	0x0	Write '1' to clear GPIO17 interrupt (GPIO17_INT_STS)
16:15	Reserved		0x0	
14	GPIO14_INT_CLR	WO	0x0	Write '1' to clear GPIO14 interrupt (GPIO14_INT_STS)
13	GPIO13_INT_CLR	WO	0x0	Write '1' to clear GPIO13 interrupt (GPIO13_INT_STS)
12	GPIO12_INT_CLR	WO	0x0	Write '1' to clear GPIO12 interrupt (GPIO12_INT_STS)
11	GPIO11_INT_CLR	WO	0x0	Write '1' to clear GPIO11 interrupt (GPIO11_INT_STS)
10	GPIO10_INT_CLR	WO	0x0	Write '1' to clear GPIO10 interrupt (GPIO10_INT_STS)
9	GPIO9_INT_CLR	WO	0x0	Write '1' to clear GPIO9 interrupt (GPIO9_INT_STS)
8	GPIO8_INT_CLR	WO	0x0	Write '1' to clear GPIO8 interrupt (GPIO8_INT_STS)
7	GPIO7_INT_CLR	WO	0x0	Write '1' to clear GPIO7 interrupt (GPIO7_INT_STS)
6	GPIO6_INT_CLR	WO	0x0	Write '1' to clear GPIO6 interrupt (GPIO6_INT_STS)
5	GPIO5_INT_CLR	WO	0x0	Write '1' to clear GPIO5 interrupt (GPIO5_INT_STS)
4	GPIO4_INT_CLR	WO	0x0	Write '1' to clear GPIO4 interrupt (GPIO4_INT_STS)
3:0	Reserved		0x0	

Table 75 GPIO_INT_CLR Register

GPIO_INT_MSK - GPIO INTERRUPT MASK REGISTER

		G		PIO_INT_MSK
Addres	ss = 0xF004_0020			Default value = 0xFFFF_FFFF
31 30	29 28 27 26 25 24 23			17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
вітѕ	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31:29	Reserved		0x7	
28	GPIO28_INT_MSK	RW	0x1	Selects whether GPIO28 interrupt is masked. A masked interrupt will not trigger the GPIO28_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
27:24	Reserved		0xF	
23	GPIO23_INT_MSK	RW	0x1	Selects whether GPIO23 interrupt is masked. A masked interrupt will not trigger the GPIO23_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
22	GPIO22_INT_MSK	RW	0x1	Selects whether GPIO22 interrupt is masked. A masked interrupt will not trigger the GPIO22_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
21:20	Reserved		0x3	
19	GPIO19_INT_MSK	RW	0x1	Selects whether GPIO19 interrupt is masked. A masked interrupt will not trigger the GPIO19_INT_STS bit, and is disabled from the GPIO_INT_VECT logic.
18	GPIO18_INT_MSK	RW	0x1	0 = Enabled; 1 = Masked. Selects whether GPIO18 interrupt is masked. A masked interrupt will not trigger the GPIO18_INT_STS bit, and is disabled from the GPIO_INT_VECT logic.
17	GPIO17_INT_MSK	RW	0x1	0 = Enabled; 1 = Masked. Selects whether GPIO17 interrupt is masked. A masked interrupt will not trigger the GPIO17_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
16:15	Reserved		0x3	
14	GPIO14_INT_MSK	RW	0x1	Selects whether GPIO14 interrupt is masked. A masked interrupt will not trigger the GPIO14_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
13	GPIO13_INT_MSK	RW	0x1	Selects whether GPIO13 interrupt is masked. A masked interrupt will not trigger the GPIO13_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
12	GPIO12_INT_MSK	RW	0x1	Selects whether GPIO12 interrupt is masked. A masked interrupt will not trigger the GPIO12_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
11	GPIO11_INT_MSK	RW	0x1	Selects whether GPIO11 interrupt is masked. A masked interrupt will not trigger the GPIO11_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.
10	GPIO10_INT_MSK	RW	0x1	Selects whether GPIO10 interrupt is masked. A masked interrupt will not trigger the GPIO10_INT_STS bit, and is disabled from the GPIO_INT_VECT logic. 0 = Enabled; 1 = Masked.

										G	PIO I)_IN JPT	_	•			STE	ER													
Addres	ss =	0xF	004	1_002	20																			D	efa	ault	Va	lue	= (0xF	FFF	_FF	FFF
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	1	3 1	2	11	10	9	8		7	6	5	4		3	2	1	0
BITS		F	IEL	D N	AME	•		_	/W CES	s	RES VAL									FI	ELD	D	ESC	RIF	PTI	ON		•					
9		GP	109	_INT	Γ_M	SK		F	RW		0x	:1	trio GF	ger PIO_	the INT_	GPI _VE	O C	9_IN T log	NT_ gic.	ST										terr	upt v	vill r	not
8	GPIO_INI_VECT logic. 0 = Enabled; 1 = Masked. Selects whether GPIO8 interrupt is masked. A masked interrupt will not trigger the GPIO8 INT_STS bit, and is disabled from the														not																		
7		GP	107	_INT	_M:	SK		F	RW		0x	:1	Se trig GF		wh the INT	ethe GPI _VE	er O	GPI 7_IN T log	O7 NT_ gic.	inte										terr	upt v	/ill r	not
6		GP	106	S_INT	Γ_M	SK		F	RW		0x	:1	Se trig GF	lects gger PIO_ Ena	wh the INT	ethe GPI _VE	er O	GPI 6_IN T log	O6 IT_ gic.	inte ST										terr	upt v	vill r	not
5		GP	105	5_INT	Γ_M	SK		F	RW		0x	:1	trio GF	lects ger PIO_ Ena	the INT_	GPI _VE	C	5_IN T log	NT_ gic.	ST										terr	upt v	/ill r	not
4		GP	104	-INT	Γ_M	SK		F	RW		0x	:1	triç GF	lects gger PIO_ Ena	the INT_	GPI _VE	O C	4_IN T log	NT_ gic.	ST										terr	upt v	vill r	not
3:0			Re	eserv	ed						0x	F																					

Table 76 GPIO_INT_MSK Register

GPIO_INT_VECT - GPIO INTERRUPT VECTOR REGISTER

											GP	IO IN	GI NTEF		_	_	VE(GIS	TER	ł.										
Ad	dres	ss =	0xF	004	_002	24																		De	faul	t va	lue	= 0	(000	0_00	00
31	30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 S FIELD NAME S/W ACCESS VALUE															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІТ	BITS FIELD NAME S/W RESET VALUE FIELD DESCRIPTION																														
31:	BITS FIELD NAME ACCESS VALUE FIELD DESCRIPTION 31.5 Reserved 0x000_																														
4:0	0		GP	10_1	INT_	_VE(СТ		F	RO		0xt	00	GF Hig bit rep hig 0x 0x	PIO_ghes pos presighes 00 = 04 = 05 =	INT ition ente t pri No GP	_ST fority of the d in ority	S regards in the Good	giste mple SPIC cod d the	er. emer D_IN	nted T_S ^r of GF	as t TS r PIO_	he ir egis	nterr ter. _VE	upt i The CT -	n the	e lov ie pi GP	west	-num y is	he nbere	

Table 77 GPIO_INT_VECT Register

GPIO_INT_STS - GPIO INTERRUPT STATUS REGISTER

		Gi		GPIO_INT_STS RRUPT STATUS REGISTER										
Addres	ss = 0xF004_0028			Default value = 0x0000_0000										
31 30	29 28 27 26 25 24 2	3 22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION										
31:29	Reserved		0x0											
28	GPIO28_INT_STS	GPIO28 Interrupt Status												
27:24	GPIO28_INT_STS RO 0x0 GPIO28 Interrupt Status Reserved 0x0 GPIO23_INT_STS RO 0x0 GPIO23 Interrupt Status													
23	Reserved 0x0 GPIO23_INT_STS RO 0x0 GPIO23 Interrupt Status													
22														
21:20	Reserved		0x0											
19	GPIO19_INT_STS	RO	0x0	GPIO19 Interrupt Status										
18	GPIO18_INT_STS	RO	0x0	GPIO18 Interrupt Status										
17	GPIO17_INT_STS	RO	0x0	GPIO17 Interrupt Status										
16:15	Reserved		0x0											
14	GPIO14_INT_STS	RO	0x0	GPIO14 Interrupt Status										
13	GPIO13_INT_STS	RO	0x0	GPIO13 Interrupt Status										
12	GPIO12_INT_STS	RO	0x0	GPIO12 Interrupt Status										
11	GPIO11_INT_STS	RO	0x0	GPIO11 Interrupt Status										
10	GPIO10_INT_STS	RO	0x0	GPIO10 Interrupt Status										
9	GPIO9_INT_STS	RO	0x0	GPIO9 Interrupt Status										
8	GPIO8_INT_STS	RO	0x0	GPIO8 Interrupt Status										
7	GPIO7_INT_STS	RO	0x0	GPIO7 Interrupt Status										
6	GPIO6_INT_STS	RO	0x0	GPIO6 Interrupt Status										
5	GPIO5_INT_STS	RO	0x0	GPIO5 Interrupt Status										
4	GPIO4_INT_STS	RO	0x0	GPIO4 Interrupt Status										
3:0	Reserved		0x0											

Table 78 GPIO_INT_STS Register

INTERRUPT CONTROLLER (IRQC) MODULE

BASE ADDRESS 0xF005_0000

INTERRUPT CONTROLLER (IRQC) FEATURES

- 10 interrupt inputs from peripheral modules, including cascaded GPIO input
- De-bounced input from the STANDBY pin
- Register control of the IRQ output pin
- 2 register-controlled software interrupts
- Configurable interrupt logic using edge or level detection
- · Individual Mask control for each interrupt
- Configurable FIRQ_N output to the Wake-Up FSM
- Configurable IRQ_N and FIRQ_N outputs to the Wake-Up FSM and HiFi EP[™] DSP Core

The IRQC module supports 11 inputs, comprising Interrupt signals from peripheral modules (eg. I2C Module), the cascaded input from the GPIO module, and also the de-bounced input from the STANDBY pin.

Any of the inputs may be selected as interrupt sources for the IRQC module, and used to generate the IRQ_N and FIRQ_N outputs to the HiFi EP^{TM} . A priority-encoded readback is available on the occurrence of an IRQ_N or FIRQ_N interrupt.

The FIRQ_N ('Fast Interrupt) signal is also an input to the CCM module, providing a configurable 'Wakeup' control signal.

Note that many of the peripheral module interrupt signals are also independently provided as direct inputs to the HiFi EP^TM .

The IRQC module provides software capability to generate user-defined interrupts to the HiFi EP^{TM} and also to directly control the \overline{IRQ} output pin logic level.

The inputs and outputs of the IRQC module are illustrated in Figure 15.

INPUT / OUTPUT CONTROL

Each signal described in the IRQC_DIR must be configured as an input or as an output. The software interrupts (bits [15:14] and the $\overline{\text{IRQ}}$ output (bit [0]) should be configured as outputs. All other bits should be configured as inputs.

The logic level each input is observable after de-metastability logic and inversion logic by reading IRQC_IN. When input inversion is selected (using IRQC_INV), value read from IRQC_IN will be the opposite logic level from the signal source.

In the case of output signals, these are controlled by the respective IRQC_OUT register bits. Note that these outputs are not affected by the IRQC_INV bits.

LEVEL/EDGE INTERRUPT CONTROL

The interrupt inputs are configured as level sensitive or edge sensitive using the IRQC_EDGE1 and IRQC_EDGE0 registers.

In Level-sensitive configuration, the interrupt is asserted when the applicable logic level is detected. Active High is selected when IRQC_INV=0; Active Low is selected when IRQC_INV=1. Note that the interrupt cannot be cleared whilst the Active logic level is present (and unmasked) on the respective IRQC input.

In Edge-sensitive configuration, the interrupt is asserted when the applicable logic transition is detected. This may be the rising (leading) edge, falling (trailing) edge, or both edges. The active edge(s) will cause the respective IRQC_IRQ_STS and/or IRQC_FIRQ_STS bit to be set (as controlled by the respective mask bits). Note that the active edge(s) are inverted when IRQC_INV=1.

In each case, the interrupt status bits in the IRQC_IRQ_STS and IRQC_FIRQ_STS registers are latching bits, and are only cleared when a '1' is written to the respective bit in the IRQC_INT_CLR register. To observe successive interrupts, the IRQC_IRQ_STS and/or IRQC_FIRQ_STS bits must be cleared before another interrupt event can be registered.

To avoid false interrupts, the input signals must be in their respective de-asserted logic states when the interrupts are enabled. Note that the input inversion must be considered when determining the de-asserted logic state.

When a rising-edge interrupt is enabled and unmasked, the corresponding interrupt status will be asserted if the relevant input signal is logic 1. Similarly, when a falling-edge interrupt is enabled and unmasked, the corresponding interrupt status will be asserted if the relevant input is logic 0. In other words, the behaviour is effectively level-triggered at the point when the interrupt is initially configured.

If necessary, the interrupt service routines should take account of the behaviour described above, and should clear the respective interrupt(s) immediately after they are enabled, before they are unmasked.

The control sequence below is recommended to ensure false interrupts are avoided.

- Mask the interrupt using the mask bits in IRQC_IRQ_MSK and IRQC_FIRQ_MSK
- Configure the IRQC interrupt registers (including the enable bits in IRQC_INT_CTRL)
- Clear the interrupt using the IRQC_INT_CLR register
- Unmask the interrupt using IRQC_IRQ_MSK and IRQC_FIRQ_MSK

IRQC MODULE INTERRUPTS

An input is considered part of the interrupt system when the associated enable bit in IRQC_INT_CTRL is set. The register is cleared at reset. Consequently, no input signals are considered interrupt sources at reset.

The interrupt inputs are configured as level sensitive or edge sensitive using the IRQC_EDGE1 and IRQC_EDGE0 registers.

Each input may be individually masked from the IRQ_N interrupt structure by setting the corresponding IRQC_IRQ_MSK bit. The Mask bits are set by default, so the IRQ_N interrupt structure is disabled until the corresponding bit is enabled (using IRQC_INT_CTRL) and unmasked (using IRQC_IRQ_MSK).

Each input may be individually masked from the FIRQ_N interrupt structure by setting the corresponding IRQC_FIRQ_MSK bit. The Mask bits are set by default, so the FIRQ_N interrupt structure is disabled until the corresponding bit is enabled (using IRQC_INT_CTRL) and unmasked (using IRQC_FIRQ_MSK).

When a valid level or edge is detected on an interrupt input, the corresponding IRQC_IRQ_STS and/or IRQC_FIRQ_STS bit is set (provided that the corresponding input is enabled and unmasked on the respective IRQ_N or FIRQ_N structure). The status (_STS) bits are latching bits, and are only cleared when a '1' is written to the respective bit in the IRQC_INT_CLR register.

The IRQC_IRQ_STS register provides readback of all the enabled and unmasked interrupts that are unmasked on IRQ_N structure. The IRQC_IRQ_VECT register provides a readback of the single, highest priority unmasked & asserted IRQ_N interrupt.

The IRQC_FIRQ_STS register provides readback of all the enabled and unmasked interrupts that are unmasked on FIRQ_N structure. The IRQC_FIRQ_VECT register provides a readback of the single, highest priority unmasked & asserted FIRQ_N interrupt.

Note that 'highest priority' is implemented as the interrupt in the lowest-numbered bit position of the IRQC_IRQ_STS or IRQC_FIRQ_STS register. For example, the GPIO Interrupt (in bit [1]), is given higher priority than the SPI Interrupt (in bit [2]).

When one or more bit in the IRQC_IRQ_STS register is set, the IRQ_N input to the HiFi EP^{TM} is asserted. When one or more bit in the IRQC_FIRQ_STS register is set, the FIRQ_N input to the HiFi EP^{TM} is asserted. The IRQ_N and FIRQ_N signals are Active Low; these signals are inverted (Active High) as inputs to the HiFi EP^{TM} Core.

The IRQC interrupt control registers are illustrated in Figure 32.

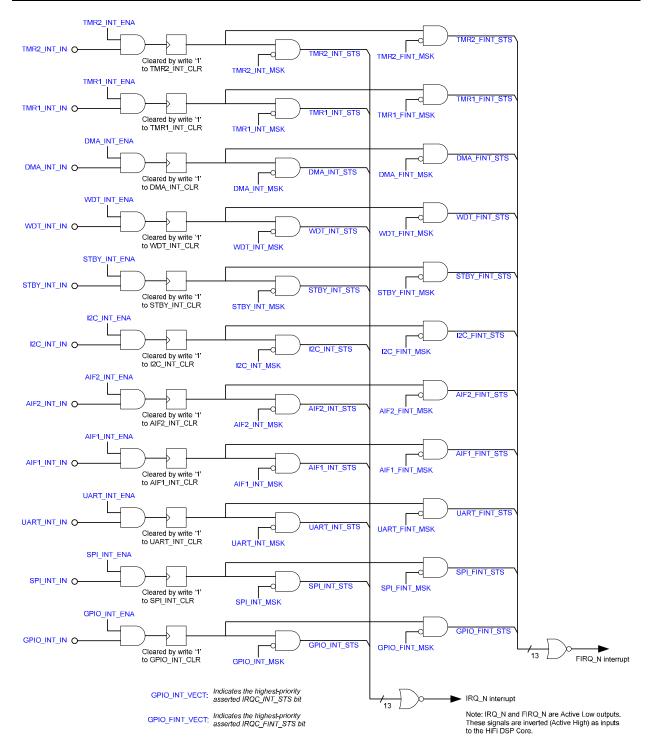


Figure 32 IRQC Interrupts

IRQC MODULE REGISTER MAP

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	IRQC_OUT	IRQ Output	0x0000_0000
Base + 0x04	IRQC_IN	IRQ Input	Undefined
Base + 0x08	IRQC_DIR	IRQ Direction	0x0000_0000
Base + 0x0C	IRQC_INV	IRQ Inversion	0x0000_0000
Base + 0x10	IRQC_EDGE0	IRQ Edge Detection 0	0x0000_0000
Base + 0x14	IRQC_EDGE1	IRQ Edge Detection 1	0x0000_0000
Base + 0x18	IRQC_INT_CTRL	IRQ Interrupt Control	0x0000_0000
Base + 0x1C	IRQC_INT_CLR	IRQ Interrupt Clear	0x0000_0000
Base + 0x20	IRQC_IRQ_MSK	IRQ Interrupt Mask	0xFFFF_FFFF
Base + 0x24	IRQC_IRQ_VECT	IRQ Interrupt Vector	0x0000_0000
Base + 0x28	IRQC_IRQ_STS	IRQ Interrupt Status	0x0000_0000
Base + 0x2C	IRQC_FIRQ_MSK	IRQ Fast Interrupt Mask	0xFFFF_FFFF
Base + 0x30	IRQC_FIRQ_VECT	IRQ Fast Interrupt Vector	0x0000_0000
Base + 0x34	IRQC_FIRQ_STS	IRQ Fast Interrupt Status	0x0000_0000

Table 79 IRQC Register Definition

IRQC_OUT - IRQ OUTPUT REGISTER

													IRQ			C_C UT R			TEF	R															
Addres	ss =	0xF	=00	5_0	000	0																				[Def	faul	t v	alue	= 0)x(0000	_0	000
31 30	29	28	27	7 2	6	25	24	23	22	21	20	19	18	17	16	3 15	14		13	12	2 11	1	0	9	8	7	7	6	5	4	3		2	1	0
BITS				FIE NAI						/W CES	ss	RES VAI	SET				•						DES		IELI RIP	_	N			•			•		
31:16			R	ese	rve	ed						0>	(0																						
15	Reserved 0x0 SW_INT2_OUT RW 0x0 Controls the logic level of the SW_INT2 signal SW_INT1_OUT RW 0x0 Controls the logic level of the SW_INT1 signal																																		
14	SW_INT2_OUT RW 0x0 Controls the logic level of the SW_INT2 signal																																		
13				N_INT2_OUT RW 0x0 Controls the logic level of the SW_INT2 signal N_INT1_OUT RW 0x0 Controls the logic level of the SW_INT1 signal																															
12									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on (ıly														
11									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on (ıly														
10									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on (ıly														
9									F	RW		0>	0	Re	ese	rved	- se	et t	to 0	on (ıly														
8									F	RW		0>	0	Re	ese	rved	- se	et t	to 0	on (ıly														
7									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on (ıly														
6									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on (nly														
5									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on (nly														
4									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on	nly														
3									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on (nly														
2									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on	nly														
1									F	RW		0>	(0	Re	ese	rved	- se	et t	to 0	on	nly														
0		IF	٦Q	_IN	T_C	วบา	Γ		F	RW		0>	(0	Co	ont	rols t	he I	og	ic le	eve	el of	the	ĪR	Qs	signa	al (e	exte	erna	al p	in)					

Table 80 IRQC_OUT Register

IRQC_IN - IRQ INPUT REGISTER

												IRC			QC_I		TF	ER															
Addı	ess	= (0xF	005_0	04								<u></u>		<u> </u>	0.0								[Def	fault	t v	alue	= 0)x(0000	0	000
31 3	0 29	9 2	28	27 26	25	24	23	22	21	20	19	18	17	16	3 15	14		13	12	11	10	9	8	7	,	6	5	4	3		2	1	0
BITS	;			FIEL					/W CES	s	RES VAI	SET LUE									DE		IEL		N			ı			I.		
31:16	3			Reser	ved						0>	(0																					
15									RO		0>	_	1		erved																		
14								F	२०		0>		Re	ese	erved	- rea	ad	ls b	acl	< 0 o	nly												
13		Reserved 0x0 Reserved 0x0 TMR2_INT_IN RO 0x0 Indicates the TMR2 (Timer 2) Interrupt logic level. Readback is aft metastability logic and IRQC_INV inversion (if applicable).																															
11		Reserved 0x0 Reserved 0x0 TMR2_INT_IN RO 0x0 Indicates the TMR2 (Timer 2) Interrupt logic level. Readback is after metastability logic and IRQC_INV inversion (if applicable). TMR1_INT_IN RO 0x0 Indicates the TMR1 (Timer 1) Interrupt logic level. Readback is after metastability logic and IRQC_INV inversion (if applicable).														ter	de-																
10		Reserved Ox0 Indicates the TMR2 (Timer 2) Interrupt logic level. Readback is after metastability logic and IRQC_INV inversion (if applicable). Indicates the TMR1 (Timer 1) Interrupt logic level. Readback is after metastability logic and IRQC_INV inversion (if applicable).														ter	de-																
9			D	MA_IN	IT_IN	١		F	RO		0>	(Ο			ates t stabil															e-			
8			V	VDT_IN	IT_IN	١		F	RO		0>	(Ο			ates t de-m																		is
7			S	TBY_IN	II_TI	N		F	RO		0>	(Ο			ates t stabil							•	_							aft	er d	e-	
6			I	2C_IN	T_IN			F	RO		0>	(Ο			ates t and I												is	after	de-	-m	etas	tat	oility
5			Α	JF2_IN	T_IN	1		F	RO		0>	(Ο			ates t stabil															e-			
4			Α	JF1_IN	T_IN	1		F	RO		0>	(Ο			ates t stabil						_									e-			
3			U	ART_II	NT_II	N		F	RO		0×	(Ο			ates t stabil						•	•								de	:-		
2				SPI_IN	T_IN			F	RO		0×	(Ο			ates t stabil					•	_									-			
1			G	PIO_IN	II_II	N		F	RO		0>	(Ο			ates t stabil						,	_								le-	-		
0								F	₹О		0>	(0	Re	ese	erved	- rea	ad	ls b	acl	κ 0 o	nly												

Table 81 IRQC_IN Register

IRQC_DIR - IRQ DIRECTION REGISTER

												ı	RQ [CTIC	_		ISTI	ER												
A	ddre	ss =	0xF	005	_00	800																		De	efau	lt va	lue	= 0	x000	0_0	000
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															1	0														
В	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 3 1 3 1 3 3 3 3 3																														
31	:16			Re	ser	ved						0	x0																		
1	5		S	W_I	NT2	2_DIF	₹		F	RW		0	x0	Se	elect	s th	e SV	V_IN	IT2 s	signa	al dir	ectio	on. 1	1 = 0	outpu	ut.					
1	4		S	W_I	NT	1_DIF	₹		F	RW		0	x0	Se	elect	s th	e SV	V_IN	IT1 s	signa	al dir	ectio	on. 1	1 = c	outpu	ut.					
1	3			Re	ser	ved						0	x0																		

												IR	Q D			C_D ON I		ISTI	ER													
Ad	dres	ss =	0xF	005	_00	08																		De	faul	lt v	alue	=	0x	0000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3	2	1	0
Bľ	TS	NAME ACCESS VALUE DESCRIPTION Reserved 0x0																														
1.	2																															
1	1	Reserved 0x0 TMR2_INT_DIR RW 0x0 Selects the TMR2 (Timer 2) Interrupt direction. 0 = input.																														
1	0																															
()		D	MA_	INT	_DII	R		F	RW		0x	:0	Se	elect	s the	e DN	1A Ir	nterr	upt	direc	tion.	0 =	inpı	ut.							
8	3		W	/DT_	INT	_DII	R		F	RW		0x	:0	Se	elect	s the	e WI) TC	Wat	chdc	g Ti	mer)	Inte	errup	ot dir	rect	tion.	0 =	in	put.		
7	7		S	TBY_	INT	Γ_DI	R		F	RW		0x	:0	Se	elect	s the	e ST	ANI	DBY	Inte	errup	t dire	ectio	on. 0) = ir	npu	t.					
6	6		l:	2C_I	NT_	DIR	₹		F	RW		0x	:0	Se	elect	s the	e 120	Inte	erru	pt di	recti	on. C) = i	nput								
5			Α	IF2_	INT	_DIF	R		F	RW		0x	:0	Se	elect	s the	e Alf	-2 In	terr	upt d	lirec	tion.	0 =	inpu	ut.							
4	+		Α	JF1_	INT	_DIF	R		F	RW		0x	:0	Se	elect	s the	e Alf	-1 In	iterr	upt o	direc	tion.	0 =	inpu	ut.							
3	3		U	ART_	_INT	Γ_DI	IR		F	RW		0x	:0	Se	elect	s the	e UA	RT	Inter	rrupt	dire	ctior	n. 0	= inp	out.							
2	2		5	SPI_I	NT_	DIF	3		F	RW		0x	:0	Se	elect	s the	SP	I Int	erru	pt di	recti	on. () = i	nput	i							
1			G	PIO_	INT	_DI	R		F	RW		0x	:0	Se	elect	s the	GF	l Ol	nter	rupt	dire	ction	. 0 =	= inp	ut.							
()		II	RQ_I	NT	_DIF	₹		F	RW		0x	:0	Se	elec	s the	e ĪR	Q ou	tput	pin	dire	ction	. 1 =	out	tput.							, and the second

Table 82 IRQC_DIR Register

IRQC_INV - IRQ INVERSION REGISTER

RQC_INV IRQ INVERSION REGISTER																																
Address														000																		
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	1	13	12	11	10	9 8	3	7	6		5 4	ļ	3	2	1	0
BITS			•		_			_		s											DE			ION								
31:16			Re	eserv	/ed						0x	0																				
15	15 RW 0x0 Reserved - set to 0 only 14 RW 0x0 Reserved - set to 0 only 13 Reserved 0x0																															
14	15 RW 0x0 Reserved - set to 0 only 14 RW 0x0 Reserved - set to 0 only 13 Reserved 0x0 12 Reserved 0x0																															
13	BITS FIELD S/W RESET VALUE DESCRIPTION 31:16 Reserved 0x0 15 RW 0x0 Reserved - set to 0 only 14 RW 0x0 Reserved - set to 0 only 13 Reserved 0x0 12 Reserved 0x0 11 TMR2_INT_INV RW 0x0 Selects the TMR2 (Timer 2) Interrupt input inversion. 0 = no inversion. 1 = inversion. 10 TMR1_INT_INV RW 0x0 Selects the TMR1 (Timer 1) Interrupt input inversion. 0 = no inversion. 1 = inversion. 9 DMA_INT_INV RW 0x0 Selects the DMA Interrupt input inversion. Selects the DMA Interrupt input inversion.																															
12	11:16 Reserved 0x0 Reserved - set to 0 only																															
11	3 Reserved 0x0 2 Reserved 0x0 1 TMR2 INT INV RW 0x0 Selects the TMR2 (Timer 2) Interrupt input inversion.																															
10		TN	ЛR1	1_IN	T_IN	IV		F	W		0x	0						,			,	rupt	inț	out i	nve	rsi	ion.					
9		D	MΑ	_INI_	_IN)	V		F	W		0x	0								•	•	nver	sio	n.								
8		W	/DT	_INI_	L_IN,	V		F	W		0x	0						•			_	er) l	nte	errup	ot in	pu	ıt inv	ers	ion.			
7		Sī	ГВҮ	/_IN	T_IN	IV		F	W		0x	0										inpu	t in	ivers	sion							
6		li	2C_	_INT	_INV	/		F	W		0x	0									•	ersi	on.									
5		Α	IF2	_INT	_IN/	V		F	W		0x	0			ts the					•	•	nvers	sio	n.								
4		Α	IF1	_INT	_IN/	V		F	W		0x	0			ts the					•	•	nvers	sio	n.								

											IR	RQ II			_		ISTE	ĒR												
Ad	dre	ss =	0xF	005_0	00C																		De	faul	t va	lue	= 0x	000	0_00	000
IRQC_INV IRQ INVERSION REGISTER														0																
RQ INVERSION REGISTER Address = 0xF005_000C Default value = 0x0000_0000																														
RQ INVERSION REGISTER Address = 0xF005_000C Default value = 0x0000_000																														
2	RQ INVERSION REGISTER Industrial Registe																													
	1		GF	PIO_IN	T_IN	V		F	RW		0x	(0							•	•	t inv	ersic	on.							
()							F	RW		0x	0	Re	eserv	ed -	set	to 0	onl	y											

Table 83 IRQC_INV Register

EDGE DETECTION

The interrupt inputs are configured as level sensitive or edge sensitive using the IRQC_EDGE1 and IRQC_EDGE0 registers, as described in Table 84.

IRQC_EDGE1	IRQC_EDGE0	DESCRIPTION
0	0	Level Sensitive
0	1	Leading Edge
1	0	Trailing Edge
1	1	Dual Edge Interrupt

Table 84 IRQC Edge Detection Control

In Level-sensitive configuration, the interrupt is asserted when the applicable logic level is detected. Active High is selected when IRQC_INV=0; Active Low is selected when IRQC_INV=1. Note that the interrupt cannot be cleared whilst the Active logic level is present (and unmasked) on the respective IRQC input.

In Edge-sensitive configuration, the interrupt is asserted when the applicable logic transition is detected. This may be the rising (leading) edge, falling (trailing) edge, or both edges. The active edge(s) will cause the respective IRQC_IRQ_STS and/or IRQC_FIRQ_STS bit to be set (as controlled by the respective mask bits). Note that the active edge(s) are inverted when IRQC_INV=1.

IRQC_EDGE0 - IRQ EDGE DETECTION 0 REGISTER

										IF	RQ E			_	ED CTIO			EGIS	STER	ł												
Addres	ss =	0xF	005	_00	10																			De	efa	ult	val	lue	= 0>	(000	0_0	000
31 30	29	28	27	26	25	24	1 23	3 22	21	20	19	18	17	16	15	14	13	3 1	2 11	1 1	0	9	8	7	6	6	5	4	3	2	1	0
BITS			-	IEL	_			_	S/W CES	ss	RES VAI									ı	DES		ELD	ION	ı					ı		
31:16	RW 0x0 Reserved - set to 0 only																															
15																																
14																																
13	RW 0x0 Reserved - set to 0 only Reserved 0x0																															
12	s.m i.m. c.m.																															
11		TMF	R2_I	INT_	ED	GE(0	F	RW		0>	(0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	ıpt d	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
10		TMF	R1_I	INT_	ED	GE(0	F	₹W		0>	0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	ıpt d	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
9		DM	A_I	NT_	EDG	GE0)	F	₹W		0>	(0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	ıpt d	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
8		WD	T_I	NT_	EDG	GE0)	F	RW		0>	(0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	ıpt d	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
7		STE	3Y_I	NT_	EDO	GE()	F	RW		0>	(0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	ıpt d	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
6		120	C_IN	IT_E	EDG	E0		F	RW		0>	(0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	ıpt d	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
5		AIF	2_11	NT_	EDG	GE0)	F	RW		0>	(0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	pt o	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
4		AIF	1_II	NT_	EDG	GE0)	F	RW		0>	(0	Se	elec	ts Le	vel o	or E	Edge	e inte	erru	pt o	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
3		UAF	RT_I	INT_	ED	GE(0	F	RW		0>	0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	pt o	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
2		SF	<u> </u>	IT_E	EDG	E0		F	RW		0>	(0	Se	elec	ts Le	vel d	or E	Edge	e inte	erru	pt o	dete	ectio	n, d	ер	end	ling	g on	*ED	GE1		
1		GP	IO_I	NT_	EDO	GEC)	F	RW		0>	(0	Se	elec	ts Le	vel	or E	Edge	e inte	erru	ıpt o	dete	ectio	n, d	ер	end	ding	g on	*ED	GE1		
0								F	₹W		0>	0	Re	eser	ved	- set	to	0 0	nly													

Table 85 IRQC_EDGE0 Register

IRQC_EDGE1 - IRQ EDGE DETECTION 1 REGISTER

	RQC_EDGE1 IRQ EDGE DETECTION 1 REGISTER																															
Ad	dre	IRQ EDGE DETECTION 1 REGISTER Iress = 0xF005_0014														000																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	5 4	1	3	2	1	0
ВІ	ΓS			-		_					s										DE											
31:	16	IRQ EDGE DETECTION 1 REGISTER Iress = 0xF005_0014																														
1:	5	RQ EDGE DETECTION 1 REGISTER STATE STATE																														
14	4	Default value																														
1:	3	NAME ACCESS VALUE DESCRIPTION Reserved 0x0 0x0 RW 0x0 Reserved - set to 0 only RW 0x0 Reserved - set to 0 only Reserved 0x0																														
1:	2			Re	serv	ed						0x	:0																			
1	1		TMF	R2_I	INT_	EDO	GE1		F	RW		0x	:0	Se	elect	s Le	vel d	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ing c	n '	*ED	GEC)	
10	0		TMF	R1_I	INT_	EDO	GE1		F	RW		0x	:0	Se	elect	s Le	vel d	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ing c	n '	*ED	GEC)	
9)		DM	A_II	NT_E	EDG	E1		F	RW		0x	:0	Se	lect	s Le	vel d	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ing c	n '	*ED	GEC)	
8	}		WD	T_II	NT_E	EDG	E1		F	RW		0x	:0	Se	elect	s Le	vel d	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ing c	n '	*ED	GEC)	
7			STE	Y_I	NT_	EDC	GE1		F	RW		0x	:0	Se	elect	s Le	vel o	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ng c	n '	*ED	GEC)	
6	;		120	_IN	IT_E	DGI	E1		F	RW		0x	0	Se	lect	s Le	vel d	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ng c	n '	*ED	GEC)	
5	,		AIF	2_II	NT_E	EDG	E1		F	RW		0x	:0	Se	lect	s Le	vel d	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ng c	n '	*ED	GEC)	
4			AIF	1_II	NT_E	EDG	E1		F	RW		0x	:0	Se	lect	s Le	vel o	or Ed	dge i	nter	rupt	dete	ectio	n, d	eper	ndi	ng c	n '	*ED	GEC)	

											IR	Q E		RQ		-			SIS	TER											
1	١dd	ires	s =	0xF	005_00	14																		De	faul	t val	ue	= 0>	(000	0_0	000
3	1 :	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	зіт	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 15 15 15 15 16 15 16 15 16 16																			DE		ELD RIPT	ION							
	3			UAR	RT_INT_	EDO	GE1		F	RW		0>	κ0	Se	elec	ts Le	evel	or Ed	dge	inter	rupt	dete	ectio	n, d	eper	nding	g on	*ED	GEO)	
	2			SP	I_INT_E	EDG	E1		F	RW		0>	(0	Se	elec	ts Le	evel	or Ed	dge	inter	rupt	dete	ectio	n, d	eper	nding	g on	*ED	GEO)	
	1			GPI	O_INT_	EDO	SE1		F	RW		0>	(0	Se	elec	ts Le	evel	or Ed	dge	inter	rupt	dete	ectio	n, d	eper	nding	on on	*ED	GEO)	
	0								F	RW		0>	(0	Re	eser	ved	- se	to C	on (nly											

Table 86 IRQC_EDGE1 Register

IRQC_INT_CTRL - IRQ INTERRUPT CONTROL REGISTER

										IRC	NT			_	NT_				STE	₹												
Addre	ss =	0xF	00	5_00	18																			De	fau	lt v	alue	, =	= 0x	000	0_0	000
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	3 12	2 11	10)	9	8	7	6	5	5 4		3	2	1	0
BITS		F	IEL	D N	AME	=		_	S/W CES	s	RES VAL								FI	ELI	ם כ	DES	CR	IPT	ION	l	•					
31:16	16 Reserved 0x0 5 RW 0x0 Reserved - set to 0 only																															
15	RW 0x0 Reserved - set to 0 only 4 RW 0x0 Reserved - set to 0 only																															
14	RW 0x0 Reserved - set to 0 only																															
13	RW 0x0 Reserved - set to 0 only Reserved 0x0																															
12			Re	eserv	ed						0x	:0																				
11		TM	R2_	IRQ	C_E	NA		F	RW		0x	0	Er	nab	les T	MR2	2 (T	ime	r 2) a	s ar	ı ir	nput	to	the	IRC	C I	nter	'nр	t lo	gic		
10		TM	R1_	IRQ	C_E	NΑ		F	RW		0x	0	Er	nab	les T	MR1	l (T	ime	r 1) a	s ar	ı ir	nput	to	the	IRC	(C I	nter	'nр	t lo	gic		
9		DN	1A_I	IRQC	_EI	NA		F	RW		0x	0	Er	nab	les D	MA	as	an ir	nput t	o th	ne I	IRQ	C II	nter	rupt	: log	gic					
8		WE	DT_	IRQ	C_EI	NA		F	RW		0x	0	Er	nab	les V	/DT	(W	atch/	idog ⁻	Tim	er)	as a	an i	inpu	ıt to	the	: IRC	QC	Inte	errup	t lo	gic
7		STI	BY_	IRQ	C_E	NA		F	RW		0x	0	Er	nab	les S	TAN	IDE	3 Y a	as an	inp	ut t	to th	e II	RQC	C In	terr	upt l	og	ic			
6		120	C_II	RQC	_EN	۱A		F	RW		0x	:0	Er	nab	les l2	C a	s aı	n inp	out to	the	IR	RQC	Int	erru	ıpt l	ogi	С					
5		AIF	⁻ 2_l	IRQC	_E	NA		F	RW		0x	:0	Er	nab	les A	IF2	as a	an ir	nput t	o th	e I	RQ	C Ir	nterr	rupt	log	jic					
4		AIF	-1_I	IRQC	EN_E	NA		F	RW		0x	:0	Er	nab	les A	IF1	as a	an ir	nput t	o th	e I	RQ	C Ir	nterr	rupt	log	jic					
3		UAI	RT_	IRQ	C_E	ΝA		F	RW		0x	0	Er	nab	les U	AR1	as	s an	input	to	the	IRC	QC	Inte	rrup	ot Ic	gic					
2		SF	PI_II	RQC	_EN	۱A		F	RW		0x	0	Er	nab	les S	PI a	s a	n inp	out to	the	: IF	RQC	Int	terru	ıpt I	ogi	С					
1		GP	10_	IRQ	C_E	NΑ		F	RW		0x	:0	Er	nab	les G	PIO	as	an i	input	to t	he	IRC	(C I	Inte	rrup	t lo	gic					
0								F	RW		0x	:0	Re	ese	rved	- set	to	0 or	nly													

Table 87 IRQC_INT_CTRL Register

IRQC_INT_CLR - IRQ INTERRUPT CLEAR REGISTER

	FIELD NAME																																	
Addres	Default value = 0x0000_00 Solution Sol															000																		
31 30	29	28	2	7 26	25	5 2	24	23	22	21	20	19	18	17	16	3 15	14	1	13	12	11	10	9	9 8	3	7	6	5	4		3	2	1	0
BITS		F	ΞIE	LD N	AM	E		Ţ,	_		s						•				FI	ELD	D	ESC	RI	PTI	ON							•
31:16	ACCESS VALUE																																	
15	WO 0x0 Reserved - set to 0 only WO 0x0 Reserved - set to 0 only Reserved 0x0																																	
14	WO 0x0 Reserved - set to 0 only WO 0x0 Reserved - set to 0 only Reserved 0x0																																	
13	S/W ACCESS RESET VALUE FIELD DESCRIPTION FIELD DESCRIP																																	
12	WO																																	
11		TM	R2	_IRC	C_C	CL	R		V	/ O		0x	0	W	rite	'1' t	o cle	ar	r TN	MR2	2 (Ti	mer	2)	Inter	ru	pt (ГМБ	R2_	IRQ	_s	STS)		
10		TM	R1	_IRC	C_C	CL	R		V	/ O		0x	0	W	rite	'1' t	o cle	ar	r TN	MR1	l (Ti	mer	1)	Inter	ru	pt (ГМБ	R1_	IRQ	_s	STS)		
9		D۱	ЛA_	_IRQ	C_C	CLF	₹		V	/ O		0x	:0	W	rite	'1' t	o cle	ar	r DN	MA	Inte	rupt	(E	MA ₋	_IF	RQ_	ST	S)						
8		WI	DT_	_IRQ	C_C	CLF	₹		V	/ O		0x	0	W	rite	'1' t	o cle	ar	r WI	DT	(Wa	tchd	og	Tim	er)) Int	erru	upt	(WD	T_	IRC	2_S	TS)	
7		ST	BY	_IRC	C_C	CLI	R		V	/0		0x	0	W	rite	'1' t	o cle	ar	r S	TAN	NDB,	Y Int	ter	rupt	(S	TBY	_IF	RQ_	STS	3)				
6		12	C_	IRQ	C_C	LR			V	/ O		0x	0	W	rite	'1' t	o cle	ar	r 120	C In	nterr	upt (120	C_IR	Q_	ST	S)							
5		ΑII	F2_	IRQ	C_C	LF	₹		V	/ O		0x	0	W	rite	'1' t	o cle	ar	r All	F2	Inter	rupt	(A	IF2_	IR	Q_9	STS	3)						
4		ΑII	F1_	IRQ	C_C	LF	3		V	/ O		0x	:0	W	rite	'1' t	o cle	ar	۱A	F1	Inter	rupt	(A	JF1_	IR	Q_9	STS	3)						
3		UA	RT	_IRG	C_C	CL	R		V	/ O		0х	:0	W	rite	: '1' t	o cle	ar	r UA	4RT	Inte	errup	ot (UAF	₹T_	IRO	2_S	STS	5)					
2		SI	PI_	IRQ	C_C	LR			V	/ O		0х	:0	W	rite	'1' t	o cle	ar	r SF	Pl Ir	nterr	upt (SF	PI_IF	RQ	_ST	S)							
1		GF	PIO.	_IRQ	C_C	CLI	R		V	/ O		0x	:0	W	rite	'1' t	o cle	ar	r GF	PIO	Inte	rrup	t (GPIC)_I	IRQ	_S	TS)						
0									V	/0		0x	0	Re	ese	rved	- se	t t	0 0	onl	ly													

Table 88 IRQC_INT_CLR Register

IRQC_IRQ_MSK - IRQ INTERRUPT MASK REGISTER

		Reserved Reserved														_			ISTE	ĒR												
Ad	ldre	TMR2_IRQ_MSK RW Ox1 Selects of the IRQ interrupt interrupt the IRQ interrupt interrupt the IRQ interrupt interrupt the IRQ interrupt i																						Def	faul	t va	alue	e =	0x	FFFI	F_F	FFF
31	Solution															15	14	13	12	11	10	9	8	7	6	Ę	5	4	3	2	1	0
Bľ	BITS FIELD NAME S/W ACCESS VALUE FIELD DESCRIPTION 31:16 Reserved 0x7 15 RW 0x1 Reserved - set to 1 only																															
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1																																
RQ INTERRUPT MASK REGISTER Address = 0xF005_0020 Default value = 0xFFFF_FFF																																
1	RQ INTERRUPT MASK REGISTER Address = 0xF005_0020 Default value = 0xFFFF_FF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BITS																															
1:	RQ INTERRUPT MASK REGISTER Address = 0xF005_0020 Default value = 0xFFFF_FF																															
1:	Selects whether TMR2 (Timer 2) Interrupt is masked. A masked interrupt will not trigger the TMR2 IRQ STS bit. and is disabled from																															
RQ INTERRUPT MASK REGISTER Address = 0xF005_0020 Default value = 0xFFFF_F Strain St														n																		
1	0		ΤM	1R1_	_IRC	Q_M\$	SK		F	RW		0x	:1	int the	erru e IR	s whole the second seco	ill no IRQ	ot tri	gger :CT	the logic	TMF	,		•							fron	n

IRQC_IRQ_MSK IRQ INTERRUPT MASK REGISTER Address = 0xF005_0020 Default value																		_			iIS	STE	R														
Ad	dres	ss =	0xl	= 00)5_	002	20									_	T											De	faul	t١	va	lue	=	0xF	FFI	F	FFF
31	30	29	28	2	7 2	26	25	24	23	22	21	20	1	9 18	17	10	6 1	5	14	13		12	11	10	ç	9	8	7	6		5	4		3	2	1	0
DI	T.C.		<u> </u>			NI.				;	S/W		R	ESET													<u> </u>		101								
ы	TS			-15	LD	N/	AME	_		AC	CES	SS	٧	ALUE															101								
g	9		D	MΑ	_IF	RQ_	_MS	SK		ı	RW			0x1	triç IR	gg Q(er th	ne [RQ_	OM/ _VE	A_IF	٦C اد	Q_S ogic	STS :.											rrup	ot w	ill no	ot
8 WDT_IRQ_MSK RW 0x1 Selects whether WDT (Watchdog Timer) Interrupt is masked. A interrupt will not trigger the WDT_IRQ_STS bit, and is disabled IRQC_IRQ_VECT logic. 0 = Enabled; 1 = Masked. Selects whether STANDBY Interrupt is masked. A masked interrupt with the control of t																																					
7	7		ST	ΓB	/ _IF	RQ	_M:	SK		I	RW			0x1	no IR	t ti Q(cts v rigg C_IF Enal	er t RQ_	he _VE	STE CT	3Y Ic	_IF ogic	RQ_ :.												nter	rupt	will
6	6		12	2C_	_IR	Q_	MS	K		I	RW			0x1	triç IR	gg Q(cts ver the C_IF	ne I RQ_	2C_ _VE	_IR(Q_ lc	_ST ogic	'S t	•									err	upt	will	not	
5	5		Α	IF2	!_IR	RQ_	_MS	SK		ı	RW			0x1	triç IR	gg Q(cts ver the C_IF	ne A RQ_	AIF2 _VE	2_IF	RC Ic	Q_S ogic	TS :.	•										rup	ot wi	II nc	ot
4	1		Α	IF1	_IR	RQ_	_MS	SK		ı	RW			0x1	triç IR	gg Q(cts ver the C_IF	ne A RQ_	AIF	1_IF	RC Ic	Q_S ogic	TS :.	•										rup	t wi	II nc	ot
3	3		UA	\R	T_II	RQ	_M:	SK		I	RW			0x1	triç IR	gg Q(cts ver the C_IF	ne l RQ_	JAF _VE	RT_I CT	IR Ic	Q_ gic	ST											erru	ıpt v	vill r	not
2	2		S	iPI <u>.</u>	_IR	Q_	MS	K		I	RW			0x1	triç IR	gg Q(cts ver the C_IF	ne S RQ_	SPI _VE	_IR(Q_ lc	_S1 ogic	TS t :.	•									terr	upt	will	not	
1	1		GI	PIC)_IF	RQ	_M\$	SK		ı	RW			0x1	triç IR	gg Q(cts v er th C_IF Enal	ne (RQ_	GPI _VE	O_I CT	R	Q_: ogic	STS											erru	pt w	ill n	ot
C)									I	RW			0x1	Re	ese	erve	d -	set	to 1	1 (only	/														

Table 89 IRQC_IRQ_MSK Register

IRQC_IRQ_VECT - IRQ INTERRUPT VECTOR REGISTER

		IF		QC_IRQ_VECT RUPT VECTOR REGISTER
Addre	ess = 0xF005_0024			Default value = 0x0000_0000
31 30	29 28 27 26 25 24 23	3 22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31:5	Reserved		0x000_ 0000	
4:0	IRQC_IRQ_VECT	RO	0x00	Indicates which highest priority interrupt is currently asserted in the IRQC_IRQ_STS register. Highest priority is implemented as the interrupt in the lowest-numbered bit position of the IRQC_IRQ_STS register. The same priority is represented in the coding of IRQC_IRQ_VECT - the GPIO Interrupt is highest priority, and the TMR2 (Timer 2) Interrupt is lowest priority. 0x00 = No interrupt 0x01 = GPIO Interrupt 0x02 = SPI Interrupt 0x03 = UART Interrupt 0x03 = UART Interrupt 0x05 = AIF2 Interrupt 0x06 = I2C Interrupt 0x07 = STANDBY Interrupt 0x08 = WDT (Watchdog Timer) Interrupt 0x09 = DMA Interrupt 0x0A = TMR1 (Timer 1) Interrupt 0x0B = TMR2 (Timer 2) Interrupt

Table 90 IRQC_IRQ_VECT Register

IRQC_IRQ_STS - IRQ INTERRUPT STATUS REGISTER

												IR	Q IN			_	IRQ STA	_		GIST	ΓER											
Ad	dre	ss =	0xF	-00	05_00	28																			De	faul	t va	lue	= 0	k 000	0_0	000
31	30	29	28	2	7 26	2	5	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BI	TS		F	:IE	LD N	ΑN	ΛE			AC	/W CES	s	RES VAL								FI	ELD	DE	SCF	RIPT	ION		•				•
31:	1:16 Reserved 0x0 15 RO 0x0 Reserved - reads back 0 only																															
1:	15 RO 0x0 Reserved - reads back 0 only																															
1-	14 RO 0x0 Reserved - reads back 0 only																															
1:	3			F	Reserv	ved	ı						0x	(0																		
1:	2			F	Reserv	ved	l						0х	(0																		
1	1		ΤN	ΙR	2_IR0	ე_:	STS	S		F	RO		0х	0	ΤN	/IR	2 (Tir	ner 2	2) In	terru	ıpt S	tatu	s									
1	0		ΤN	ΙR	1_IR0	3 _8	ST	S		F	RO		0х	(0	ΤN	/IR	1 (Tir	ner '	1) In	terru	ıpt S	tatu	s									
S)		DI	MA	A_IRC	<u>_</u> S	STS	3		F	RO		0х	(0	DN	ЛΑ	Inter	rupt	Stat	tus												
8	3		W	D	T_IRC	<u> 2_</u> S	STS	3		F	RO		0х	0	W	DT	(Wa	chd	og T	ime	r) Int	erru	pt S	tatu	s							
7	7		ST	B,	Y_IRO	Q_ 5	STS	S		F	RO		0x	(0	S	ſΑΊ	NDB\	/ Int	erru	pt S	tatus	6										
6	3		12	2C	_IRQ	_S	TS			F	RO		0x	(0	120	C Ir	nterru	ıpt S	tatu	s												
5	5		Α	IF2	2_IRC)_S	STS	3		F	RO		0х	(0	All	F2	Inter	rupt	Stat	us												•
4	ļ		Α	lF′	1_IRC	_s	STS	}		F	20		0x	(0	All	F1	Inter	rupt	Stat	us												

											IR	Q IN	IF ITER		_		_ S]		SIST	ΓER											
A	ddre	ss =	0xF	005	_00	28																		De	faul	t va	lue	= 0>	k 000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ITS FIELD NAME S/W ACCESS VALUE FIELD DESCRIPTION																														
	3		U٨	RT_	_IRC)_S1	ΓS		F	₹О		0:	к0	UA	١RT	Inte	errup	t Sta	atus												
	2		S	PI_I	RQ_	STS	S		F	₹О		0:	к0	SF	Pl In	terru	upt S	Statu	s												
	1		GF	PIO_	IRC	ST	s		F	२०		0:	к0	GI	PIO	Inte	rrupt	Sta	tus												•
	0								F	30		0:	к0	Re	ser	ved	- rea	ads b	ack	0 or	ıly										

Table 91 IRQC_IRQ_STS Register

IRQC_FIRQ_MSK - IRQ FAST INTERRUPT MASK REGISTER

									ı	RC	FAS			_	IRQ	_			GIS.	TE	R												
Addre	ss =	0xF	005	_00	2C																				Defa	ault	٧	alue	= (0xF	FFF	_F	FFF
31 30	29	28	27	26	25	24	1 23	22	21	20	19	18	17	16	3 15	14	1	3 1	2	11	10	ç	9 8		7	6	,	5 4		3	2	1	0
BITS		F	IELI) N	АМЕ	=			S/W CES	ss	RES VAL									FII	ELD	D	DESC	RII	PTI	ON							
31:16			Res	serv	ed						0x	7																					
15								F	₹W		0x	1	R	ese	erved	- set	to	o 1 o	nly														
14								F	RW		0x	1	Re	ese	erved	- set	to	o 1 o	nly														
13			Res	serv	ed						0x	1																					
12		Reserved 0x1 Selects whether TMR2 (Timer 2) Interrupt is masked. A masked interrupt will not trigger the TMR2 FIRO STS bit, and is disabled from																															
11		TMF	R2_F	FIRO	Selects whether TMR2 (Timer 2) Interrupt is masked. A masked interrupt will not trigger the TMR2_FIRQ_STS bit, and is disabled from the IRQC_FIRQ_VECT logic. 0 = Enabled; 1 = Masked. Selects whether TMR1 (Timer 1) Interrupt is masked. A masked interrupt will not trigger the TMR1_FIRQ_STS bit, and is disabled from																												
10		TMF	R1_F	FIRO	Selects whether TMR2 (Timer 2) Interrupt is masked. A masked interrupt will not trigger the TMR2_FIRQ_STS bit, and is disabled from the IRQC_FIRQ_VECT logic. 0 = Enabled; 1 = Masked. Selects whether TMR1 (Timer 1) Interrupt is masked. A masked														m														
9		DM	A_F	IRC)_M	SK		F	RW.		0x	1	tri IR	gge QC		DM Q_\	A_ /E	FIR CT I	Q_s ogic	STS c.								ked ir om th		rrup	ot wi	ll no	ot
8		WE	T_F	IRC)_M	SK		F	RW.		0x	1	in th	terr e IF		ill no FIR	ot Q	trigg _VE0	er ti CT I	he logi	WD.							is ma					
7		STE	BY_F	FIRC	Q_M	ISK	,	F	RW.		0x	1	nc IR	ot tr		the Q_\	S ⁻	TBY_ CT I	_FIF	RQ c.								A mas				upt	will
6		120	C_FI	RQ _.	_MS	SK		F	RW.		0x	1	tri IR	gge QC		12C Q_\	_F /E	IRQ CT I	_ST ogic	TS c.								ed inte		upt	will	not	

									ı	RQ	FAS			_	FIRQ UPT I	_			GIS	STE	R												
Addres	ss =	0xF	005_0)2C																				De	efa	ult	va	alue	= 0x	FF	FF_	FF	FF
31 30	29	28	27 26	25	5	24	23	22	21	20	19	18	17	16	6 15	14	1	3 1	12	11	10	9	8 6	7	,	6	5	4	3		2	1	0
BITS		F	IELD N	IAM	1E			_	/W CES	s	RES VAL									FII	ELD	D	ESC	RIP	TIC	ON		ı		ļ		I	
5		AIF	2_FIR	Q_M	//S	K		F	RW		Selects whether AIF2 Interrupt is masked. A masked interrupt will no trigger the AIF2_FIRQ_STS bit, and is disabled from the IRQC_FIRQ_VECT logic. 0 = Enabled; 1 = Masked. Selects whether AIF1 Interrupt is masked. A masked interrupt will no trigger the AIF1_FIRQ_STS bit, and is disabled from the IRQC_FIRQ_VECT logic.															not	t						
4		AIF	:1_FIR	Q_M	/ISI	K		F	RW		OX1 IRQC_FIRQ_VECT logic. 0 = Enabled; 1 = Masked. Selects whether AIF1 Interrupt is masked. A masked interrupt will no trigger the AIF1_FIRQ_STS bit, and is disabled from the IRQC_FIRQ_VECT logic. 0 = Enabled; 1 = Masked.															not	t						
3		UAF	RT_FIR	!Q_I	MS	SK		F	RW		0x	:1	Se triç IR	gge QC	cts wher the C_FIR	ethe UAF Q_V	er RT /E	UAI [_FI	RT RQ log	Inte)_S1 ic.										rup	ot wil	l n	ot
2		SF	PI_FIRC	Q_M	ISŁ	<		F	RW		0x	:1	triç IR	gge Q(cts wher the C_FIR	SPI Q_V	_F /E	FIRC CT	Q_S log	STS ic.									errup	ot v	vill n	ot	
1		GPI	IO_FIR	Q_N	MS	sĸ		F	RW		0x	:1	triç IR	gge Q(cts wher the C_FIR	GPI Q_V	O /E	_FIF	RQ _. log	_ST ic.										up	t will	no	ot
0								F	RW		0x	:1	Re	ese	erved -	- set	to	o 1 d	only	у													

Table 92 IRQC_FIRQ_MSK Register

IRQC_FIRQ_VECT - IRQ FAST INTERRUPT VECTOR REGISTER

		IRQ		QC_FIRQ_VECT ERRUPT VECTOR REGISTER	
Addre	ss = 0xF005_0030			Default value = 0x0000_0	000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION	
31:5	Reserved		0x000_ 0000		
4:0	IRQC_FIRQ_VECT	RO	0x00	Indicates which highest priority interrupt is currently asserted in the IRQC_FIRQ_STS register. Highest priority is implemented as the interrupt in the lowest-number bit position of the IRQC_FIRQ_STS register. The same priority is represented in the coding of IRQC_FIRQ_VECT - the GPIO Interrup highest priority, and the TMR2 (Timer 2) Interrupt is lowest priority. 0x00 = No interrupt 0x01 = GPIO Interrupt 0x02 = SPI Interrupt 0x03 = UART Interrupt 0x04 = AIF1 Interrupt 0x05 = AIF2 Interrupt 0x06 = I2C Interrupt 0x07 = STANDBY Interrupt 0x08 = WDT (Watchdog Timer) Interrupt 0x09 = DMA Interrupt 0x0A = TMR1 (Timer 1) Interrupt 0x0B = TMR2 (Timer 2) Interrupt	

Table 93 IRQC_FIRQ_VECT Register

IRQC_FIRQ_STS - IRQ FAST INTERRUPT STATUS REGISTER

									IF	RQ I	FAS1			_	IRC PT S	_			EGI	IST	ER												
Addres	ss =	0xF	=00	5_00	34																				Def	faul	lt v	alue	= (0x0	0000	_0	000
31 30	29	28	27	7 26	25	2	4 2	22	21	20	19	18	17	16	15	14	1	3 1	12	11	10	9	8		7	6	5	4	3		2	1	0
BITS		F	ΞIE	LD N	AMI	E			S/W	ss	RES VAI				•					FII	ELD	DI	ESC	RII	PTI	ON			•				
31:16			R	eser	ved						0>	(0																					
15									RO		0>	(0	Re	ese	rved ·	- rea	ads	s ba	ck	0 or	ıly												
14	RO 0x0 Reserved - reads back 0 only Reserved 0x0																																
13	Reserved 0x0																																
12																																	
11		TM	IR2	_FIR	Q_S	STS	3		RO		0>	0	T١	MR2	2 (Tin	ner 2	2)	Inte	rrup	pt S	tatu	s											
10		TM	IR1	_FIR	Q_S	STS	}		RO		0>	(0	TN	ΜR	1 (Tin	ner 1	1)	Inte	rrup	pt S	tatu	s											
9		D۱	ИA_	_FIR	Q_S	TS			RO		0>	(0	DI	MA	Inter	rupt	St	atus	S														
8		WI	DT_	_FIR	Q_S	TS			RO		0>	(0	W	DT	(Wat	chd	og	Tim	ner)) Int	erru	pt (Statu	JS									
7		ST	BY	_FIR	Q_S	STS	;		RO		0>	(0	S	TAN	NDBY	/ Int	eri	rupt	Sta	atus	;												
6		12	C_	FIRG	_ST	S			RO		0>	(0	120	C Ir	nterru	pt S	ta	tus															
5		ΑI	F2_	FIR	a_s	TS			RO		0>	(0	Al	F2	Interr	upt	St	atus	3														
4		ΑI	F1_	FIR	a_s	TS			RO		0>	(0	Al	F1	Interr	upt	St	atus	3														
3		UA	RT	_FIR	Q_S	STS	3		RO		0>	(0	UA	4R7	「Inte	rrup	t S	Statu	us														
2		S	PI_	FIRC	<u>_</u> S1	ſS			RO		0>	(0	SF	Pl Ir	nterru	pt S	sta	tus															
1		GF	PIO.	_FIR	Q_s	TS	;		RO		0>	0	GI	PIO	Inter	rupt	S	tatu	IS														
0									RO		0>	(0	Re	ese	rved ·	- rea	ads	s ba	ck	0 or	ıly												

Table 94 IRQC_FIRQ_STS Register

TRAX TRACE BUFFER MODULE

BASE ADDRESS 0xF006_0000

The TRAX module is a software debug facility. The associated Trace Memory (1024 x 32bit words) stores a record of HiFi2 EPTM DSP core instructions executed. Read/Write access to the debug data is supported via either the JTAG or APB interfaces.

The TRAX module implements the Program Trace using Traditional Branch Messaging (BTM). Specifically, it implements the following Nexus Public messages:

- Indirect Branch Message
- Synchronisation Message
- Indirect Branch with Synchronisation Message
- Correlation Message

The Trace Memory data is accessed via the TRAX_DATA register. The applicable memory address is selected using the TRAX_ADDR register, which is automatically incremented on each access, and wraps around when the last address is reached. Wrap-around status bits are also provided, in the event of the Trace Memory being filled. The TRAX_DATA register can only be accessed when the Trace function is inactive. The current memory address and the associated status bits are reset each time the Trace function is started.

The Trace function is enabled using TR_ENA. In a typical use case, it is stopped using a configurable function dependent on the Program Counter. The Trace function can be configured to continue recording events after a stop trigger condition; the number of additional events is configurable using the TRAX_DLY_CNT register.

A number of status flags provide readback of the TRAX module status. Note that the TRAX module does not generate any WM0011 Interrupt signals.

TRAX REGISTER MAP

The register map of the TRAX module is illustrated in Table 95.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	TRAX_CONFIG	TRAX Trace Buffer Configuration	0x0000_0000
Base + 0x04	TRAX_CTRL	TRAX Control	0x0000_0C00
Base + 0x08	TRAX_STS	TRAX Status	0x0000_0C00
Base +0x0C	TRAX_DATA	TRAX Data	0x0000_0000
Base + 0x10	TRAX_ADDR	TRAX Address	0x0000_0000
Base + 0x14	TRAX_TRIG_PC	TRAX PC Match Trigger	0x0000_0000
Base + 0x18	TRAX_PC_MATCH	TRAX PC Match Control	0x0000_0000
Base + 0x1C	TRAX_DLY_CNT	TRAX Post-Trigger Delay Count	0x0000_0000

Table 95 TRAX Register Definition

TRAX_CONFIG - TRAX TRACE BUFFER CONFIGURATION REGISTER

The TRAX Trace Buffer can be accessed via the JTAG interface, or via the internal APB interface. Only one of these can be supported at any time - the selected method is determined by the TRAX_MODE bit.

When APB mode is selected, the APB_RST bit can be used to reset the TRAX module. When JTAG mode is selected, the TRAX module can be reset using the $\overline{\text{TRST}}$ pin.

Note that the TRAX clock enable bit (TRAX_CLK_ENA) is on the CCM_CLK_ENA register.

								TR	AX ·	TRA	CE		RA	_				ION	RE	GIST	ER									
Ad	dres	ss =	0xF	0006_	0000																		De	faul	t va	lue	= 0	k 000	0_0	000
31	30	29	28	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bľ	NAME ACCESS VALUE DESCRIPTION																													
31	NAME ACCESS VALUE DESCRIPTION 31:2 Reserved																													
1			Т	RAX_I	ИOD	E		F	RW		0x	:0	0 =	= JT	Acc AG B c	cont		e se	lect											
С)			APB_I	RST			F	RW		0x	:0	0 =	= No = Re	ot res	set	Rese		is s	elec	ted (TRA	\X_I	MOE	DE=	1)				

Table 96 TRAX_CONFIG Register

TRAX_CTRL - TRAX CONTROL REGISTER

The Trace function is enabled when the TR_ENA bit transitions from 0 to 1.

The Trace function can stopped using the configurable 'stop' trigger derived from the PC Match function (see below). If a 'stop' trigger is enabled and asserted, then the Trace function will either stop immediately, or will continue for a 'post-stop-trigger' period, configured via the CNTU control bit and the TRAX_DLY_CNT register (see Table 103).

Writing '0' to the TR_ENA bit before a 'stop' trigger has been asserted will disable the Trace function immediately. If a 'stop' trigger has been asserted, and the TR_ENA bit is set to '0' during the 'post-stop-trigger' period, then the Trace will continue until completion.

Note that the TR_ENA bit is not automatically reset when the Trace function stops. This bit must be set to 0 prior to initiating a new Trace.

The TRAX Control register allows configuration of the PC Match function.

The contents of the TRAX Control register can be read at any time. When the Trace function is active (indicated via the TRACT bit in the TRAX_STS register), then only the TR_ENA bit can be written to.

													Т				X_C1			STE	R														
Ad	dre	ss =	0xF	=0	06_0	00)4																			D	efau	ılt	va	alue	= 0	x0	000	_0	C00
31	30	29	28	2	27 2	6	25	24	23	22	21	20	19	18	17	16	6 15	14	1	13	12	11	10	ć	9 8	7	6	;	5	4	3		2	1	0
BI	TS				FIE						S/W CES	ss		SET LUE			•						DE		FIEL		N								
31:	15			F	Rese								0>	(O_)00																					
14:	12				SMF	èΕſ	₹			F	RW			Synchronization Message Frequency Control Specifies the rate at which synchronization messages are recorded in the output trace. When 0, no periodic synchronization messages are recorded. 000 = No synchronization messages 001 = 1 synch. message every 256 messages 010 = 1 synch. message every 128 messages 011 = 1 synch. message every 64 messages 100 = 1 synch. message every 32 messages 101 = 1 synch. message every 16 messages 110 = 1 synch. message every 8 messages 111 = Reserved 0x3 Post-Stop-Trigger Count Control Selects which type(s) of Trace data will cause the CAPTURE_SIZE field (see Table 103) to decrement, 0 = decrement by 1 for every word written to trace memory																					
11:	10			F	Rese	rve	ed						0	х3																					
g)				CN	TU	ı			F	RW		0	x0	Se fie 0 = 1 =	eled Id = d = d	cts wh	able able nent nent	ty e b	pe(s 103 y 1 y 1	s) () to for for	of Tr o ded eve eve	ace crem ry w ry pi	da er or	nt, d wri	ten	to tr	ac	e i	mem	ory	-			
8:	3			I	Rese	rve	ed						0>	(00																					
2	2			F	PCM_	_EI	NA			F	₹W		0	x0	0 = 1 = No	nab = C = E ote	Match ples th Disable Enable that t TRAX_	e PO ed d he P	PC	Mat	tch atc	fund h fur	nctio	n,	wher	n ena	able	d,	is	also	con	fiç	jure	d v	⁄ia
1	l			ŀ	Rese	rve	ed						0	x0																					
С)				TR_I	ΞN	Α			F	₹W		0	×0	The Wither Transfer (con No. 1) and the State (con No. 1) and the Stat	ritine This according to the conference of the c	e Men Trace ng '0' Frace 1 s bit is e will of figured this b s; this Disable Enable	function the tunction set continuity of the tunction of tuncti	cti is tic in tl	ion is bit on in or '0' ue u he Ces no	be nm aff unt CN	enab fore nedia ter a iil co TU d autor	a stately stop mple contr	op o ti etic ol cal	rigge on of bit a lly re	r has the pand the	as be oost ne T nher	en -st R/n th	en top AX	asser sser -trig _DL Trac	erted, ger Y_C ce fu	th pe N	vill c en t erioc T re	lisa he I gis	able

Table 97 TRAX_CTRL Register

TRAX_STS - TRAX STATUS REGISTER

The TRAX Status register provides readback of the Trace module status.

The PCMTG bit provides readback indicating whether the PC Match function has generated a Trace Stop event. The TRIG bit provides an indication that one (or more) of the enabled Trace Stop events has been triggered.

The TRACT bit indicates the current status of the Trace function. Note that read/write access to the Trace memory and to most of the TRAX configuration bits is only possible when the Trace function is inactive (TRACT=0).

			TRAX	RAX_STS ATUS REGISTER										
Addre	ss = 0xF006_0008			Defau	It value = 0x0000_0C00									
31 30	29 28 27 26 25 24 23	22 21 20	19 18	16 15 14 13 12 11 10 9 8 7 6	5 4 3 2 1 0									
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION										
31:13	Reserved		0x0_ 0000											
12:8	Trace Memory Size 0Ch = 4kB Note that although the memory size is measured in bytes, the trace memory is only accessible as 32-bit words Note that this is a READ ONLY register 7:3 Reserved 0x00													
7:3	Reserved		0x00											
2	PCMTG	RO	0x0	ogram Count (PC) Match Trace Stop Event s = Trace Stop Event not triggered by PC Matc = Trace Stop Event triggered by PC Match is bit is reset to 0 when TR_ENA transitions	ch									
1	TRIG	RO	0x0	ace Stop Trigger status is bit is set whenever a Trace Stop condition ace Stop conditions include PC Match, or set is bit is reset 0 when TR_ENA transitions fro	tting TR_ENA=0.									
0	TRACT	RO	0x0	ace Active status AACT is set to 1 (active) when TR_ENA trans AACT is set to 0 (inactive) following a stop co nsition to 'inactive' may not be immediate, de op-trigger' period configuration. ead/write access to the Trace memory and to nfiguration bits is only possible when the Tra RACT=0). = Trace is inactive = Trace is active	epending on the 'post- most of the TRAX									

Table 98 TRAX_STS Register

TRAX_DATA - TRAX DATA REGISTER

The Trace Memory is accessed via the TRAX_DATA register, which represents the 32-bit data word indexed by the TADDR field (in the TRAX_ADDR register).

Read or Write access to the TRAX_DATA register is only possible when the Trace function is inactive (TRACT=0).

Note that TADDR is auto-incremented after each Read or Write access to the TRAX_DATA register.

														TR.		_			R												
A	ddre	ss =	0xF	006	_00	OC																		De	faul	t va	lue	= 0>	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	ITS		•	-	IELI AMI	_	•			S/W CES		RES VAL	SET UE			•	•			•	DE	FIE	ELD		•		•	•	•		
3	1:0		٦	ΓRA	X_D	АТА			F	RW		0x0 _00_		32	-bit	Trac	e R	AM v	vord	l, inc	lexe	d by	the	TRA	AX_A	ADD	R ad	ddre	ss re	gist	er

Table 99 TRAX_DATA Register

TRAX ADDR - TRAX ADDRESS REGISTER

The TADDR field within the TRAX_ADDR register controls the address within the Trace Memory for the next Read/Write access to the TRAX_DATA register.

The TADDR field is reset to 000h when TR_ENA transitions from 0 to 1, and is auto-incremented after each Read or Write access to the TRAX_DATA register.

If the TADDR field reaches its maximum value, then it will wrap-around to 000h after the next Read or Write access to TRAX DATA. The number of wrap-arounds can be read from the TWRAP field.

If the TWRAP field reaches its maximum value, then it will also wrap-around to 0000h on the next increment. In this event, the TWSAT bit will be set, indicating saturation of the TWRAP field.

The TADDR and TWSAT fields are reset to 0 when TR ENA transitions from 0 to 1.

The TRAX_ADDR register can be read at any time, but Write access is only possible when the Trace function is inactive (TRACT=0).

When a Trace stops, the TADDR register will indicate the next trace memory word to be written (ie. one greater than the last-written word). If no wrap-around has occurred (ie. TWRAP=0000h and TWSAT=0), then the captured trace comprises the Trace Memory words from index 000h up to TADDR-1 inclusive. If a wrap-around has occurred, then the captured trace comprises the Trace Memory words from TADDR to 3FFFh, followed by words from index 000h up to TADDR-1 inclusive.

				FRAX_ADDR ADDRESS REGISTER
Addres	ss = 0xF006_0010			Default value = 0x0000_0000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31	TWSAT	RW	0x0	Trace Memory Warp-Around Saturation Indicates that the number of Trace Memory wrap-arounds exceeds the maximum value of TWRAP. This field is reset 0 when TR_ENA transitions from 0 to 1.
30:24	Reserved		0x00	
23:10	TWRAP	RW	0x0000	Trace Memory Wrap-Around Count Indicates how many TADDR wrap-arounds have occurred during the current Trace. If the number of wrap-arounds exceeds the maximum value (3FFFh), then TWRAP will also wraps-around to 0000h on the next increment, and the TWSAT bit will be set. This field is reset 0000h when TR_ENA transitions from 0 to 1.
9:0	TADDR	RW	0x000	Trace Memory Address Index Controls the address within the Trace Memory for the next Read/Write access to the TRAX_DATA register. The index value is expressed in 32-bit words (not bytes). This field is reset to 000h when TR_ENA transitions from 0 to 1, and is auto-incremented after each Read or Write access to the TRAX_DATA register.

Table 100 TRAX_ADDR Register

TRAX_TRIG_PC - TRAX PC MATCH TRIGGER REGISTER

When the PC Match function is enabled as a Trace Stop Event trigger (PCM_ENA=1), the program count (PC) of the HiFi2 EP^{TM} DSP core processor is monitored, and is used to generate a Stop condition for the Trace function.

The processor PC value is compared against the address held in the STOP_PC register. If a match is detected between the PC value (corresponding to the instruction about to be executed) and the STOP_PC value, then a Trace Stop condition will be triggered (TRIG=1, PCMTG=1).

Note that the PC Match function is also configurable using the control bits in the TRAX_PC_MATCH register (see Table 102). The configurable options allow some of the least significant bits of the PC value to be ignored, and enable a Stop condition to be generated when the PC value does not match STOP_PC.

											TRA	X P		RAX ATC	_		_	PC R RE	GIS	TEF	₹										
Ac	ldre	ss =	0xF	006	_00	14																		De	fau	lt va	lue	= 0	x000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	ITS FIELD S/W RESET FIELD DESCRIPTION																														
31	1:0			STO	OP_I	PC	RW 0x0000																								

Table 101 TRAX_TRIG_PC Register

TRAX_PC_MATCH - TRAX PC MATCH CONTROL REGISTER

When the PC Match function is enabled as a Trace Stop Event trigger (PCM_ENA=1), the processor PC value is compared against the address held in the STOP_PC register, and is used to generate a Stop condition for the Trace function.

Under default conditions, the PC Match stop condition is asserted when the PC value (corresponding to the instruction about to be executed) is equal to the STOP_PC register value.

The PCML field selects how many of the least significant bits of the PC value and STOP_PC value are ignored when identifying a PC Match condition.

The PCMS bit allows the matching logic to be inverted; it selects whether a Stop condition is generated when the PC value and STOP_PC values are the same, or when they are not the same. (Note that, in both cases, the match condition is also governed by the LSB mask function controlled by PCML.)

										•	TR	AX P	TR.	_	_	_				STE	R											
Add	dres	ss =	0xF	006_0	01	8																		De	efau	lt ۱	valu	ue	= 0>	(000	0_0	000
31	30	29	28	27 2	6	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	į	5	4	3	2	1	0
BIT	rs			FIE NAI						S/W CES	s	RES VAI	SET LUE								DE		ELI RIP	O TION	1							
31	1			PCI	ИS				F	RW		0>	κ0	Se va sa ler 0 =	elects lue a me. ngth, = PC	wh nd ((In k PC Ma	ethe STC ooth ML.)	er a l DP_F case) whee	PC PC ves,	Mato value the r	are natcl	op c the h co	con sar ndi	ditior me, c tion i DP_F DP_F	or whos als	ner so :	the sub	ey a ojec ual	are r	not t	he	
30:	:5			Rese	rve	ed						0x0 00	_																			
4:0	0			PCI	ИL				F	RW		0x	00	Se	lects	ho	w m	any	leas	st sig	•	ant	bits	gth of th C Ma						STO	P_F	C

Table 102 TRAX_PC_MATCH Register

TRAX_DLY_CNT - TRAX POST-TRIGGER DELAY COUNT REGISTER

The CAPTURE_SIZE field controls how many trace events are recorded from the occurrence of a valid Stop Event trigger until the Trace function completes.

The CAPTURE_SIZE field should be set to the desired value prior to enabling the Trace. When a valid Stop Event trigger is detected, the CAPTURE_SIZE field will decrement as subsequent Trace data is recorded, until the CAPTURE_SIZE counter reaches zero.

The CNTU field in the TRAX_CTRL register (see Table 97) selects which type(s) of Trace data will cause the CAPTURE_SIZE counter to decrement during the 'post-stop-trigger' period.

At the end of the Trace, a final synchronisation message is recorded, and all internally buffered messages are flushed to the Trace RAM.

The TRAX_DLY_CNT register can be read at any time, but Write access is normally only possible when the Trace function is inactive (TRACT=0).

Writing to the TRAX_DLY_CNT is possible while the Trace function is active, but only when setting the CAPTURE_SIZE value to 0. If a valid Stop Event trigger has occurred, and the Trace function is executing the 'post-stop-trigger' phase, then writing 0x00_0000 to the CAPTURE_SIZE field will cause the Trace to stop immediately.

		TRAX P		RAX_DLY_CNT GGER DELAY COUNT REGISTER
Addre	ss = 0xF006_001C			Default value = 0x0000_0000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD	S/W	RESET	FIELD
	NAME	ACCESS	VALUE	DESCRIPTION
30:24	Reserved		0x00	
23:0	CAPTURE_SIZE	RW	0x00 _0000	Trace Capture Size (Post-Stop-Trigger) Selects how many trace events are recorded from the occurrence of a valid Stop Event trigger until the Trace function completes. This field must be set to the desired value prior to enabling the Trace. Following a valid Stop Event trigger, the CAPTURE_SIZE field will decrement as subsequent Trace data is recorded. The Trace function stops when CAPTURE_SIZE reaches zero.

Table 103 TRAX_DLY_CNT Register

WATCHDOG TIMER (WDT) MODULE

BASE ADDRESS 0xF007_0000

WATCHDOG DESCRIPTION

The watchdog timer is enabled using WDT_ENA.

WDT_INT_ENA controls the assertion of Watchdog Timer Interrupt (to the Interrupt Module and to the HiFi2 EPTM DSP core) after the first occurrence of a watchdog timeout. WDT_INT_STS indicates that a watchdog timeout has caused an interrupt assertion.

WDT_RST_ENA controls the assertion of Watchdog Timer Reset signal (to the Reset controller) after the second occurrence of a watchdog timeout. The WDT_FLAG bit in the CCM_STATUS register (see Table 17) indicates that a watchdog timeout has occurred. Note that the Watchdog input to the Reset controller is selectable using the WDT_MSK bit, as described in the "Power-on and Reset Control" section.

Only the WDT_CTRL register (see Table 105) and the WDT_CNT_RESTART register (see Table 106) should be written while watchdog is running. No other watchdog registers should be written while watchdog is running.

All registers in the watchdog module are reset by a Warm Reset or a Hardware Reset unless otherwise stated.

Note that the watchdog clock enabling bit WDT_CLK_ENA is on the CCM_CLK_ENA register.

WATCHDOG TIMER INTERRUPT

The Watchdog Timer module can generate an interrupt when the timeout condition occurs.

The Watchdog Timer interrupt control registers are illustrated in Figure 33.

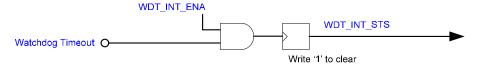


Figure 33 Watchdog Timer Interrupt

WATCHDOG REGISTER MAP

The register map of the Watchdog module is illustrated in Table 104.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	WDT_CTRL	Watchdog Control	0x0000_0000
Base + 0x04	WDT_CNT_RESTART	Watchdog Counter Restart	0x0000_0000
Base + 0x08	WDT_MAX_CNT	Watchdog Maximum Count	0x0000_FFFF
Base + 0x0C	WDT_CUR_CNT	Watchdog Current Count	0x0000_FFFF
Base + 0x10	WDT_RST_LEN	Watchdog Reset Pulse Length	0x0000_00FF

Table 104 Watchdog Register Definition

WM0011

WDT_CTRL - WATCHDOG CONTROL REGISTER

		\		WDT_CTRL DG CONTROL REGISTER							
Addres	ss = 0xF007_0000			Default value = 0x0000_0000							
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION							
31:6	Reserved		0x000_ 0000								
5	WDT_INT_ENA	RW	0x0	Enables interrupt assertion after the first occurrence of a watchdog timeout 0 = Disabled 1 = Enabled							
4	WDT_INT_ENA RW 0x0 0 = Disabled										
3	Reserved		0x0								
2	WDT_INT_STS	R/W1C	0x0	Indicates when a watchdog timeout has caused a watchdog interrupt assertion 0 = No watchdog interrupt has been set 1 = Watchdog interrupt has been set by a watchdog timeout This bit is cleared by writing a '1'							
1	Reserved		0x0								
0	WDT_ENA	RW	0x0	Watchdog Timer Enable 0 = Disabled 1 = Enabled							

Table 105 WDT_CTRL Register

WDT_CNT_RESTART - WATCHDOG COUNTER RESTART REGISTER

										WA	TCI			_		_RE				GIS	TER										
Ac	ldre	ss =	0xF	007	_000	04																		De	faul	t va	lue	= 0	x00	00_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BITS FIELD S/W RESET FIELD NAME ACCESS VALUE DESCRIPTION																														
31	l:1			Re	serv	ed					(00x0 000	_																		
()		WI	DT_	RES	TAF	RT		٧	VO		0x	0			•			esta s the		itchd	og t	imer								

Table 106 WDT_CNT_RESTART Register

WDT_MAX_CNT - WATCHDOG MAXIMUM COUNT REGISTER

WDT_MAX_CNT holds the target count value (measured in APBCLK cycles). This represents the number of APBCLK cycles that are counted before watchdog times out.

										w	ΆΤΟ	CHD	W og	/DT	_		_		REG	SIST	ER										
A	ddre	ss =	0xF	007	_000	80																		Def	fault	t val	ue :	= 0x	000	_FF	FFF
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	ITS			-	IEL[_	S/W CES		RES VAL									DE		ELD RIPT	ION							
3	1:0		W	DT_I	MAX	_CN	NT		F	RW		0x00 _FF	000 FF	Co	ount	valu	ie (n	neas	ure	d in	APB	CLK	сус	les)	befo	ore w	atch	ndog	j tim	es o	ut.

Table 107 WDT_MAX_CNT Register

WDT_CUR_CNT - WATCHDOG CURRENT COUNT REGISTER

										w	/AT	CHD			_	UR.	_		REC	GIST	ER											
Ad	dres	ss =	0xF	007_	000	С																		De	fau	lt v	alue	=	0x(0000)_F	FFF
31	30	29	28	27 2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	5 4	.] ;	3	2	1	0
Bľ	ΓS				ME		•			S/W CES	s	RES VAL				•				•	DE	-	FIELD		١		•					
31	:0		WE	DT_C	UR _.	_CN	ΙT		F	₹0		0x00 _FF		Wa Af dis va	her atch ter sab lue	urrer NO NO NO NO NO NO NO NO NO N	T_C is ac ssert WDT e W	UR_ tivation _EN DT_	CN ted. of F NA =	IT re RESE = 0), X_C	ache T ar the \ NT r	s t nd v WD	the va wher DT_C	alue ieve	helo	in wa	atcho	– log	tim	– ner i	s	

Table 108 WDT_CUR_CNT Register

WDT_RST_LEN - WATCHDOG RESET PULSE LENGTH REGISTER

WDT_RST_LEN controls the duration (pulse length) of the Watchdog Reset signal. This field represents the number of APBCLK cycles for which the Watchdog Reset signal is asserted (Active Low output to the Reset Controller).

									٧	VAT	СНГ	oog			_R PU	-	_		ΉR	EGI	STE	R									
Ad	ldre	ss =	0xF	007	_00	10																		De	faul	t val	ue	= 0x	000	0_0	0FF
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bľ	TS			-	IELI AMI	_			_	S/W CES		RES VAL					15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FIELD DESCRIPTION														
31	:8			Re	serv	ed						0x0 000	_																		
7:	:0		W	DT_	RST	_LE	N.		F	RW		0x00 _00_							•		for v					_		er R	eset	sigr	nal

Table 109 WDT_RST_LEN Register

UART MODULE

BASE ADDRESS 0xF008_0000

UART FEATURES

- Separate Transmit / Receive data buffers
- · Buffer status flags and interrupts
- RX data error detection and interrupts
- · Selectable Baud rate, derived from APBCLK
- · Selectable parity, stop bit, word length configuration
- Loopback test function
- Boot Status and Error reporting

Data transmitted and received via the UART_DAT register. When FIFO mode is enabled, a 16-word buffer is enabled in the UART TX and UART RX paths. (Note that separate TX/RX buffers are implemented.)

Data transmission is selected by simply writing to the UART_DAT register. The UART TX buffer provides a TX_BUF_EMPTY flag, which indicates when the buffer is empty. An Interrupt function is also supported, indicating the TX buffer status.

Received data can be read from the UART_DAT register. The RX_BUF_STS flag indicates when the buffer contains new data. An Interrupt function indicates when the RX buffer status exceeds a configurable threshold. Buffer overflow and data error indications are also provided.

During boot-up, the WM0011 generates status and error codes for external monitoring of the start-up process. These status codes are reported via the UART interface, in the form of a single ASCII character code for each condition. See "Boot Sequence Control" for further details.

UART INTERRUPTS

The UART module can generate an interrupt in response to TX or RX Data Buffer conditions, and also in response to RX Error conditions.

The UART Line Status and Interrupt Control registers are illustrated in Figure 34.

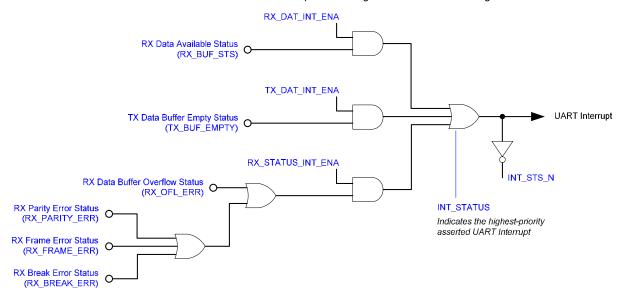


Figure 34 UART Interrupts

WM0011

UART REGISTER MAP

This table illustrates the address map of the UART module.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	UART_DAT	UART Data Register	0x00
Base + 0x04	UART_INT_CTRL	UART Interrupt Control Register	0x00
Base + 0x08 (Write)	UART_FIFO_CTRL	UART FIFO Control Register	0x00
Base + 0x08 (Read)	UART_INT_STATUS	UART Interrupt Status Register	0x00
Base + 0x0C	UART_LINE_CTRL	UART Line Control Register	0x00
Base + 0x10	UART_LOOPBACK_CTRL	UART Loopback Control Register	0x00
Base + 0x14	UART_LINE_STS	UART Line Status Register	0x00
Base + 0x00 (see note)	UART_BAUD_LSW	UART Baud LSW Register	0x01
Base + 0x04 (see note)	UART_BAUD_MSW	UART Baud MSW Register	0x00

Table 110 UART Register Definition

The UART_FIFO_CTRL and UART_INT_STATUS registers both exist at the same address; the applicable description depends on whether the register action is a Read or a Write operation.

The UART_BAUD_LSW and UART_BAUD_MSW registers are supported (instead of UART_DAT and UART_INT_CTRL respectively) when enabled using bit [7] of the UART_LINE_CTRL register.

UART_DAT - UART DATA REGISTER

				UART T DATA	_DAT	≣R										
Address = 0xF008_0000 Default value = 0x00																
	7 6 5 4 3 2 1 0															
BITS	BITS FIELD S/W RESET FIELD DESCRIPTION															
7:0	7:0 UART_DAT RW 0x00 READ - received data word from the RX data buffer. WRITE - write data word to be transmitted via the TX data buffer.															

Table 111 UART_DAT Register

UART_INT_CTRL - UART INTERRUPT CONTROL REGISTER

	UART_INT_CTRL UART INTERRUPT CONTROL REGISTER													
Addres	Address = 0xF008_0004 Default value = 0x00													
	7 6 5 4 3 2 1 0													
BITS	NAME ACCESS VALUE DESCRIPTION													
7:3														
2	Enables the RX Line Status Interrupt. The RX Status Interrupt is triggered whenever an RX Overflow, Parity, Framing or Transmission Break error is detected (RX DAT FRR=1 or													

		UAI		_	T_CTRL ONTROL REGIST	ER								
Addres	ss = 0xF008_0004								De	faul	t va	lue	= 0	00
							7	6	5	4	3	2	1	0
BITS	NAME ACCESS VALUE DESCRIPTION													
1	TX_DAT_INT_ENA	RW	0x0	Enables the TX Buffer Empty Interrupt. The TX Buffer Empty Interrupt is triggered whenever the TX data buffer is empty (TX_BUF_EMPTY=1). 0 = Disabled										
0	RX_DAT_INT_ENA	RW	0x0	1 = Enabled Enables the RX Data Available Interrupt. The RX Data Available Interrupt is triggered whenever data in the RX FIFO reaches the threshold set by RX_FIFO_LIMIT. 0 = Disabled, 1 = Enabled										

Table 112 UART_INT_CTRL Register

UART_FIFO_CTRL - UART FIFO CONTROL REGISTER

The UART_FIFO_CTRL and UART_INT_STATUS registers both exist at the same address; the applicable description depends on whether the register action is a Read or a Write operation.

The UART_FIFO_CTRL register is defined in Table 113. Note that this definition is valid for register Write operations only.

	UART_FIFO_CTRL UART FIFO CONTROL REGISTER Address = 0vE008, 0008														
Addres	ss = 0xF008_0008			Default value = 0x00											
				7 6 5 4 3 2 1 0											
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION											
7:6	7:6 RX_FIFO_LIMIT W Ox0 Sets the RX FIFO limit at which the RX Data Available Interrupt is asserted. Oh = 1 word 1h = 4 words 2h = 8 words 3h = 14 words Only valid in FIFO mode (FIFO_ENA=1). Note that the RX FIFO buffer will hold a maximum of 16 words.														
5:3	Reserved	W													
2	TX_FIFO_FLUSH	w	0x0	Flushes the TX FIFO buffer 0 = Normal TX FIFO operation 1 = Flush TX FIFO Only valid in FIFO mode (FIFO_ENA=1). Note that the FIFO is automatically flushed whenever FIFO_ENA is changed.											
1	RX_FIFO_FLUSH	W	0x0	Flushes the RX FIFO buffer 0 = Normal RX FIFO operation											

	UART_FIFO_CTRL UART FIFO CONTROL REGISTER Address = 0xF008 0008 Default value = 0x00														
Addres	ss = 0xF008_0008								Def	ault	t va	lue	= 0x	k00	
							7	6	5	4	3	2	1	0	
BITS	FIELD NAME	S/W ACCESS	RESET VALUE												
0	FIFO_ENA	W	0x0	0 = Dis 1 = En When TX and When		ed, a 1-word			•					₹T	

Table 113 UART_FIFO_CTRL Register

UART_INT_STATUS - UART INTERRUPT STATUS REGISTER

The UART_FIFO_CTRL and UART_INT_STATUS registers both exist at the same address; the applicable description depends on whether the register action is a Read or a Write operation.

The UART_INT_STATUS register is defined in Table 114. Note that this definition is valid for register Read operations only.

	UART_INT_STATUS UART INTERRUPT STATUS REGISTER													
Addres	ss = 0xF008_0008								Defau	lt va	lue =	0x00		
							7	6	5 4	3	2 1	0		
BITS	FIELD NAME	S/W ACCESS	RESET VALUE			FIELD DESCRIPT	ION							
7:6	FIFO_ENA_STS	R	0x0	UART FIFO Enable status 00 = Disabled 11 = Enabled All other codes are Reserved										
5:4														
3:1	INT_STATUS	R	0x0	0h = M 1h = T 2h = R 3h = R 6h = R Only va This fie Priority The R UART_	Interrupt Status Description of the Natural Status Change X Buffer Empty Interrupt X Data Available Interrupt X Line Status Interrupt (I alid when INT_STS_Neld provides an indication of the Natural Status Interrupt of DAT register within a ster Period).	e Interrupt (Pupt (Priority errupt (Priority pt (Priority 1) Priority 2b) - N=0. Ition of the hoccurs if received.	3) y 2a) see ighe) note st-pe	e below riority U a is not	ART	from th			
0	INT_STS_N	R	0x0	0 = UA 1 = UA Note th	Interrupt Status RT Interrupt is assert RT Interrupt is not as nat, when a UART Int FATUS field provides serted UART Interrup	sserted errupt is ass an indicatio		`	_	_	,,	bled		

Table 114 UART_INT_STATUS Register

WM0011

UART_LINE_CTRL - UART LINE CONTROL REGISTER

	UART_LINE_CTRL UART LINE CONTROL REGISTER														
Addres	ss = 0xF008_000C									Def	aul	t va	lue =	0>	(00
								7	6	5	4	3	2	1	0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE			D	FIELD ESCRIPT	ION							
7	BAUD_REGS_CTRL	RW	0x0	UART Baud Rate register control 0 = Disabled											
6	TX_BREAK_ENA	RW	0x0	UART TX Break control 0 = Disabled 1 = Enabled (forces TX output low)											
5:3	PARITY_BITS	RW	0x0	0h = No 1h = Oo 3h = Ev 5h = Pa	Parity select o parity dd parity ren parity urity bit set to ' urity bit set to '										
2	STOP_BITS	RW	0x0	UART Stop Bit select											
1:0	WORD_LEN	RW	0x0	1 = 1.5 stop bits (5 bit mode) or 2 stop bits (other modes) UART Word Length control 0h = 5 bits											

Table 115 UART_LINE_CTRL Register

UART_LOOPBACK_CTRL - UART LOOPBACK CONTROL REGISTER

	UART_LOOPBACK_CTRL UART LOOPBACK CONTROL REGISTER														
Addres	ss = 0xF008_0010									De	faul	lt va	lue	= 02	00x
								7	6	5	4	3	2	1	0
BITS	NAME ACCESS VALUE DESCRIPTION														
7:5															
4	Loopback mode control 0 = Disabled 1 = Enabled														
3:0	Reserved														

Table 116 UART_LOOPBACK_CTRL Register

UART_LINE_STS - UART LINE STATUS REGISTER

The UART_LINE_STS register contains status bits indicating TX or RX Data Buffer conditions, and RX Error conditions. Many of these bits are inputs to the UART Interrupt function, as illustrated in Figure 34.

Note that, if an RX Error condition is detected, then the associated data word will be discarded. The applicable Error Status bit(s) will be set, and will remain set until a subsequent data word is successfully received.

UART_LINE_STS UART LINE STATUS REGISTER														
Addres	ss = 0xF008_0014			Default value = 0x00										
				7 6 5 4 3 2 1 0										
BITS	FIELD	S/W	RESET	FIELD										
	NAME	ACCESS	VALUE	DESCRIPTION										
7	RX_DAT_ERR	RO	0x0	RX Data Error Status 0 = No Error 1 = RX Parity, Framing, or Transmission Break error This bit is set to '1' when an RX Break Error, RX Frame Error, or RX Parity Error is detected. It can only be cleared to '0' when a subsequent data word is successfully received.										
6	TX_IDLE_STS	RO	0x0	TX Idle Status 0 = TX Data buffer not empty and UART output is active 1 = TX Data buffer is empty and UART output is idle										
5	TX_BUF_EMPTY	RO	0x0	TX Data Buffer Status 0 = TX Data buffer not empty 1 = TX Data buffer is empty										
4	RX_BREAK_ERR	RO	0x0	1 = TX Data buffer is empty RX Break Error Status 0 = No Error 1 = RX Break Error This bit is set to '1' when an RX Break Error is detected. It can only be cleared to '0' when a subsequent data word is successfully received.										
3	RX_FRAME_ERR	RO	0x0	RX Framing Error Status 0 = No Error 1 = RX Framing Error This bit is set to '1' when an RX Frame Error is detected. It can only be cleared to '0' when a subsequent data word is successfully received.										
2	RX_PARITY_ERR	RO	0x0	RX Parity Error Status 0 = No Error 1 = RX Parity Error This bit is set to '1' when an RX Parity Error is detected. It can only be cleared to '0' when a subsequent data word is successfully received.										
1	RX_OFL_ERR	RO	0x0	This bit is set to '1' when an RX Data Overflow Error is detected. It can only be cleared to '0' when a subsequent data word is successfully received.										
0	RX_BUF_STS	RO	0x0	RX Data Buffer Status 0 = No RX data to read 1 = RX Data is available to read										

Table 117 UART_LINE_STS Register

UART_BAUD_LSW - UART BAUD LSW REGISTER

Note that the Address of this register is the same as the UART_DAT register. The UART_BAUD_LSW register is only accessible when BAUD_REGS_CTRL=1 (see UART_LINE_CTRL register).

	UART_BAUD_LSW UART BAUD LSW REGISTER													
Addres	Address = 0xF008_0000 Default value = 0x01													
	7 6 5 4 3 2 1 0													
BITS	BITS FIELD S/W RESET FIELD NAME ACCESS VALUE DESCRIPTION													
7:0	7:0 UART_BAUD [7:0] RW 0x01 Least Significant Word (LSW) of the UART Baud Rate divisor. UART Baud Rate = [APBCLK frequency] / 16 x UART_BAUD.													

Table 118 UART_BAUD_LSW Register

UART_BAUD_MSW - UART BAUD MSW REGISTER

Note that the Address of this register is the same as the UART_INT_CTRL register. The UART_BAUD_LSW register is only accessible when BAUD_REGS_CTRL=1 (see UART_LINE_CTRL register).

	UART_BAUD_MSW UART BAUD MSW REGISTER														
Addres	Address = 0xF008_0004 Default value = 0x00														
	7 6 5 4 3 2 1 0														
BITS	BITS FIELD S/W RESET FIELD DESCRIPTION														
7:0	UART_BAUD [15:8]	RW	0x00	Most Significant Word (MSW) of the UART Baud Rate divisor. UART Baud Rate = [APBCLK frequency] / 16 x UART_BAUD.											

Table 119 UART_BAUD_MSW Register

SERIAL PERIPHERAL INTERFACE (SPI) MODULE

BASE ADDRESS 0xF030_0000

SPI FEATURES

- Configurable Data/Clock phase and Clock polarity
- Data word length can be on 8, 16, 24, 32 or 64 bits
- · Selectable data bit ordering (LSB first or MSB first)
- Polarity selection for the Slave Select (SPISS) signal
- · Programmable soft reset capability
- Selectable "auto-retransmit" mode
- Selectable "early-tx-data transition" mode
- · Byte-packing options
- Multiple Transfer mode allowing multiple data words per SPISS assertion
- Master Mode Slave Select "shaping" (configurable SPISS set-up, hold and wait times)

SPI MASTER MODE

The SPI_MISO pin direction is Input.

The SPISS, SPISCLK, and SPIMOSI pins are driven as Outputs, but only during an actual data transfer. After a master data transfer has completed, these signals are tri-stated. This allows for lower power usage, and for usage in a multi-master SPI scenario.

Note that the above behaviour can be adjusted using the SPI_MM_MODE register (see Table 121), which allows constant driving of these master mode output signals whenever the SPI block is enabled.

The SPI Master mode is selected by setting SPI_MODE=0. The user should configure the desired SPISCLK, SPISS, and MISO/MOSI parameters, and lastly set SPI_ENA=1 to enable the SPI module.

The SPI module will then be in Master mode, and will initiate a SPI data transfer when data is written to the SPI_DAT data register. The outgoing SPI_DAT data is double-buffered, allowing for the queuing of the "next word" to be transferred, while the current word is being shifted out.

SPI SLAVE MODE

The SPISS, SPISCK, and SPIMOSI pin direction is input.

The SPIMISO pin is driven as Output, but only during an actual data transfer. After a slave data transfer has completed (i.e. de-assertion of SPISS by the master), this signal is tri-stated. This allows for usage in a multi-slave SPI scenario.

The SPI Slave mode is selected by setting SPI_MODE=1. The user should configure the desired SPISCLK, SPISS, and MISO/MOSI parameters, and lastly set SPI_ENA=1 to enable the SPI module.

The SPI module will then be in Slave mode, and will wait for a SPI data transfer from an external master. Once initiated, the incoming data bits are shifted in until one word is received. The incoming data word is placed in a holding register, allowing for the reception of the serial bits of a "new current word", while the previous word is being queued for transfer to the AHB system side.

SPISCLK (CLOCK) CONFIGURATION

In SPI Master mode, the SPI Clock Divisor register SPI_SCLKDIV is used to control the frequency of SPISCLK. The register stores a 16-bit parameter that supplies the initial value for the clock generator counter. The derived frequency for SPISCLK is:

[AHBCLK frequency] / (SPI_SCLKDIV+1) * 2

In SPI Master mode, the maximum supported SPISCLK frequency is [AHBCLK frequency] / 8.

In SPI Slave mode, there is an asynchronous clock domain crossing between the incoming SPISCLK clock and the AHB clock, as well as $\overline{\text{SPISS}}$ detection that is synchronized to the AHB clock. The synchronization to the AHB clock domain places a restriction on the maximum rate of SPISCLK, and set-up and hold requirements on $\overline{\text{SPISS}}$.

In SPI Slave mode, the AHBCLK frequency must be faster than the SPISCLK frequency.

Software can select the SPICLK phase and polarity using the register bits MSTR_CLK_POL and MSTR_CLK_PHASE in Master mode, or SLV_CLK_POL and SLV_CLK_PHASE in Slave mode. These can be found in the SPI_CFG register.

The selectable options are illustrated in Figure 35 and Figure 36, showing an 8-bit SPI transfer.

When SLV_CLK_PHASE=0, the Slave begins sourcing the first bit of data as soon as \$\overline{SPISS}\$ is driven active. When MSTR_CLK_PHASE=0, the Master will drive the first bit out at the beginning of the clock cycle. The receiving device should sample the first data bit on the first transition of the clock.

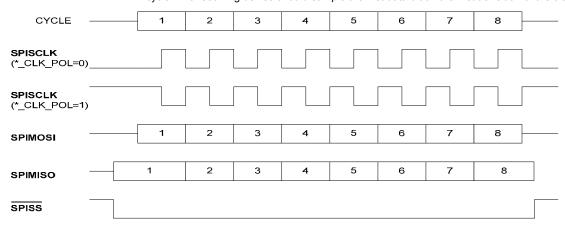


Figure 35 SPI Protocol with CLK_PHASE=0

When SLV_CLK_PHASE=1, the Slave begins sourcing the data as soon as \$\overline{SPISS}\$ is driven active. When MSTR_CLK_PHASE=1, the Master will drive the first bit out at the beginning of the cycle, corresponding to the first transition of the clock. The receiving device should sample the first data bit on the second transition of the clock.



Figure 36 SPI Protocol with CLK_PHASE=1

MISO/MOSI (DATA) CONFIGURATION

The SPI_CFG configuration register contains control parameters for the MOSI/MISO data.

The BIT_ORDER register selects whether data is transmitted MSB-first or LSB-first.

The WL_1 [1:0] and WL_2 fields select the data word length. The word length can be 8, 16, 24, 32 or 64 bits. The transmission of WL bits is one "transfer". The SPI Slave Select (SPISS) remains asserted for the entire word transfer length.

Note that 64-bit mode (WL_2=1) is only valid for DMA transfers.

SPISS (SLAVE SELECT) PROTOCOL

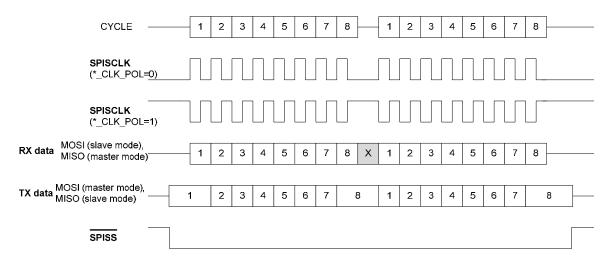
The SPI module supports two different SPISS protocols. These are the 'Single-Word' transfer mode and the 'Multiple Word' transfer modes.

In Master mode, the SPI_MT_ENA bit controls whether the SPISS signal de-asserts between each word transfer (single-word transfers), remains asserted over multiple word transfers.

Setting SPI_MT_ENA=1 selects the function of the SPI module continually asserting \$\overline{SPISS}\$ over multiple word transfers. When \$\overline{SPI_MT_ENA=0}\$, the \$\overline{SPI}\$ module will treat each data transfer as a separate sequence of \$\overline{SPISS}\$ assertion, \$\overline{SPISC}\$ data transfer, \$\overline{SPISS}\$ de-assertion.

Note that, in Slave mode, there is no unique concept of Multiple-Transfer mode (multiple data transfers per single \overline{SPISS} assertion). The SPI module will simply accommodate whatever is presented on the SPI bus, and move a data word as soon as all the bits are received, regardless of whether \overline{SPISS} is de-asserted between words.

When 'Multiple Word' transfer mode is selected in Master mode, the SPISS signal will assert upon the first data transmission (same as in single-word mode). After completion of the first data word transmission, SPISS remains asserted. Subsequent writes to the SPI_DAT register simply perform further data word transmissions (SPISCLK/MOSI data transfers), and the SPI module remains in this state indefinitely.


When 'Multiple Word' transfer mode is selected in Master mode, there are three methods by which the $\overline{\text{SPISS}}$ line may be de-asserted:

- De-select Multiple Transfer mode (set SPI_MT_ENA=0). Slave Select (SPISS) is deasserted and the Master Mode state machine is returned to 'Idle'. Subsequent SPI transfers will be single-word, unless the SPI_MT_ENA bit is once again set to '1'.
- 2. Re-arm the Multiple Transfer mode by writing a '1' to SPI_MT_IDLE. Slave Select (SPISS) is de-asserted and the master mode state machine is returned to 'Idle'. This effectively does the same thing as (1) above, but without ever leaving the Multiple Transfer mode.
- 3. Select automatic re-arming of the Multiple Transfer mode each time the transfer count (SPI_BP_CNT) is reached. This is valid for byte-packing mode only, and must always be selected when Multiple Transfer mode and Byte-Packing modes are both enabled. This effectively does the <u>same</u> thing as (2) above, but without having to write to the SPI_CTRL register to de-assert SPISS. This function is controlled via register bit BP_MT_ENA.

Note that the request to exit the Multiple Transfer mode is queued, and not immediate. If there is a current transfer in progress, or more outgoing data queued, then SPISS will remain asserted until the outgoing data transmission has completed. The request to exit or re-arm Multiple Transfer mode will occur after transmission of the queued data has completed.

The Single-Word transfer protocol is illustrated in Figure 35 and Figure 36. The Multiple-Word transfer protocol is illustrated in Figure 37.

Note: The incoming (RX) And outgoing (TX) data is shown following the standard protocol of transitioning on 'Launch' edges of SPISCLK. This is configurable using the *_CLK_PHASE bits.

Figure 37 Multiple Transfer Mode

SPISS (SLAVE SELECT) CONFIGURATION AND TIMING CONTROL

The SPI_SS_CFG register is used to control the SPISS signal protocol, allowing user selection of the SPISS signal polarity, set-up and hold timing between SPISS and SPISCLK, and the wait periods between back-to-back transfers.

SS_POL selects the polarity, which may be either Active-High or Active-Low SPISS assertion.

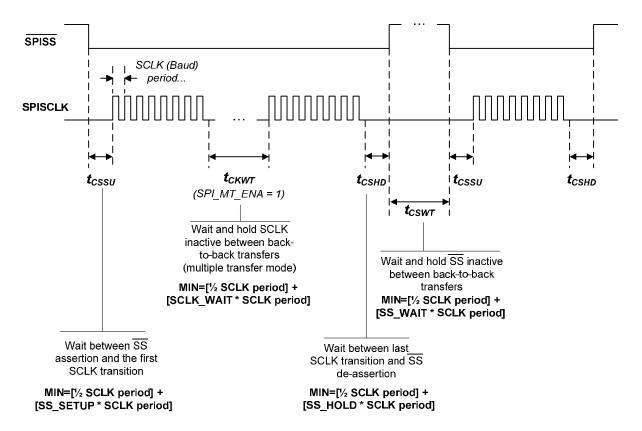
SS_SETUP determines the minimum wait-time from assertion of $\overline{\text{SPISS}}$ to the first SPISCLK transition. Note that the minimum setup time is also constrained as described in the "Signal Timing Requirements" section.

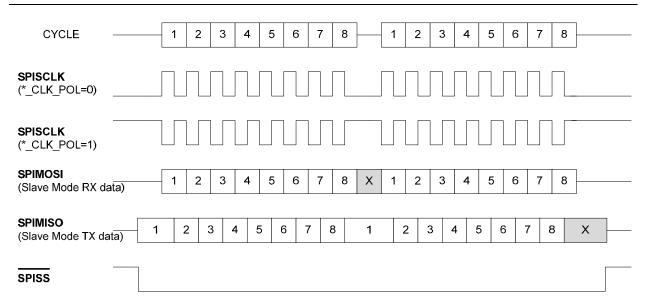
SS_HOLD determines the wait-time between the last SPISCLK transition and the de-assertion of SPISS. Note that the minimum wait time time is also constrained as described in the "Signal Timing Requirements" section.

SS_WAIT determines the wait-time between successive data transfers in single-transfer mode (SPI_MT_ENA = 0). This parameter allows insertion of a chip select pause, to allow downstream slaves to offload their recently-received data.

SCLK_WAIT determines the wait-time between successive data transfers in multiple-transfer mode (SPI_MT_ENA = 1). Note that the $\overline{\text{SPISS}}$ signal is not de-asserted during the SCLK_WAIT period. This parameter allows insertion of a clock pause, to allow downstream slaves to offload their recently received data.

The SPISS signal control timings are measured in numbers of SPISCLK clock cycles, and are illustrated in Figure 38.




Figure 38 SPISS (Slave Select) Timing Diagram

EARLY TRANSMIT DATA PHASE

For circumstances where the SPI port is to be run at a high speed, and there is possibility of long delays between the launch edge and transition of transmitted data, an 'Early Transmit Data Phase' mode is provided.

The Early Transmit Data Phase mode is enabled by setting the TX_PHASE bit in the SPI_CFG register. This control bit affects the transmitted data (SPIMISO) in SPI Slave Mode. Note that the Early Transmit Data Phase mode is supported in SPI Slave Mode only.

When Early Transmit Data Phase mode is enabled, the effect is that the transmitted data transitions half an SPISCLK period early. This allows for a full period of setup time to the 'capture' SPISCLK edge, instead of only half a period of set-up time. The gain in set-up margin is countered by a loss in hold margin. Users should ensure appropriate setup and hold constraints at the ASIC level if this mode is to be used.

Note: The incoming (RX) data is shown following the standard protocol of transitioning on 'Launch' edges of SPISCLK. The outgoing (TX) data transitions half an SPISCLK cycle early, on the 'Capture' edges of SPISCLK.

Figure 39 Early Transmit Data Mode (SPI Slave Mode only)

AUTOMATED RE-TRANSMISSION OF DATA WORD

Upon detection of an Underclock (UCLK_ERR) error (see Table 124), the default behavior of the SPI module is to reset the bit counters and the transmit side holding buffers, assuming that software must re-load the word that did not complete transmission due to the UCLK_ERR error. Note that the receive side holding buffers are not reset, and contain the data word received from the last good transfer.

An optional mode is provided by setting the SPI_UCLK_MODE bit in the SPI_CTRL register. When set, the reset of the transmit side holding buffers due to UCLK_ERR error is disabled, and the word that did not complete transmission remains queued for transmit.

DOUBLE-BUFFERED TRANSMIT

A double-buffered transmit feature is provided, allowing support for slower SPISCLK rates, helping to ensure there is enough time for the transmit buffer architecture to queue up each word for transmission. This effectively makes two final-stage shift-register buffers, actively shifting one buffer while queuing data in the other.

This feature is controlled by the TX_DBL_BUF_ENA register bit (see Table 122).

SPI BYTE-PACKING

The SPI module interface to the AHB bus is 64-bit width. The external SPI data bus format typically uses smaller data widths (down to 8-bit size). To allow more efficient use of AHB bus bandwidth in cases where the SPI bus word size is small compared to the AHB bus width, a byte-packing feature is provided.

The byte packing process employs a data buffering stage, in which the 64-bit AHB bus width is filled with smaller-width SPI words. The precise packing format depends upon the applicable SPI word length.

In the case of SPI Receive (RX) path, SPI words are loaded into a buffer, which is transferred onto the AHB bus when sufficient SPI words have been 'packed'.

For SPI Transmit (TX), the 64-bit AHB data is loaded into a buffer, for transmission in smaller-sized blocks via the SPI protocol.

The SPI byte-packing feature is enabled by setting the BP_ENA control bit. When byte-packing is enabled, the 64-bit AHB bus width is packed as shown in Figure 40, according to the applicable SPI word length.

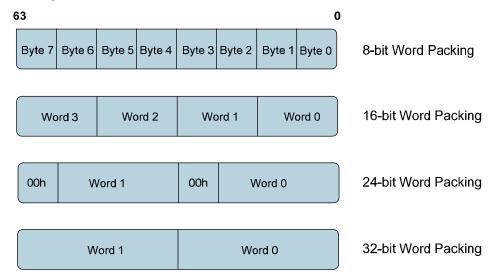


Figure 40 Byte Packing for different SPI Word Lengths

The Byte Packing State Machine will handle and control movement of data between the Byte Packing holding registers and the SPI holding registers. It also generates a specific Byte-Packing Interrupt and manipulates the DMA handshake signaling such that Interrupt requests and DMA requests are synchronized to the larger-capacity Byte Packing holding registers.

The state machine also handles instances where the total number of words to be packed does not fit precisely into full 64-bit AHB width; the user does not need to make any specific provision for this.

In SPI Master mode, the SPI_BP_CNT register is used to specify the total number of words to be transferred in Byte-Packed format. Note that, to avoid a lock-up, the number of words must be known and configured before the transfer commences.

In SPI Slave mode, the SPI_BP_CNT register provides readback of the number of words that have been transferred. The readback is only valid after the byte-packed transfer has completed, which is detected when $\overline{\text{SPISS}}$ is de-asserted.

In Master and Slave modes, the SPI_BP_CNT_RAW register provides readback of the number of words that have been transferred during the active transfer; the register can be read at any time during the transfer.

Note that, when Multiple Transfer mode is enabled in SPI Master mode, and Byte Packing is also enabled, the BP_MT_ENA register bit must be set to 1.

SPI DMA OPERATIONS

DMA operations associated with the SPI interface are controlled by the SPI_DMA_CTRL register.

For DMA handshake in Master or Slave modes, the SPI_DMA_CTRL register bits must be set for the desired operation:

The WR_RQST_ENA bit enables the DMA Write request handshake, which indicates the transmit buffer is empty and ready for more data.

The RD_RQST_ENA bit enables the DMA Read request handshake, which indicates the receive buffer is full and needs to be read.

In the case where byte-packing is disabled (BP_EN=0), the DMA requests are based on the normal buffer status (empty, full) – ie. mimics the function of the CYC_DONE status.

When byte-packing is enabled (BP_EN=1), the DMA requests are based on the packed BP 64-bit buffer status (empty, full), OR on the determination that the byte-packed transfer is done - ie. it mimics the function of the BP_DONE status.

The CYC_DONE and BP_DONE registers are held within the SPI_STATUS register.

SPI CONTROL SEQUENCES

Typical control sequences for SPI data transmission are illustrated on the following pages.

Note that the different figures illustrate the configurable handling of the Underclock Error (UCLK_ERR) condition, which is selectable as described in Table 124.

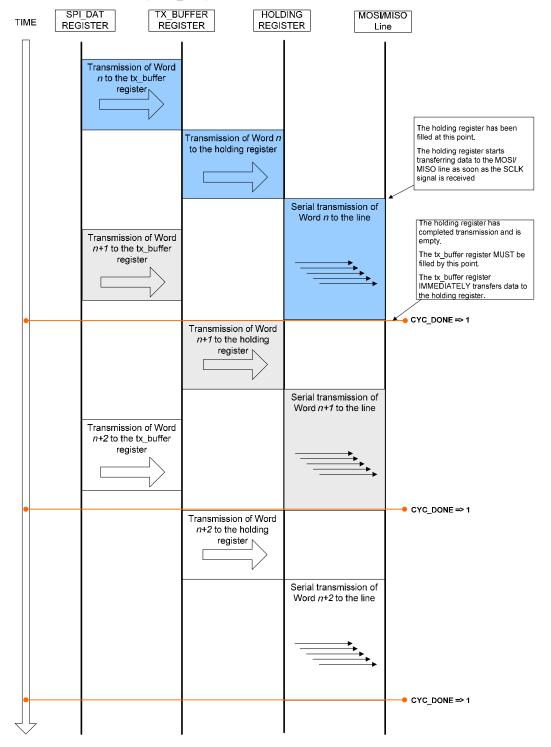
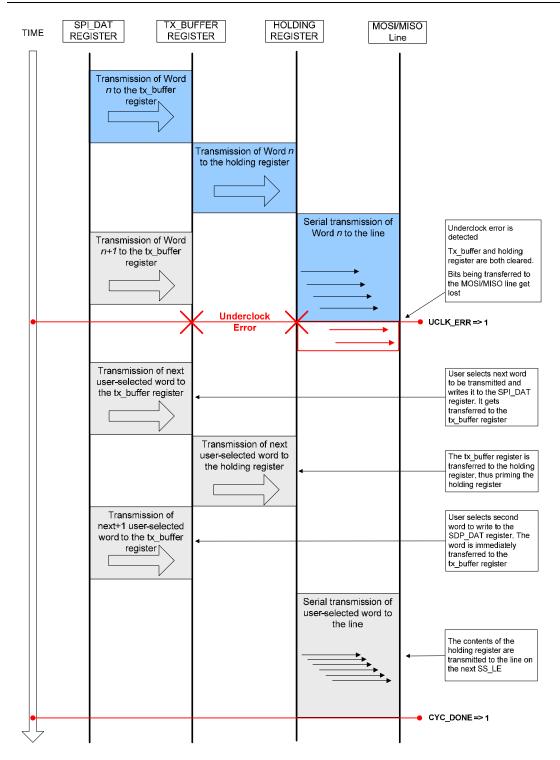
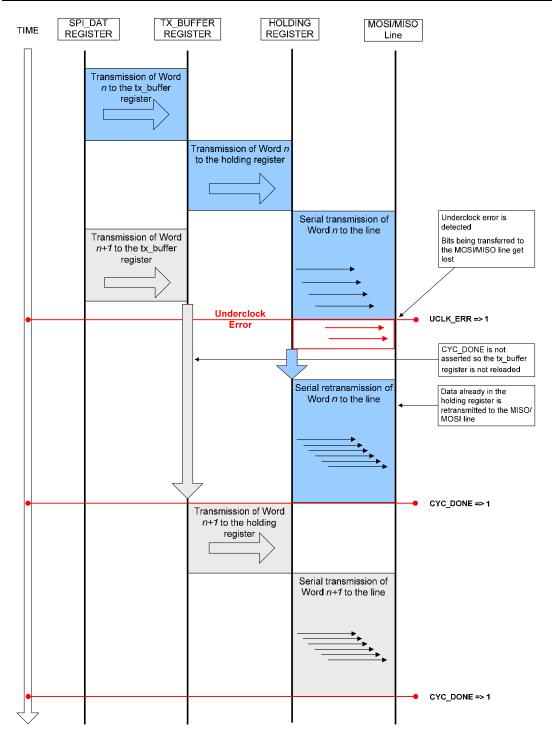



Figure 41 Normal SPI Transmission - No Errors



Underclock error - UCLK_ERR = 0

Following an Underclock Error, the user determines what data to send next. Both tx_buffer and the holding register must be primed before the next CYC_DONE. It is recommended that this is done during the UCLK ERR interrupt.

Figure 42 SPI Transmission with Underclock Error, UCLK_ERR=0

Underclock error - UCLK_ERR = 1

Following an Underclock Error, the data in both the tx_buffer register and the holding register are retained, and the word being transmitted at the time of the Underclock error is re-transmitted to the MOSI/MISO output.

Figure 43 SPI Transmission with Underclock Error, UCLK_ERR=1

SPI INTERRUPTS

The SPI module can generate an interrupt when any of the conditions described in the SPI_STATUS register occurs. The interrupt conditions provide status indications of the SPI bus transactions, and are summarised below.

- TX_UFL_ERR (Write Underflow Error): the outgoing data buffer did not get loaded with new data since the last transmission, and another transmission began.
- RX_OFL_ERR (Read Overflow Error): the incoming data buffer did not get off-loaded since the last reception, and was overwritten with another incoming data word.
- SS LE (Leading Edge): the assertion of SPISS was detected.
- SS_TE (Trailing Edge): the de-assertion of SPISS was detected.
- CYC_DONE: a transfer cycle of one word (WL bits) has completed.
- UCLK_ERR (Underclock Error): the de-assertion of SPISS occurred with fewer than WL bits sent/received.
- BP_DONE: a transfer of 'n' words in a byte-packed transfer has completed, indicating that the Byte Packing holding register is full (RX) or empty (TX).

The SPI_INT_STS bit is the logical OR of the enabled status bits. For the interrupt to propagate (to the Interrupt Module and to the HiFi2 EPTM DSP core), the SPI_INT_ENA bit must also be set.

The SPI interrupt control registers are illustrated in Figure 44.

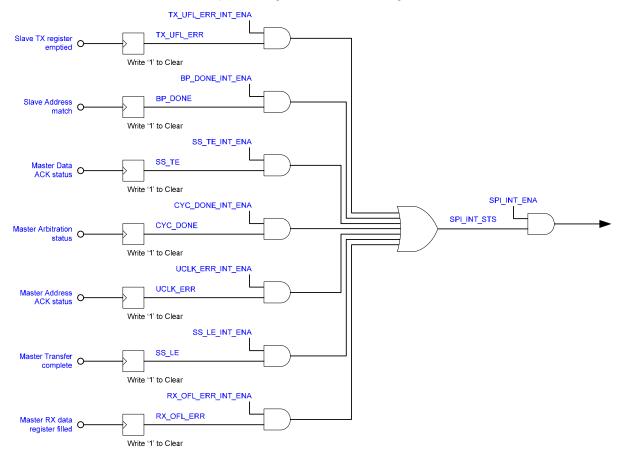


Figure 44 SPI Interrupts

WM0011

SPI REGISTER MAP

This table illustrates the address map of the AHB SPI module

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	SPI_CTRL	SPI Control	0x0000_0000
Base + 0x08	SPI_CFG	SPI Configuration	0x0000_0200
Base + 0x10	SPI_SCLKDIV	SPI Clock Division	0x0000_0008
Base + 0x28	SPI_STATUS	SPI Status	0x0000_0000
Base + 0x30	SPI_SS_CFG	SPI Slave Select Configuration	0x0000_0000
Base + 0x38	SPI_DAT	SPI Data	0x0000_0000
Base + 0x40	SPI_INT_CTRL	SPI Interrupt Control	0x0000_0034
Base + 0x48	SPI_DMA_CTRL	SPI DMA Control	0x0000_0000
Base + 0x50	SPI_BP_CNT	SPI Byte Pack Word Count	0x0000_0000
Base + 0x58	SPI_BP_CNT_RAW	SPI Byte Pack Raw Word Count	0x0000_0000

Table 120 SPI Register Definition

SPI_CTRL - SPI CONTROL REGISTER

												S	PI C		-	_CTI		ST	EF	₹														
Ad	dres	ss =	0xF	03	30_00	000																				De	faul	lt	value	=	0x	000	0_0	0000
31	30	29	28	2	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	3	12	11	10		9	8	7	6		5 4		3	2	1	0
Bi	ts				Fiel	d			S	/W		Res	set											Fie	ld									
					Nan	1e			Ac	ces	S	Val	ue									D	es	scri	pt	ion								
31	9			R	Reser	ved						0																						
8	Selects the response to an Underclock Error condition: 0 = On a UCLK_ERR error, the transmit holding register is reset, and the word that was transmitting when the UCLK error occurred is lost. 1 = On a UCLK_ERR error, the transmit holding register does not get reset, so the word that was transmitting when the UCLK error occurre remains queued. Multi-Master mode (Valid in SPI Master Mode only): 0 = Multi-Master mode, always tri-state the SPISS, SPISCLK and SPIMOSI lines when a transfer is complete. 1 = Single-Master mode, always drive the SPISS, SPISCLK and														t. et																			
7	the word that was transmitting when the UCLK error occurred is lost. 1 = On a UCLK_ERR error, the transmit holding register does not get reset, so the word that was transmitting when the UCLK error occurred remains queued. Multi-Master mode (Valid in SPI Master Mode only): 0 = Multi-Master mode, always tri-state the SPISS, SPISCLK and SPIMOSI lines when a transfer is complete.																																	
6			S	SPI	_MT	_EN/	4		F	RW		0x	0	0 =	= G	ener	ate s	sin	gle	tra	ansf	ers (de	e-ass	serl	t SP	ISS	а	e only fter ea	acl			fer).	
5			S	PI.	_MT_	_IDLI	E		V	VO		0x	0	Wr	itir sei	ıg a '	1' to he S	thi SPI	is b	it i	re-a	rms	th	е Мі	ıltip	ole T	ran	sf	de onl er ope ne ma	era	atior			
4				R	Reser	ved						0x	0																					
3				SF	PI_M	DDE			F	RW		0x	0	0 =	= N	/lode lastei lave :	SP	۱m	nod															
2		s	PI_L	0	OPB	ACK.	_EN	A	F	RW		0x	0	0 = 1 =	= N = S	nal Lo orma erial rse th	I op inpu	era t is	atio s lin	n. ike	ed to						(int	er	nal si	gn	alin	g; (loes	s not

												S	SPI (_	CTI DL R		STE	R												
Ad	dres	ss =	0xF	030	_000	00																		De	faul	t va	lue	= 0	x000	0_0	000
31	30																14	13	1:	2 11	10	9	8	7	6	5	4	3	2	1	0
Bi	ts																					Fie	ld						•		
		Name Access Value																			De	scri	pti	on							
		Name Access Value SPI In interru															pt E	nabl	le;	selec	ts w	hethe	r SF	기_	NT_	ST	S will	l cau	ise a	n	
	Name Access Value SPI Int. SPI INT. ENA RW 000															pt, o	r no	t.													
'	SPI Inte															sable	e the	inte	err	upt lir	e.										
														1 =	= Er	able	the	inte	erru	upt lin	e to t	he CF	PU.								
														SF	ΊМ	odul	e En	able	Э												
()			SPI	LEN	NΑ			F	RW		0x	0	0 =	= Di	sable	ed														
														1 =	= Er	able	d														

Table 121 SPI_CTRL Register

SPI_CFG - SPI CONFIGURATION REGISTER

			SPI CON	SPI_CFG FIGURATION REGISTER
Addres	ss = 0xF030_0008			Default value = 0x0000_0200
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD	S/W	RESET	FIELD
	NAME	ACCESS	VALUE	DESCRIPTION
31:14	Reserved		0	
13	BP_MT_ENA	RW	0x0	Byte-packing in Multiple Transfer mode 0 = Disabled 1 = Enabled This bit must be set to 1 when Byte Packing and Multiple Transfer modes are both enabled in SPI Master Mode. (Byte Packing mode is selected using BP_ENA; Multiple Transfer mode is selected using SPI_MT_ENA; SPI Master mode is selected using SPI_MODE.)
12	BP_ENA	RW	0x0	Byte-packing mode 0 = Disabled 1 = Enabled
11	Reserved		0x0	
10	TX_DBL_BUF_ENA	RW	0x0	Transmit Double-Buffer mode: 0 = Disable double-buffer; single shift register buffer and single queuing buffer 1 = Enable double-buffer; "ping-pong" on shift register transmit output path (keep up with back-to-back words at faster HCLK:SCK ratios)
9	TX_PHASE	RW	0x1	Early Transmit Data Phase: 0 = Disabled - normal transmit data phase, transitions are on the launch edge of SPISCLK 1 = Enabled - output data transitions occur half an SPISCLK period sooner than the normal protocol (i.e. transition on capture edge instead of launch edge) Note that Early Transmit mode is only supported in SPI Slave Mode. This bit should be set to 0 in SPI Master Mode.

				SPI_CFG
			SPI CON	FIGURATION REGISTER
Addres	ss = 0xF030_0008			Default value = 0x0000_0200
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD
	NAME	ACCESS	VALUE	DESCRIPTION Word Longth (64 bit extension) use with WL 4 [4:0]:
8	WL_2	RW	0x0	Word Length (64-bit extension), use with WL_1 [1:0]: 0 = Use WL_1 [1:0] to determine word length 1 = Select 64-bit word length Note that 64-bit mode (WL_2=1) is only valid for DMA transfers.
7	SLV_CLK_PHASE	RW	0x0	Slave Mode Clock Phase: Selects the timing of the SPIMOSI and SPIMISO data bits in SPI Slave mode. The definition describes the timing of the first data bit only; subsequent data bits are aligned with the corresponding edge (ie. rising or falling) of successive SPISCLK cycles. 0 = Valid on the first SPISCLK transition after SPISS asserted 1 = Valid on the second SPISCLK transition after SPISS asserted
6	SLV_CLK_POL	RW	0x0	Slave Mode Clock Polarity: 0 = SPISCLK is Low (0) in its inactive state 1 = SPISCLK is High (1) in its inactive state
5	MSTR_CLK_PHASE	RW	0x0	Master Mode Clock Phase: Selects the timing of the SPIMOSI and SPIMISO data bits in SPI Master mode. The definition describes the timing of the first data bit only; subsequent data bits are aligned with the corresponding edge (ie. rising or falling) of successive SPISCLK cycles. 0 = Valid on the first SPISCLK transition after SPISS asserted 1 = Valid on the second SPISCLK transition after SPISS asserted
4	MSTR_CLK_POL	RW	0x0	Master Mode Clock Polarity: 0 = SPISCLK is Low (0) in its inactive state 1 = SPISCLK is High (1) in its inactive state
3	BIT_ORDER	RW	0x0	Least Bit First: 0 = Data is MSB-first 1 = Data is LSB-first
2	SPI_RESET	RW	0x0	Module Reset: 0 = Normal operation 1 = Force soft reset of module. The internal state machines are reset; Status register is cleared; However, the soft reset doesn't affect control register values.
1:0	WL_1	RW	0x0	Word Length select: 00 = 8-bit word length 01 = 16-bit word length 10 = 24-bit word length 11 = 32-bit word length

Table 122 SPI_CFG Register

SPI_SCLKDIV - SPI CLOCK DIVISION REGISTER

For custom-programmed devices, the start-up (default) contents of this register are configured in the fuse memory, and can be set according to the application requirements.

Note that this register can be written and updated prior to software download using the "PLL Configuration Download" code packet.

			SPI CLO	SPI_SC			SISTE	:R											
Addre	ss = 0xF030_0010											De	faul	t va	lue	= 0>	(000	0_0	800
31 30	29 28 27 26 25 24 23	22 21 20	19 18	15 1	4 13	3 12	11	10	9	8	7	6	5	4	3	2	1	0	
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	·		•	•		DE		LD RIPTIC	ON							
31:16	Reserved		0																
15:0	SPI_SCLKDIV	RW	0x0008	Clock numbe 0000h 0001h 0002h FFFFh AHBC This fie	er of Al n = 1 cl n = 2 cl n = 3 cl n = 655	HBCI ock o ock o ock o	LK cycle cycles cycles clock (vcles s cycle	in ea	ach _l	phase o = (S	of	the	SPI	SCL	К о	utpu		he

Table 123 SPI_SCLKDIV Register

SPI_STATUS - SPI STATUS REGISTER

The SPI_STATUS register is defined in Table 124.

Four status bits in the SPI_STATUS register give an indication of the status of each word transferred. The table below shows some typically expected status, assuming that the status bits are cleared to '0' by software after being read (i.e. reset the status for each transfer).

SS_LE	UCLK_ERR	CYC_DONE	SS_TE	INTERPRETATION
1	0	1	0	First word of a transfer completed – it may be a multiple-word transfer, or it may be a single-word transfer and the chip select has yet to be de-asserted.
1	0	1	1	Single-word transfer completed and chip select has already deasserted
0	0	0	1	Chip select was de-asserted.
1	1	0	1	Underclock error, single-word transfer (not enough bits sent prior to de-assertion of chip select)
0	0	1	0	Subsequent word of a multiple-word transfer completed – there may be more words to come, or it may be the last word and the chip select has yet to be de-asserted.
0	0	1	1	Last word of a multiple-word transfer completed and chip select deasserted
0	1	0	1	Underclock error on subsequent or last word of a multiple-word transfer
х	1	1	1	Underclock error on the 'next' word transfer, before s/w could clear the CYC_DONE status of the previous word. This could occur because Underclock detection is possible within one bit time of the previous successful transfer.

				SPI_STATUS STATUS REGISTER
Addres	ss = 0xF030_0028			Default value = 0x0000_0000
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD	S/W	RESET	FIELD
24.45	NAME	ACCESS	VALUE	DESCRIPTION
31:15	Reserved		0	Raw status of the SPI master state machine's "current_state" register:
14:12	SPI_CURRENT_STS	RO	0x0	000 = IDLE 001 = CSSETUP 010 = TRANSFER 011 = CSHOLD 100 = CSWAIT 101 = CKWAIT 110 = MTRANS 111 = CSBEGIN
11	Reserved		0x0	
10	RX_BUF_FULL	RO	0x0	Raw indicator of Rx incoming holding register status 0 = No data in holding register 1 = Holding register contains a valid data word
9	TX_BUF_FULL	RO	0x0	Raw indicator of Tx outgoing holding register status 0 = Holding register ready for new data word 1 = Tx Buffer is full
8	TX_UFL_ERR	R/W1C	0x0	Write Underflow Error indication: indicates that the outgoing data buffer did not get loaded with new data since the last transmission, and another transmission began. 0 = No Write Underflow since this bit was cleared 1 = Write Underflow detected This bit is cleared by writing a '1' to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable TX_UFL_ERR_INT_ENA.
7	BP_DONE	R/W1C	0x0	Byte Packing Transfer Done: indicates a request for more packed data. This bit is set when the Byte Packing Holding Register is full (RX) and empty (TX), or when the current transfer of multiple byte-packed words is complete. 0 = Byte Packing Transfer is not complete 1 = Byte Packing Transfer is complete Only valid if byte packing is enabled (BP_EN = 1). This bit is cleared by writing a '1' to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable BP_DONE_INT_ENA.
6	SS_TE	R/W1C	0x0	Slave Select Trailing Edge Detect: 0 = no SPISS de-assertion detected since this bit was cleared 1 = the SPISS de-assertion has been detected This bit is cleared by writing a '1' to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SS_TE_INT_ENA.
5	CYC_DONE	R/W1C	0x0	Cycle Done: this bit will set when the current transfer of word-length "WL" bits is complete. It indicates that "WL" bits were sent on the transmit port and "WL" bits were sampled on the receive port. This bit is cleared by writing a '1' to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable CYC_DONE_INT_ENA.

													_	STAT JS RE			ER.														
Addres	ss =	0xF0	030_00	28																			De	faul	lt v	alue	=	0x	0000	0_0	000
31 30	29	28	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	3 12	2	11	10	9	8	7	6	5	6 4		3	2	1	0
BITS			FIELD				_	/W		RES												ELD									
			NAMI	E		- 1	ACC	CES	S	VAL	.UE	Lla			. 0-	ام ما	I:4:		-1:4			RIPT	_				الد		41		
4		U	JCLK_E	ERR			R/V	V1C	;	0x	α0	wo ass 0 = 1 = Thi Thi reg	ord- ser = N = U is I is I	rclock lengt tion. lo Under Inder bit is a bit is a dless K_ER	h "W derc clock clear a stic of th	loc ccc red cky	ck co ondi d by y states	ond itior wri	ition n de iting	the n de etect i a '' , an	SP tec ted 1' to	ISCI ted s it. ill se	K lir	ne posterior this on m	rioi s bi	r to S t was eting	SPI S C	ISS lear	de- ed.		
3			SS_L	E			R/V	;	0x	:0	Sla 0 = 1 = Thi Thi reg	ave = n = a is l is l	SPIS Site of the second	ct Le SSa Sas clear a stic	ead sei red cky	ding erticantion d by states	n wa wri	dete as d iting bit	ected dete a '' , an	d sii cted I' to d w	nce t d it. ill se	t upo	on m	nee	eting	the	e co	nditi	on		
2		RX	(_OFL_	_ERF	२		R/V	V1C	:	0x	:0	get inc 0 = 1 = Thi Thi reg	t of con = N = R is I is I	Bufferload hing of the lead (bit is a bit is a b	ded state of the control of the cont	sin wo lye flov red cky he	ice the ord. erflow de file by state state	he w s eteo wri itus	last cted iting s bit of its	t rec e thi d a '' , an	ept s bi l' to d w	ion, a t was o it. ill se	and some	was arec	ov d	erwr	the	en w	ith a	inot	
1			Reserv	ed						0x	0																				
0		SF	PI_INT_	_STS	6		R	10		0x	ά0	RX SS No '0', cor sta	(_C S_L ote , th ndi	nterru DFL_E, qu that it lose s ition, l s bits y allo	ERR alifie the tatu but v are	d co s b will tru	With with orrest to the orrest to the oreal or	K_E spo her co aw"	ERF ach ondir mse ontril " sta	R, BI corr ng *. elves bute atus	esp IN wi to bits	OONI oondi T_EI II stil the a	E, C'ng *, NA colored I assemble the	YC_ _INT of the sert u	DC T_E ose upo	ONE, ENA e stat on m	S: en us ee	S_T able bits ting NT_	E are. s is rethe STS	ese . Th	ne

Table 124 SPI_STATUS Register

SPI_SS_CFG- SPI SLAVE SELECT CONFIGURATION REGISTER

								s	PI S	LA	VE S			_	SS_C			TION	I RI	EGI	STE	ER											
Addres	ss =	0xF	030	0_00	30)ef	faul	t v	alue	=	0x	0000	0_0	000
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	1	13 1	2	11	10	9	8	7	,	6	5	4		3	2	1	0
BITS			-	IELI	_			_	S/W CES	s	RES VAL				•				•		DE	-	IELI RIP	_	N								
31:21			Re	eserv	ed						0																						
23:20		SCLK_WAIT RW 0x0 time (SPI SPIS durin toggi															su k (icces 1). T cycle	siv he s b	red reg	ata t ister ⁄een	rai va ba	nsfei alue ack-t	s in sets o-ba	m s th	ultip ne m k tra	ole nini ans	-tran imun fers.	sfe n n No	er m num ote	node ber that	of ,	
19:16		SPISCLK Clock cycle during this wait time, toggle. Slave Select Wait (V time between success														siv he	e d reg	ata t ister	rai Va	nsfei alue	s in	si s th	ngle ne m	e-tr nini	ansf imun	er n n	mo <u>u</u> m	de ber	of				
15:12			SS	S_HO	LD			F	RW		0x	0	Th	ne r	Sele egiste	er va	alu	ue se	ets t	the	mini	mι	ım n	um	bei	r of	SF	PISC		_		•	es
11:8		į	SS_	_SE1	ГИР			F	RW		0x	0	Th	ne r	Sele egiste it fror	er va	alι	ue se	ets t	the	m <u>ini</u>	mι	<u>ı</u> m n	uml	bei	r of	SF	SC					es
7:3			Re	eserv	ed						0x0	00																					
2			S	S_P(OL			F	RW		0x	0	0 =	= A	e Sele ctive ctive	low		tive l	eve	el se	lect	(M	aste	r or	SI	lave	e m	odes	s):				
1:0			Re	eserv	ed						0x	0																					

Table 125 SPI_SS_CFG Register

Note that setting (or resetting) the SS_POL bit may cause SS_TE, SS_LE and CYC_DONE to be set in the status register; these may need to be cleared out before operations begin. It is recommended to set SPI_ENA=0 whilst configuring the SPI module. SPI_ENA should be set to 1 after the SPI_SS_CFG register (and other registers) have been set to the desired values.

WM0011

SPI_DAT- SPI DATA REGISTER

													SP		_	DA REC	T SIST	ER													
Ad	dre	ss =	0xF	030	_00	38															De	faul	t val	lue	= 0x	000	0_0	000_	_000	0_0	000
63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВГ	TS		•	-	IELI AMI	_	•			S/W CES		RES VAL					•		•	•	DE	FII	ELD		,			•	•		
63	3:0			SP	I_D/	ΑT			F	RW		0														iffer. data		ffer.			

Table 126 SPI_DAT Register

SPI_INT_CTRL - SPI INTERRUPT CONTROL REGISTER

										SP	I INT		_	_	NT_C				IST	ΓER												
Addres	ss =	0xF	030	_004	40																			D	efau	ılt	va	lue	= 0x	000	0_0	034
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	3 15	14	1	3 1	2	11	10	9	8	7	6		5	4	3	2	1	0
BITS			-	IELE				S AC	/W CES	s	RES				•						DE		ELI RIP	TIOI	N			•				
31:9			Re	serv	ed						0)																				
8	TX	_UF	L_E	RR_	_INT	_EN/	Α	R	RW		0x	:0	0 =	= [ed	nei	r the	: T>	<_U	FL_I	ER	R bi	t ass	serts	s th	he S	SPII	nter	rupt		
7	E	1 = Enabled Controls who														ed	nei	r the	BF	P_D	ONE	Ξbi	t as	sert	s the	e S	SPI	Inte	rupt			
6		BP_DONE_INT_ENA RW 0x0 Controls whether the BP_DONE bit asserts the SPI Interrupt 0 = Disabled 1 = Enabled Controls whether the SS_TE bit asserts the SPI Interrupt 0 = Disabled 1 = Enabled Controls whether the SS_TE bit asserts the SPI Interrupt 0 = Disabled 1 = Enabled																														
5	С	YC_	DOI	NE_I	INT_	_ENA		R	RW		0x	:1	0 =	= [rols v Disabl Enable	ed	nei	r the	c'	YC_	DOI	NE	bit a	isse	rts t	he	SF	PI Int	erru	pt		
4	U	CLK	_EF	RR_I	NT_	ENA		R	RW		0x	:1	0 =	= [rols v Disabl Enable	ed	nei	r the	e U(CLK	_ER	RI	oit a	sser	ts th	ne	SP	PI Inte	errup	ot		
3		SS_	_LE	_INT	_EN	۱A		R	RW		0x	:0	0 =	= [rols v Disabl Enable	ed	nei	r the	SS	S_L	E bit	as	sert	s the	SF	PI I	Inte	errup	t			
2	RX	_OF	L_E	ERR_	_INT	_EN	Ą	R	RW		0x	:1	0 =	= [rols v Disabl Enable	ed	nei	r the	R)	x_0	FL_	ER	R b	t as	serts	s t	he	SPĪ	Inter	rupt		
1:0			Re	serv	ed						0x	:0																				

Table 127 SPI_INT_CTRL Register

WM0011

SPI_DMA_CTRL- SPI DMA CONTROL REGISTER

												SPI	SI	_	DM/	_			TE	R											
Ad	dres	ss =	0xF	030	_00	48																		De	faul	t va	lue	= 0	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
BI	TS	FIELD S/W RESET NAME ACCESS VALUE Reserved 0																			DE		LD RIPT	ION							
31	:2	Reserved 0																													
1		NAME ACCESS VALUE															ed d							fer to	o the	e SF	PI_D.	AT r	egis	ter	
0)		RD)_R(QST	_EN	IA		F	RW		0x	0	0 =	= Dis = Ena	able able	e d			ble fo				fer f	rom	the	SPI_	_DA	T re	giste	er

Table 128 SPI_DMA_CTRL Register

SPI_BP_CNT - SPI BYTE PACK WORD COUNT REGISTER

	SPI_BP_CNT SPI BYTE PACK WORD COUNT REGISTER																													
Ad	Address = 0xF030_0050															Default value = 0x0000_0000														
31	30	29 28 27 26 25 24 23					23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bľ	TS		FIELD NAME						S/W ACCESS			RESET VALUE					FIELD DESCRIPTION													
												×00	00	ра	Master Mode (R/W) - Sets the total number of "WL"-bit words for a byte- backed transfer. The transfer completes (and SPISS is de-asserted) when the raw count (SPI_BP_CNT_RAW) reaches this value.															
31	:0	SPI_BP_CNT							F	RW		000	_	tra ra\	nsfe v cc	e Mode (RO) - Indicates the total number of "WL"-bit words ferred for a byte-packed transfer. The value is captured from the count at the end of a byte-packed transfer; the readback value is invalid until completion of the transfer.														

Table 129 SPI_BP_CNT Register

SPI_BP_CNT_RAW - SPI BYTE PACK RAW WORD COUNT REGISTER

	SPI_BP_CNT_RAW SPI BYTE PACK RAW WORD COUNT REGISTER																														
Ad	Address = 0xF030_0058																			faul	ult value = 0x0000_0000										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS	FIELD NAME							S/W RESET ACCESS VALUE						FIELD DESCRIPTION																
31	:0	,	SPI_	BP_	_CN	T_R	άΑW		F	RW	(000 000	_	the un Sla SS	Master Mode - This register is reset to zero whenever the user loads the SPI_BP_CNT register. Increments for each WL word transferred, until the raw count reaches the value loaded in SPI_BP_CNT. Slave Mode - This register is reset to zero whenever a trailing edge SS_TE (de-assertion of SPISS) is detected. Before being reset, the contents of this raw count is captured in the SPI_BP_CNT register.																

Table 130 SPI_BP_CNT_RAW Register

WM0011 Production Data

DMA CONTROLLER MODULE

BASE ADDRESS 0xF040_0000

DMA FEATURES

- 32 Independent Channels
- Fixed-priority 'fairness arbitration' algorithm for all enabled channels
- DMA requests can be assigned to a high priority or low priority arbitration group; each group is arbitrated separately
- Configurable level or edge detection of DMA request signals per channel
- Software Transfer Trigger per channel
- Automated double buffer configurable to load a new transfer set of Source/Destination/Transfer Length registers upon completion per channel
- Support for 64-bit, 32-bit, 16-bit or 8-bit transfers per channel
- Burst Transfer mode for transfers in Low priority arbitration group
- Programmable transfer length (ie. number of bytes)
- Static or incrementing Source and Destination Address per channel
- Maskable Error, Terminal Count, Watermark, Null Link interrupts per channel
- Programmable handshaking
- DMA chaining capability via Linked List descriptors
- Programmable Endian byte-swapping function
- DMA striding
- · Write access to SHA module via dedicated FIFO buffer

DMA CHANNEL CONTROL

The following control attributes are provided for each DMA channel:

- Transfer size the overall number of bytes to transfer
- Transfer arbitration priority, burst mode/size, chaining mode, watermark threshold, endian swap mode, other per channel modes
- Base Addresses for both Source and Destination, and a buffer set of these registers
- Address mode for both Source and Destination (eg. fixed addressing for accessing FIFOs, incrementing addressing for accessing memory)
- Flow Control can be hardware (ACK) controlled for peripheral modules, or can be software controlled for memory transfers

Some modules are supported on specific DMA channels only, as noted in Table 131. The required handshake (ACK) configurations for the associated TX/RX functions must also be observed.

Note that the restriction applies to the particular module, not to the DMA channel.

MODULE / PATH	DMA CHANNEL	HANDSHAKE (ACK) R	EQUIREMENTS
SPI RX	Channel 4	(No specific requirements)	
SPI TX	Channel 5	(No specific requirements)	
AIF1 RX	Channel 6	Source Data Phase ACK	DMA_SRC_ACK_CTRL=1 DMA_ADP_ACK_CTRL=0
AIF2 RX	Channel 7	Source Data Phase ACK	DMA_SRC_ACK_CTRL=1 DMA_ADP_ACK_CTRL=0
AIF1 TX	Channel 8	Destination Data Phase ACK	DMA_SRC_ACK_CTRL=0 DMA_ADP_ACK_CTRL=0
AIF2 TX	Channel 9	Destination Data Phase ACK	DMA_SRC_ACK_CTRL=0 DMA_ADP_ACK_CTRL=0
AIF3 RX	Channel 10	Source Data Phase ACK	DMA_SRC_ACK_CTRL=1 DMA_ADP_ACK_CTRL=0
AIF3 TX	Channel 11	Destination Data Phase ACK	DMA_SRC_ACK_CTRL=0 DMA_ADP_ACK_CTRL=0

Note: the Handshake (ACK) configuration is selected using the DMA_SRC_ACK_CTRL and DMA_ADP_ACK_CTRL control fields in the DMA Control 1 Register (DMA_CTRL1_n)

Table 131 DMA Channel Assignments

The Handshake (ACK) configuration is selected using the DMA_SRC_ACK_CTRL and DMA ADP ACK CTRL control fields in the DMA Control 1 Register (DMA CTRL1 n).

Note that the DMA Handshake must also be enabled in the respective path for the applicable module(s). In the case of the SPI module and AIF modules, refer to the SPI_DMA_CTRL and AIF_INT_CTRL registers respectively,

DMA CHANNEL ARBITRATION

Channel requests may be assigned by configuration to either the high or low priority group. The high priority channels (as programmed by the DMA_CH_PRI_LOW_ENA bits) are arbitrated separately from the low priority channels.

The arbiters receive requests from each DMA channel. Each DMA channel receives an arbitration slot; further requests from this channel reaching the priority encoder are disabled until all current requesting channels have been serviced within that priority group.

Channels within each group have a fixed-priority where lower numbered channels have the higher priority (i.e. channel 0 is highest priority, followed by channel 1, etc.). However, the servicing of all channels within a high or low priority group is ensured by the disabling of granted requests until all requesting channels in the group have had an opportunity to be serviced.

The arbitration result will be selected from the low priority channels only if there are no high priority requests

Low priority channels for which the burst write portion of a DMA transfer is pre-empted retain the preempted status for the next time no high priority channels are selected by the arbiter. Only one channel may be pre-empted at a time.

In the event of conflicting demands for accessing the AHB bus, the priority selection is determined by the DMA_AHB_ARB_SET bit. Priority is given either to the DSP core, or else to the DMA controller. Care should be taken when selecting DMA priority, as this can cause the rest of the system to be locked out until the DMA activity completes. This concern is only applicable for 'memory' transfers, where there is no external I/O interface constraining the transfer speed.

NORMAL DMA OPERATION

The DMA copies data between memory addresses and/or peripheral modules. The DMA can support 64-bit, 32-bit, 16-bit, or 8-bit data word sizes; the word size is selected using the DMA_SRC_HSIZE and DMA_DST_HSIZE register fields.

Note that, for DMA transfers to/from the AIF modules, the data word size must be 32 bits (DMA_DST_HSIZE=0x2).

For normal DMA operation, the Primary set of Source/Destination/Transfer Length registers are configured for the applicable DMA channel. When the channel is enabled (DMA_CH_ENA=1), these registers direct the DMAs to proceed until the transfer count (DMA_CNT) equals the Transfer Length (DMA_PRI_LEN); the DMA activity for the channel then stops. The Terminal Count Status bit (and Terminal Count Interrupt, if un-masked) will also be asserted at this time. The channel must then be re-enabled for further DMAs to occur.

By default, the Source & Destination addresses increment after each data transfer; this is selectable using DMA_SRC_NINC and DMA_DST_NINC. The default increment step is equal to the number of bytes selected as the Source & Destination word size (DMA_SRC_HSIZE, DMA_DST_HSIZE). Other increments can be configured using the Stride function.

Hardware handshake (ACK) control must be configured for DMA transfers to/from the SPI or AIF modules. This is configured using the DMA_SRC_ACK_CTRL and DMA_ADP_ACK_CTRL control bits. Note that some modules have specific ACK requirements, as noted in Table 131.

Software transfer control is used (instead of the ACK handshake control) for 'memory' transfers. Software transfer control is selected using the DMA_SOFT_XFER_ENA bit.

The DMA_LOCAL_DST_ADDR and DMA_LOCAL_SRC_ADDR bits select a local address (internal to the DMA controller) for the data destination or source. Local addresses are undefined, and implemented as Null (Write) or '0' (Read) values.

SHA MODULE DATA INPUT

Data transferred by the DMA module can be enabled as input to the SHA module by setting the DMA SHA XFER ENA bit for the respective DMA channel.

SHA data input is implemented via a FIFO buffer within the DMA module. The destination address (ie. within the SHA module) is configured automatically.

Note that, when the SHA data transfer is enabled, this is additional to any 'normal' transfer configured using the Destination registers (eg. DMA_PRI_DST_n). To transfer data to the SHA alone, and not to any other destination, the DMA_LOCAL_DST_ADDR bit should be used to select a 'Null' destination address, as described above.

The DMA_FIFO_STATUS register provides an indication of the SHA FIFO buffer status. This can be read at any time, or selected as an input to the Interrupt controller.

Note that the SHA data transfer (via the FIFO) may take longer than the transfer to the DMA_PRI_DST_n destination. In this event, the SHA FIFO buffer status will indicate data in the buffer after the DMA channel has disabled.

DOUBLE-BUFFER DMA OPERATION

Normal DMA operation, using the Primary set of Source/Destination/Transfer Length registers, is described above.

When double-buffered operation is enabled, a Secondary (buffer) set of Source/Destination/Transfer Length registers are available to automatically extend DMA activity without incurring any gap between one transfer and the next. Double-buffered operation is enabled by setting the register bit DMA_DWB_ENA = 1. The Secondary (buffer) register set is loaded into the Primary register set upon the Terminal Count interrupt being set. The Secondary (buffer) register set is only used when Double Buffer operation is enabled.

Normally, the DMA_CH_ENA bit in the DMA_CTRL1 register is set to 0 upon reaching the Terminal Count, and would stay cleared. When Double-buffered Operation is enabled, the DMA_CH_ENA will be set automatically after the primary registers have been updated, allowing DMA processing to continue.

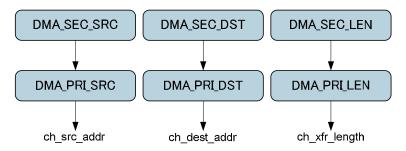


Figure 45 Double Buffer Register Structure

After the Terminal Count interrupt, the DMA_DWB_ENA bit is cleared to 0 by the hardware, indicating that the Secondary Buffer registers are empty. The Secondary Buffer registers can then be re-loaded, and DMA_DWB_ENA set to 1, to configure the next transfer. Note that the Primary register set should not be modified unless DMA_CH_ENA and DMA_DWB_ENA are both cleared.

Double-buffer operation is extended by loading the next buffer register set and re-enabling DMA_DWB_ENA, as described above. If the current transfer completes before the Secondary Buffer registers have been loaded (ie. before the DMA_DWB_ENA bit has been set to 1), then the DMA channel will be disabled, and must be enabled again by setting DMA_CH_ENA=1.

Note that, depending on the length of each DMA transfer operation, there may be only a short time window between the Terminal Count Interrupt (DMA_DWB_ENA=0) and completion of the next transfer. For continuous DMA operation, the secondary buffers must be loaded for the next transfer before the previous one completes.

Further operations are automatically disabled after the DMA_DWB_ENA bit is set to 0 by the hardware. This can be re-enabled by setting DMA_DWB_ENA=1.

Multiple DMA processes can be chained in a defined sequence using the DMA_LINK_ADDR register, as described below.

LINKED LIST DMA CHAINING

The Linked List feature enables multiple DMA processes to be chained in a defined sequence. This feature is enabled using the DMA_LINK_ENA bit.

Linked List DMA chaining is supported for High Priority channels only; Burst Data transfers are not supported with the Linked List feature.

Linked List DMA chaining is supported with 32-bit data word size only (DMA_SRC_HSIZE=0x2, DMA_DST_HSIZE=0x2). DMA chaining makes use of the DMA double buffer mechanism, which must be enabled by setting DMA_DWB_ENA=1.

When a DMA is initiated, and DMA_LINK_ENA is set, the primary register set is invalid except for the DMA_LINK_ADDR register, which indicates where the first descriptor is located in memory. When the channel is enabled (with DMA_LINK_ENA also enabled), the DMA controller fetches the initial descriptor and writes it to the Secondary (buffer) set of Source / Destination / Transfer Length / Next Link Address registers. The newly-loaded buffer register set is then loaded into the primary register set, and the DMA will proceed as directed by the initial parameters. When the DMA reaches its Terminal Count, the subsequent descriptor is fetched and loaded (as directed by the DMA_LINK_ADDR register), and the process continues. If the link address DMA_LINK_ADDR is set to 0x0000_0000, the chaining will terminate.

Note that the fetch of the next descriptor from memory is itself a DMA operation. The source address is the next link address from the primary set, and the destination address is base address of the buffer set of registers within the DMA controller.

The DMA decembers from	and the common and the Burton of Burt	Contract to the contract of th
The Divia describior form	nat is arranded in linked list	t memory as described below:

DESCRIPTION	ADDRESS
Source Address	= DMA_LINK_ADDR
Destination Address	= DMA_LINK_ADDR + 0x4
Transfer Length	= DMA_LINK_ADDR + 0x8
Next Linked descriptor Source Address	= DMA_LINK_ADDR + 0xC

Table 132 Linked List Memory Addressing

Note that Linked List DMA chaining is supported with either hardware handshake (ACK) or software controlled transfers. The required transfer control (selected by DMA_SOFT_XFR_ENA) depends upon the peripheral type(s) associated with the transfer. The DMA_SOFT_XFR_ENA bit is described in Table 156.

DMA transfers can be configured to generate an interrupt on every Terminal Count. Linked DMA transfers can be configured to assert the interrupt on every terminal count, or on just the final terminal count of the DMA transfer set. This is selected using the DMA_LINK_INT register bit.

Linked DMA transfers may also be configured to interrupt when the next field in the fetched descriptor is 0x0000_0000 (NULL) - indicating that the fetched DMA descriptor is for the last DMA transfer set in the chain. The 'Link Null' status can be read from the DMA_LINKNUL_STS register; the un-masked status bits are used to trigger the DMA_LINKNUL_INT_STS Interrupt Status.

On reaching the end of the Linked List DMA chain, the DMA_DWB_ENA bit is cleared to 0 by the hardware. The Linked List chain can then be disabled. Note that the Linked List function must be disabled (by setting DMA_LINK_ENA=0) before a subsequent Linked List is enabled.

An example Linked List DMA Chain operation is described in the "DMA Program Examples" section.

DMA STRIDING

Under default conditions, the Source & Destination addresses increment after each data transfer; the address increment is equal to the number of bytes selected as the Source & Destination word size (DMA_SRC_HSIZE, DMA_DST_HSIZE). The DMA controller also supports a DMA striding feature whereby the next AHB address may stride forward (increment) by a selectable multiple of the default step size, and can also access a number of interleaved sets of address registers.

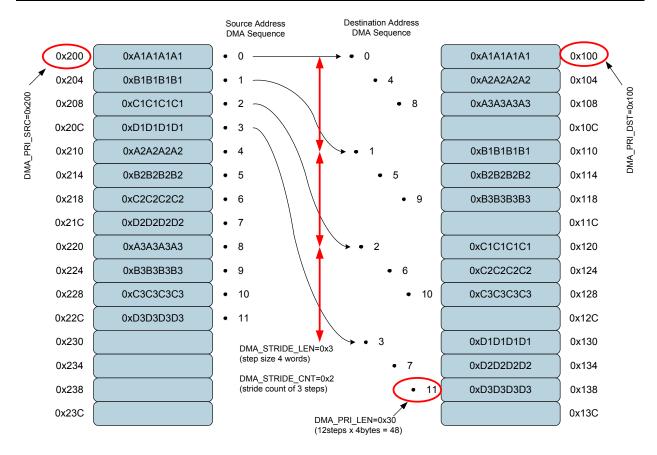
Typical applications for DMA striding include sorting different channels of received data into separate buffers, or combining multiple buffers of audio data for interleaved transmission.

Striding is configured using the DMA_STRIDE register. The stride feature can be enabled for source addresses and/or destination addresses using the DMA_STRIDE_SRC_ENA and DAM_STRIDE_DST_ENA fields. Note that this feature is limited to non-burst DMAs only.

Note that, when striding is enabled for source addresses, the DMA_SRC_NINC bit must set be 0. When striding is enabled for destination addresses, the DMA_DST_NINC bit must set be 0.

The magnitude of the stride step is configured via the DMA_STRIDE_LEN field. Setting DMA_STRIDE_LEN = 0x3 sets the stride step as 4 x the DMA_SRC_HSIZE number of bytes. If DMA_SRC_HSIZE = 0x2 (32-bits, 4 bytes), then the stride step size is 4 x 4 = 16 bytes in this case.

The number (count) of stride steps taken before beginning a next set of stride steps is configured via the DMA_STRIDE_CNT field. Setting DMA_STRIDE_CNT=0x2 selects 3 steps to be taken before the selecting the next set of memory addresses.


The first set of stride steps begins with the configured source or destination AHB address for the channel. Subsequent sets of stride steps begin at the initial address of the previous set of stride steps incremented by the number of bytes indicated by DMA_SRC_HSIZE. The striding process thus selects interleaved values of source and/or destination data addresses. Successive strides will be executed until the total number of bytes transferred reaches the transfer size (DMA PRI LEN).

An example DMA striding sequence is described in Figure 46. This illustrates how the DMA stride function could be used to convert an interleaved set of data into separate buffers.

Note that the DMA stride function could also be used to perform the reverse function, ie. combining multiple buffers of data into an interleaved set.

In the example shown, the data word size is 32-bits (DMA_SRC_HSIZE = 0x2). The stride sequence is configured using the DMA_STRIDE_LEN and DMA_STRIDE_CNT registers, as shown.

Register configuration for illustrated DMA transfer:

DMA_PRI_SRC = 0x200
DMA_PRI_DST = 0x100
DMA_PRI_LEN = 0x30
DMA_STRIDE_SRC_ENA = 0x0
DMA_STRIDE_DST_ENA = 0x1
DMA_STRIDE_LEN = 0x3
DMA_STRIDE_CNT = 0x2

Initial Source address = 0x200
Initial Destination address = 0x100
Transfer length = 48 bytes
Striding disabled for Source addresses
Striding enabled for Destination addresses
Stride step size of 4 x 32-bit words, ie. 0x10 bytes
Stride count of 3 steps before next set of strides

Figure 46 DMA Striding Example

BURST DATA TRANSFERS

To improve the efficiency of low-priority DMA operations, these channels are configured as Burst Data transfers. This is a mechanism where multiple data words are transferred in a single 64-bit AHB operation.

Burst Data transfers are enabled by setting DMA_AHB_BURST_ENA=1. The Burst Data transfer must be enabled for Low-Priority DMA channels, and must be disabled for High-Priority DMA channels. Accordingly, DMA_AHB_BURST_ENA and DMA_CH_PRI_LOW_ENA must always be set to the same value.

The maximum burst size/type is configured using the DMA_AHB_MAX_BURST field. It is recommended that the highest setting (10) is selected in all cases.

The auto-increment option must be enabled for Source addresses and Destination addresses (DMA_SRC_NINC=0 and DMA_DST_NINC=0) when Burst Data transfer is enabled. As with other DMA transfers, the Source and Destination addresses must be aligned with the data word size (DMA_SRC_HSIZE, DMA_DST_HSIZE).

The Burst Data transfer mode cannot be used with an I/O or FIFO-type device (ie. cannot be used for DMA transfers to/from the SPI or AIF modules).

Note that, once a DMA Burst Data transfer has been commanded, there is no provision to cancel the transfer.

The Burst Data controller automatically handles instances where the transfer length (LEN) does not align exactly with the 64-bit AHB width. Burst Data transactions are limited to 1kB address boundaries; the burst controller automatically handles any transfers that cross over these limits.

After a Burst Data transfer has been initiated, it is possible that a high-priority DMA channel may be subsequently enabled before the write portion of the Burst Data transfer. In this case (known as 'pre-emption'), the high-priority DMA channel will be serviced, and the Burst Data transfer is deferred.

DMA BYTE SWAP

The DMA_BYTEx_SRC fields within the DMA_CTRL2 register provide a universal byte swap feature. The source byte for each byte within the destination register may be selected independently.

The register defaults are set so that no byte swapping occurs for a DMA transfer for the AHB write data bytes relative to the AHB read data bytes. The byte swapping is illustrated in Figure 47. The byte swap is universal since each byte of the destination AHB write data word may be selected from any byte in the AHB source read data word.

Note that, when Endian Byte Swap is enabled (DMA_ENDIAN_SWAP_ENA=1), then the DMA_BYTEx_SRC fields are ignored.

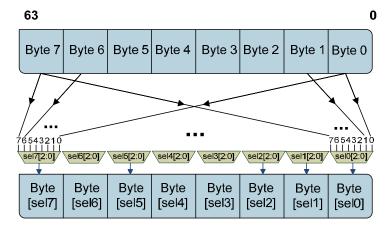


Figure 47 DMA Byte Swap

When 32-bit word size is selected, the DMA_BYTE[7,6,5,4]_SRC registers must be set to the same values as the respective DMA_BYTE[3,2,1,0]_SRC register.

When 16-bit word size is selected, the DMA_BYTE[7,5,3]_SRC registers must all be set to the same value as the DMA_BYTE1_SRC register. The DMA_BYTE[6,4,2]_SRC registers must all be set to the same value as the DMA_BYTE0_SRC register.

If any of the DMA_BYTEn_SRC fields select a byte that is outside the selected data word size (eg. selecting Byte 4 when the word size is 32-bits), then a Modulus function will adjust the selection to a valid setting for the applicable data word size. This ensures that the default register settings will always result in 'no swap', regardless of the data word size.

ENDIAN BYTE SWAP

An Endian Byte Swap function is provided, which is enabled using the DMA_ENDIAN_SWAP_ENA control bit. The Endian Byte Swap is designed to support 64-bit, 32-bit, 24-bit or 16-bit application word sizes, as selected by DMA_ENDIAN_SWAP_LEN.

In the case of packed data words, 2 or more application words may be arranged within the DMA data word, as shown in Figure 48. The swap is typically configured so that the position of each packed word is unchanged by the swap, but the associated bytes are reverse-ordered.

For 24-bit word data, a padding byte (0x00) is included in the word definition; this may be either in the Most Significant or Least Significant Byte position.

Packed data formats are illustrated in Figure 48. Note that byte packing is implemented outside the DMA controller, within the SPI module only.

It is recommended to ensure that the selected swap is compatible with the DMA data word size (and packing configuration, if applicable).

For example, if the DMA data word size is 16-bit, then the 32-bit word Endian Byte Swap (DMA_ENDIAN_SWAP_LEN=3h) should not be selected. The DMA data word size may be larger than the application word size, but cannot be smaller.

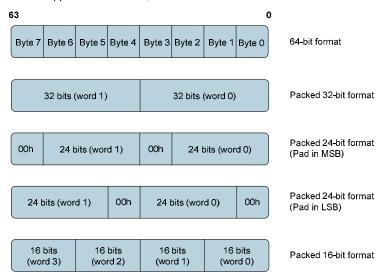


Figure 48 Data Word Packing

Figure 49 illustrates the Endian Byte Swap options, selectable by DMA_ENDIAN_SWAP_LEN. Note that the data within each byte is not affected by this function.

- The 64-bit application word swap is a reverse ordering of the 8 bytes.
- The Packed 32-bit application word swap is a reverse ordering of each 4-byte word.
- Two different swaps are supported for Packed 24-bit Application Word swaps, with the padding bytes either in the Most Significant or Least Significant Byte position. In each case, the padding bytes are unchanged, and the swap is a reverse ordering of each 3-byte word.
- The 16-bit application word swap is a reverse ordering of each 2-byte pair.

64-bit Application Word Endian Byte Swap DMA_ENDIAN_SWAP_LEN = 4h. 63 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Packed 32-bit Application Word Endian Byte Swap DMA_ENDIAN_SWAP_LEN = 3h. 63 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte 7 Byte 4 Byte 5 Byte 6 Byte 7 Byte 0 Byte 1 Byte 2 Byte 3 Packed 24-bit Application Word Endian Byte Swap (pad in MSB) DMA_ENDIAN_SWAP_LEN = 2h. 00h Byte 6 Byte 5 Byte 4 00h Byte 2 Byte 1 Byte 0 Byte 4 Byte 5 Byte 6 Byte 0 Byte 1 Byte 2 00h 00h Packed 24-bit Application Word Endian Byte Swap (pad in LSB) DMA_ENDIAN_SWAP_LEN = 1h. 63 Byte 7 Byte 6 Byte 5 00h Byte 3 Byte 2 Byte 1 00h Byte 5 Byte 6 Byte 7 00h Byte 1 Byte 2 Byte 3 00h Packed 16-bit Application Word Endian Byte Swap DMA_ENDIAN_SWAP_LEN = 0h Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte6 Byte 7 Byte 4 Byte 5 Byte 2 Byte 3 Byte 0 Byte 1

Figure 49 Endian Byte Swap

DMA INTERRUPTS

DMA interrupts may be triggered by any of the following events:

- Terminal Count being reached
- Watermark Threshold being reached or exceeded
- Next Link address for a Linked DMA transfer is NULL
- SHA transfer FIFO status
- · Error conditions

Whenever an Error or Terminal Count condition occurs, the corresponding DMA_CH_ENA bit will be reset to 0, disabling further transfers on that channel. Note that the channel will be disabled regardless of whether the Error or Terminal Count interrupts are masked for the channel. Watermark and 'Link Null' conditions will also cause interrupts, but do not disable transfers.

When Double-buffered Operation is enabled, the DMA_CH_ENA will be set automatically after the primary registers have been updated, allowing DMA processing to continue.

Note that a SHA data transfer (via the FIFO) may take longer than the transfer to the DMA_PRI_DST_n destination. In this event, the SHA FIFO buffer status will indicate data in the buffer after the Terminal Count is reached, and after the DMA channel has been disabled.

The status bits relating to each interrupt condition are latched, and are held high once set. The latched values are available to be read via the DMA_TC_STS, DMA_WMARK_STS, DMA_LINKNUL_STS, DMA_FIFO_STATUS and DMA_ERR_STS registers. Individual bits may be cleared by writing a '1' to the respective bit. Each condition may be individually masked from contributing to the DMA interrupt via the associated *_INT_MSK bits.

The DMA interrupt output signal (when enabled using DMA_INT_ENA=1) is the "OR" of all the unmasked interrupt status register bits.

The DMA interrupt control registers are illustrated in Figure 50.

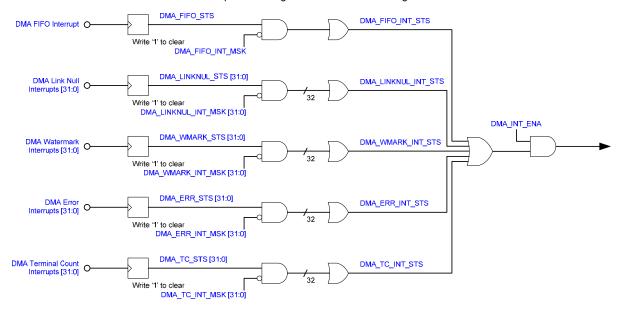


Figure 50 DMA Interrupts

DMA REGISTER MAP

This table illustrates the address map of the DMA module.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	DMA_GLB_CTRL	DMA Global Control	0x0000_0000
Base + 0x04	DMA_INT_STS	DMA Interrupt Status	0x0000_0000
Base + 0x08	DMA_TC_INT_MSK	DMA Terminal Count Interrupt Mask (Channels 31:0)	0x0000_0000
Base + 0x10	DMA_ERR_INT_MSK	DMA Error Interrupt Mask (Channels 31:0)	0x0000_0000
Base + 0x18	DMA_WMARK_INT_MSK	DMA Watermark Interrupt Mask (Channels 31:0)	0x0000_0000
Base + 0x20	DMA_LINKNUL_INT_MSK	DMA Link Null Interrupt Mask (Channels 31:0)	0x0000_0000
Base + 0x28	DMA_TC_STS	DMA Terminal Count Status (Channels 31:0)	0x0000_0000
Base + 0x30	DMA_ERR_STS	DMA Error Status (Channels 31:0)	0x0000_0000
Base + 0x38	DMA_WMARK_STS	DMA Watermark Status (Channels 31:0)	0x0000_0000
Base + 0x40	DMA_LINKNUL_STS	DMA Link Null Status (Channels 31:0)	0x0000_0000
Base + 0x48	DMA_FIFO_INT_MASK	DMA FIFO Interrupt Mask	0x0000_0000
Base + 0x4C	DMA_FIFO_STATUS	DMA FIFO Status	0x0000_0000
Base + 0x50	DMA_AHB_SLAVE_ADDR	DMA AHB Slave Address	0x0000_0000
Base + n*0x40 + 0x100	DMA_PRI_SRC_n	DMA Primary Source Address (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x104	DMA_PRI_DST_n	DMA Primary Destination Address (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x108	DMA_PRI_LEN_n	DMA Primary Transfer Length (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x10C	DMA_LINK_ADDR_n	DMA Link Address (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x110	DMA_SEC_SRC_n	DMA Secondary Source Address (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x114	DMA_SEC_DST_n	DMA Secondary Destination Address (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x118	DMA_SEC_LEN_n	DMA Secondary Transfer Length (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x120	DMA_COUNT_n	DMA Transfer Count (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x124	DMA_WMARK_CNT_n	DMA Watermark Count (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x128	DMA_CTRL1_n	DMA Control 1 (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x12C	DMA_CTRL2_n	DMA Control 2 (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x130	DMA_SOFT_ABORT_n	DMA Software Abort (Channel 'n')	0x0000_0000
Base + n*0x40 + 0x134	DMA_STRIDE_n	DMA Stride (Channel 'n')	0x0000_0000
Note that, in the above de	escriptions, 'n' represents the DN	MA channel number, ie. 0, 1, 2 31.	

Table 133 DMA Register Definition

DMA_GLB_CTRL REGISTER

											DN	/A C		_	_	_B_			SIST	ER											
A	dre	ss =	0xF	040	_000	00																		De	faul	t va	lue	= 0x	000	0_0	000
31	S/W RESET													16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
В	TS	TS FIELD NAME S/W RESET VALUE																		FII	ELD	DES	SCR	IPT	ION						
3	1:2	S FIELD NAME ACCESS VALUE																													
	1		ΙD	MA_	INT_	_EN	Α		F	RW		0x	ά0	the 0 :	e DN = Dis		NT_ ed					whe			MA	Inter	rupt	is ra	aiseo	d wh	ien

WM0011 Production Data

												DN	1A G		_	_GL co			RL REC	SIST	ER											
Α	dd	res	s =	0xF	040	_00	00																		De	efaul	t va	lue	= 0:	(000	0_0	000
31	3	30 29 28 27 26 25 24 23 22 21 20 19 18 1														16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	SITS	6	0 29 28 27 26 25 24 23 22 21 20 19 18 17 S/W RESET VALUE																		FII	ELD	DE	SCR	RIPT	ION						
	0	TS FIFI D NAME 1 1 1														sable	ed	Enab	le													

Table 134 DMA_GLB_CTRL Register

${\bf DMA_INT_STS}\;{\bf REGISTER}$

										DN	IA IN)MA RRUI	_	_	_			ilsī	ΓER													
Addres	ss =	0xF	040_	000)4																				De	efaι	ılt	valu	e :	= 02	(000	00_	0000
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	1	3	12	11	10	ç	9	8	7	6		5	4	3	2	1	0
вітѕ		FI	IELD	NΑ	ME			_	S/W CES	s	RES VAL									FI	ELD	D	ES	CR	IPT	ION	1						
31	D	MA_	_FIF(1I_C	NT_	STS	S	F	RO		0x	:0	DN DN	ЛА_ ЛА_	oit is _FIF(_FIF(od to	D_S [.]	TÀ	ÁTU ATU	S r	egis oits a	ter. are o	Tł cle	is b ared	it i d o	s cl	eare ask	ed ed	only				plic	it
30:13	30:13 Reserved 0x0000 These bits are the logical OR of the unmasked DMA_LINKNUL_INT_ST DMA_LINKNUL_STS register. This bit is cleare																																
12	DN	ΛA_L			_IN	IT_S	ST	F	RO		0x	:0	DN DN	ЛА_ ЛА_	LINI LINI	KNU KNU	IL_ IL_	ST ST	S ro S b	egis its a	ter. are c	Tr cle	is b ared	it is d o	s clo	eare aske	ed ed:	only ; the	wh	nen		olic	it
11:9	12 DMA_LINKNUL_INT_ST S Ox0 These bits are the logical OR of the unm DMA_LINKNUL_STS register. This bit is DMA_LINKNUL_STS bits are cleared or method to clear DMA_LINKNUL_INT_ST																																
8	DM	1A_V	VMA	RK_	_INT	_S	TS	F	RO		0x	:0	DM DM	ЛА_ ЛА_	bits WM WM d to	ARK ARK	(_ (_	STS	re bi	gist ts a	er. T re cl	Γhi ea	s bit red	is or	cle ma	are ske	d c d;	nly v	whe	en t		licit	t
7:5			Res	erve	ed						0x	:0																					
4	С	DMA_	_ERF	R_IN	NT_:	STS	6	F	RO		0x	:0	DN DN	ЛА_ ЛА_	e bits _ERF _ERF ar DI	R_S1 R_S1	TS TS	reg bits	giste s ar	er. ⊺ re cl	This eare	bit ed	is o	lea nas	ared	d on	ıly	whe	n th	ne	licit	me	thod
3:1			Res	erve	ed						0x	:0																					
0		DMA	_TC	_IN	T_S	STS		F	?О		0x	:0	DN DN	ЛА_ ЛА_	bits TC_ TC_ ar DI	STS STS	3 r 3 t	egis	ster are	. Th	is bi ared	it i: I o	s cle	ar	ed o	only	w	hen	the	:	cit m	eth	od

Table 135 DMA_INT_STS Register

DMA_TC_INT_MSK REGISTER

									DM/	\ TE	RMI			_	_	_IN ⁻	_			K RE	EGIS	STE	₹								
Ad	dre	ss =	0xF	040	_000	80																		De	faul	t va	lue	= 0>	000	0_0	000
31	S/W RESET													16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ВІ	BITS FIELD NAME S/W RESET ACCESS VALUE																		FI	ELD	DE	SCR	IPT	ON							
31	:0		DMA	A_ T(C_IN	T_M	ISK		F	RW	()x00 000	-	Sta Bit Bit	atus t 31 t 0 c	nal C inter corres orres	rrupt espo spor	for fonds	the o	OMA MA (espo Cha Char	ndin anne nnel	ig ch I 31 0	nann	el.	the ·	Term	ninal	Cou	unt	

Table 136 DMA_TC_INT_MSK Register

DMA_ERR_INT_MSK REGISTER

										DN	MA E			_	RR	_	_			SIST	ER										
Ad	ddre	ss =	0xF	040	_00	10																		De	faul	t va	lue	= 0>	k000	0_0	000
31	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 BITS FIELD NAME S/W RESET													16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
В	BITS FIELD NAME S/W RESET ACCESS VALUE																		FII	ELD	DES	SCR	IPT	ION				•		•	
3.	1:0)MA	_ER	:R_II	NT_I	MSK	(F	RW	C)x00 000	-	Bir Bir	ror li rres t 31 t 0 cach b	pond corre	ding espo	cha onds nds t	nnel to E o Di	ЭМА ИА (Cha Chan	nne nel	l 31 0			tatu	s int	erru	pt fo	r the	*

Table 137 DMA_ERR_INT_MSK Register

DMA_WMARK_INT_MSK REGISTER

									D	MA	WA	DIV TER	_			_	•	Γ_M ΜΑ			ISTE	ΞR									
Ad	ldres	ss =	0xF	040	_00	18																		De	faul	t va	lue	= 0>	(000	0_0	000
31	S/W RESET													16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ВІ	ITS FIELD NAME S/W RESET ACCESS VALUE																		FII	ELD	DE	SCR	IPT	ON							
31	BITS FIELD NAME S/W ACCESS VALUE 31:0 DMA_WMARK_INT_MS K PW 0x0000 0000 Bit 3 Bit 0													terru t 31 t 0 c	pt fo	or the espo spor	cor onds	resp to E	oond OMA MA (ing o	char anne nnel	nnel. I 31 0			Wate	erma	ark s	tatus	3		

Table 138 DMA_WMARK_INT_MSK Register

DMA_LINKNUL_INT_MSK REGISTER

										DM/			_			_	_	T_N IASH			TEF	₹									
Ad	dres	ss =	0xF	040	_002	20																		De	faul	t va	lue	= 0>	(000	0_0	000
31	S/W RESET													16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ВІ	BITS FIELD NAME S/W RESET VALUE														•				FII	ELD	DES	SCR	IPT	ION							
31	:0	DΝ	ΛΑ_I	₋INK	(NUI K	_IN	T_N	18	F	RW	(00x00	_	for Bi	r the t 31	corre	espo	upt Nondi	ng c to E	hanı MA	nel. Cha	nne	l 31	s the	e Lin	k Nu	ıll st	atus	inte	rrup	t
																	•	ed a						Иasł	ked.						

Table 139 DMA_LINKNUL_INT_MSK Register

DMA_TC_STS REGISTER

										DN	1A T	ERN			_	C_ NT S	•		RE	:GIS	ΓER										
Ad	dres	ss =	0xF	040	_002	28																		De	faul	lt va	lue	= 0	x000	0_0	0000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВГ	ΓS		F	IELI	D NA	AME	•		_	S/W CES		RES VAL				•				FI	ELD	DE	SCR	IPT	ION						•
31	:0		D	MA_	_TC_	_STS	S		R/\	W1C	;	000 000	_	Co Wi in on Th Bit	ount nen the this ese	has a DNA cha bits corre	bee MA_ A_C anne are espo	n rea	ach ST: 1 re red to	s. Earlied for S bit egisted I by von DMA	or the is seen will writing Cha	et, the last be given by the l	rresponder contraction of the co	ond orres et. Th	ling pon nis d	char ding lisab	nnel. DM oles 1	A_C furth	:H_E	ΞNΑ	bit

Table 140 DMA_TC_STS Register

DMA_ERR_STS REGISTER

											C	OMA			_EF	-	_		STI	ER											
Ad	dre	ss =	0xF	040	_00	30																		De	faul	t va	lue	= 0	x000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12														FI	ELD	DE	SCR	IPTI	ON						•						
31	:0		DΝ	ИА_Е	ERR	2_ST	-S		R/\	W1C	; (°)x00 000	_	red WI bit tra Th Bit	ceive hen a in th insfe iese t 31 d	ed du a DN ne D rs or bits corre	urino MA_ MA_ n thi are espo	g a F ERF CTI is ch clea	Rea R_S RL1 ann red to	id or STS b 1 reg	Write it is ister vritin	e tra set, will g '1' anne	nsfe the d be re to the 31	r on corre	the espo . Thi	corr ndin	espo ig Di sable	ondii MA_ es fu	ng c _CH_	nanr _EN	nel.

Table 141 DMA_ERR_STS Register

DMA_WMARK_STS REGISTER

											DM <i>A</i>			_	WM ARK		_			STE	₹										
Ac	ldres	ss =	0xF	040	_003	38																		De	faul	lt va	lue	= 0	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BITS																	FII	ELD	DES	SCR	IPT	ION								
31	:0		DMA	_W	MAF	RK_S	STS		R/\	W1C	;	000 000	_	Co Th Bit	aterrount nese t 31	has bits corre	bee are espo	n rea clea onds	ache red to E	ed fo by w DMA	r the ritin Cha	cor g '1' inne	resp to t I 31	onc	ling	char	nnel.		'ater	mar	k

Table 142 DMA_WMARK_STS Register

DMA_LINKNUL_STS REGISTER

											DN		OM/	_			_	-		ER											
Ad	dres	ss =	0xF	040	_004	40																		De	faul	t va	lue	= 0x	000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS		F	IEL	D N	AME			_	S/W CES		RES VAL			•	•				FII	ELD	DES	SCR	IPT	ION						
31	:0	[AMC	_LIN	NKN	UL_	STS		R/\	W1C	;	000	-	fet Th Bit	nk N ched ese t 31	d for bits corre	the are espo	corr clea onds	espo red to E	ondii by w DMA	ng ci ritin Cha	hanr g '1' anne	nel. to t I 31	Ū	,				was	3	

Table 143 DMA_LINKNUL_STS Register

DMA_FIFO_INT_MASK REGISTER

												OMA			_	-	_INT PT M	_			STE	R										
Α	dd	res	s =	0xF	040	_00	48																		De	efaul	t va	lue	= 0	(000	0_0	000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 S/W RESET												16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
В	BIT	s		F	IEL	D N	AME	•		_	S/W CES		RES VAL								FII	ELD	DES	SCR	IPT	ION						
31:1 Reserved												(00x0 000	_																		
	0		D	MA _.	_FIF	-O_I	NT_	MSŁ	(F	RW		0x	0	Th	is bi	Status t mas ablec	sks	the I	FIFC) sta		inter	rrupt	t.							

Table 144 DMA_FIFO_INT_MASK Register

DMA_FIFO_STATUS REGISTER

													OM/ A FI	_		_				₹											
A	ddre	ss =	0xF	040	_00	4C																		De	faul	t va	lue	= 0x	000	0_0	000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16												16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
В	ITS		F	IEL	D N	AME	•		_											FII	ELD	DE	SCR	IPT	ION						
3	SITS FIELD NAME ACCESS VALUE																														
	0		DM	1A_I	FIFC)_S1	гs		R/\	N1C	;	0x	ω.	Th	is bi		asse			gic 1)		ere	is d	ata i	n the	e SH	IA tr	ansf	er F	IFO	

Table 145 DMA_FIFO_STATUS Register

DMA_AHB_SLAVE_ADDR REGISTER

										ļ	I DM <i>A</i>		_		_			_ A[S RE			₹										
Ac	dre	ss =	0xF	040	_00	50																		De	faul	t va	lue	= 0×	c 000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS		F	IELI	D N	АМЕ			_	/W CES		RES VAL								FII	ELD	DES	SCR	IPTI	ION						
31	31:0 DMA_AHB_SLAVE_ADD RW 0x0000 Ox000 This Linke									is fie	eld n	nust	be s	set to	0x	F040	0_00	00 f	or co	orred	ct op	erat	ion (of th	е						

Table 146 DMA_AHB_SLAVE_ADDR Register

DMA_PRI_SRC REGISTER

										DMA	A P	RIM <i>A</i>			_	RI_S SE A		_	S RE	GIS	TER	ł									
			0xF0 Chan	_	_		•		•															De	fau	lt va	alue	= 0	x00	000_0	0000
<u> </u>				Ť					 		20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	2 1	0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2																															
31	:0		DMA	_PI	⋜I_\$	SRC	:_n		F	RW		0x00 000	_	for Ur are igr	ich its naliq e ig nore	regis resp gned nored	ter hective Addon Addon Fo	nolds ve ch dress or ex en w	bas nann bits amp	se a lel. s for ole, v	ddre: all S when	RC,	DS [.]	T, aı SRC	nd L _HS	INK SIZE	(_AI ==0	DDR	reg	ransferister 2:0] a	5
Not	e tha	at 'n'	repr	eser	nts t	the [OMA	cha	anne	l nur	mbe	er, ie.	0, 1	, 2 .	3	1.															

Table 147 DMA_PRI_SRC_n Register

DMA_PRI_DST REGISTER

Address = 0xF040_0104 + (n * 0x40) (n = DMA Channel, valid from 0 to 31) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BITS FIELD NAME S/W ACCESS RESET VALUE FIELD DESCRIPTION DMA_PRI_DST_n RW 0x0000_0000 00000000000000000000000										DM	IA P	RIN	//AR		-	_PRI	_		_	ESS	REG	SIST	ER									
BITS FIELD NAME S/W ACCESS VALUE DMA Destination Address (Channel 'n') Each register holds base address for the destination of the DMA Transfer for its respective channel. Unaligned Address bits for all SRC, DST, and LINK_ADDR registers are ignored. For example, when DMA_SRC_HSIZE=0x3, bits [2:0] are ignored.					_	•		•		•															De	faul	t va	lue	= 0x	000	0_0	000
BITS FIELD NAME ACCESS VALUE FIELD DESCRIPTION DMA_PRI_DST_n RW DMA_PRI_DST_n RW DVA0000_ 0000 DMA_PRI_DST_n D	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BITS FIELD NAME S/W ACCESS RESET VALUE														15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Bach register holds base address for the destination of the DMA Transfer for its respective channel. Unaligned Address bits for all SRC, DST, and LINK_ADDR registers are ignored. For example, when DMA_SRC_HSIZE=0x3, bits [2:0] are ignored.	ВІТ	BITS FIELD NAME S/W RESET VALUE																		FII	ELD	DE	SCR	IPT	ION							
(DMA_LINK_ENA=1).	31:	:0		DM	A_PF	RI_I	DST	`_n		F	RW			_	Ea Tra Ur are igr	ansfe ansfe align e igno nored ot to b	egister for ned a porecond l. pe w	ter h r its Add d. Fo	nolds resp ress or ex	ba bect bits amp	se a	ddre han all S wher	ss fonel. RC, DM	DS [*]	e de T, ai SRC	nd LI _HS	INK SIZE	_ADI =0x3	DR r	egis		

Table 148 DMA_PRI_DST_n Register

DMA_PRI_LEN REGISTER

										DN	/A F		_	_PF Y TF	_		l_n R LE	ENG	тн											
Address (n = DM			-	_		•		•															De	faul	t va	lue	= 0x	000	0_0	000
31 30 2																14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RITS FIFI D NAME S/W RESET																		FI	ELD	DES	SCR	IPTI	ON							
31:0		DM.	A_P	RI_I	LEN	_n		F	₹W	(000 000	_	Co va nu Di No	ontai lue i imbe MA_ ot to	ns the rof SRC be v	ne re s re byte _HS vritte	Lenç equir giste es mi SIZE en wi	er is ust b ("ur hile	iumb not a be al nalig	oer o affec igne ned"	f tra ted d to bits	by the the are	ne tr prog igno	ansf gram ored	er o med).	ccur d				

Table 149 DMA_PRI_LEN_n Register

DMA_LINK_ADDR REGISTER

									ı			_	.INK_		_		R											
			040_01 nnel, va		•		•														De	faul	t va	alue	= 0	c 000	0_0	000
31 30	29	28	27 26	25	24	23	22	21	20	19	18	17	16 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BITS		F	IELD N	AME	•		_	S/W CES			SET			•	•		FII	ELD	DES	SCR	IPT	ION		•		•		•
31:0	ı	OMA	_LINK_	ADD	PR_n		F	W	d	00	_	Th Ad Th ad + ((lin Se Di No (D	MA Linlais is the ddress he next ljacent 0x8, arnked) Etting the MA Trable that MA_SI haligne e ignor	e AH regist (linke addre d DMA DMA Dis reg nsfer bits RC_H	B Ad er va ed) D esses IA_L rans gister - this [1:0]	dresalue. ST, SDM INK Sfer to (S is to are E is to	LEN MA_L AD for it 0x00 used unim	at co I and INK DR_ s res 000_0 I to to pler I at 3	ontain LIN _AD n + (spec 0000 erminent 32-bit	IK_/ DR DxC tive inconate ed a	ADD _n + resp chadicate the ethe and	R re 0x4 pecti nnel es the cha are r	egist , DI ively nat t inin rese	ters a MA_ y, de there ng. ervec st des	are h LINk finin e is n I for scrip	neld a C_AC g the o lin futur tor fe	at the DDR_e nex ked re us etche	e _n xt se es).

Table 150 DMA_LINK_ADDR_n Register

DMA_SEC_SRC REGISTER

	DMA S	_	SEC_SRC_n URCE ADDRESS REGISTER
	ss = 0xF040_0110 + (n * 0x40) MA Channel, valid from 0 to 31)		Default value = 0x0000_0000
31 30	29 28 27 26 25 24 23 22 21 2	20 19 18 17	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
вітѕ	FIELD NAME S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31:0	DMA_SEC_SRC_n RW	0x0000_ Who	A Buffer Source Address (Channel 'n') en Double Buffer Control is enabled (DMA_DWB_ENA=1), then the tents of this register will be placed into the Source Address register IA_PRI_SRC_n) upon reaching terminal count.
Note that	at 'n' represents the DMA channel num	ber, ie. 0, 1, 2	31.

Table 151 DMA_SEC_SRC_n Register

DMA_SEC_DST REGISTER

								ı	DMA	SE	CON	IDA		_	•	_		Γ_n		S R	EGI	STE	R								
					_		· (n * rom		10) 31)	ı														De	faul	t va	ue	= 0>	<000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1 BITS FIELD NAME S/W ACCESS VALUE																		FII	ELD	DE	SCR	IPT	ION							
31	:0		DM	A_S	EC_	DS1	Γ_n		F	RW	(00x00		W	hen nter	Dou its of	ble I	estin Buffe s reg PRI	er Co jister	ontro	ol is be į	enal plac	bled ed ir	(DN nto th	1A_C ne D	estir	– natio	n A			he
Not	e tha	at 'n	rep	rese	ents	the I	DMA	cha	anne	l nu	mbe	r, ie.	0, 1	, 2 .	3′	1.															

Table 152 DMA_SEC_DST_n Register

DMA_SEC_LEN REGISTER

								DN	VA S	SEC	ONE		_	-	C_I		_		REG	SIST	ER									
Addre (n = D				_		•		•															De	faul	t va	lue	= 0	x000	0_0	000
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BITS		F	IEL	D NA	ΑМЕ	•		_	S/W CES		RES								FII	ELD	DES	SCR	IPTI	ION						
31:0		DM	A_S	SEC_	LEN	\ _n		F	RW.		00x00	_	W	hen nter	Buffe Dou nts o _PRI	ble f thi	Buffe s reg	er Co jister	ontro will	ol is be p	enal	oled ed ir	(DN nto th	ne T	rans	_		, .		
Note th	at 'n	' rep	rese	ents t	the I	DMA	ch	anne	l nu	mbe	r, ie.	. 0, 1	1, 2 .	3	1.	_														

Table 153 DMA_SEC_LEN_n Register

DMA_COUNT REGISTER

											DΝ	/A T		MA NSF	_		_	_	SIS	TER											
				040_ nnel,	-		•		•															De	faul	t va	lue	= 0>	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
BI	TS		F	IELC	N/	AME			_	S/W CES		RES VAL								FI	ELD	DE	SCR	IPT	ION						
3	1		D	MA_	TYF	PE_I	า		R/	WC		0	1	Th 0 =	is bi = No	t ind	icate I DN	es th	ne t	Chan type o		,	1A tr	ans	fer						
31	:0		С	OMA_	_CN	IT_n	l		R/	WC	C	000 000	_	Co Th va wr	ntai is is lue. iting	ns th a re The	ne ci ad-c regi	urrei only ister ue to	nt ti reg is i	(Chai ransf gister reset e reg	er co , and to 0	unt I refl upo	ects n re	the achi	curr ng te	ermi	nal c	coun	t or	upo	n
Not	e th	at 'n'	rep	reser	nts t	the I	OMA	cha	anne	l nui	mbe	r, ie.	0, 1	, 2 .	31	l															

Table 154 DMA_COUNT_n Register

DMA_WMARK_CNT REGISTER

														_W _ TAW			_		_												
					_		· (n * rom		40) o 31)	ı														De	faul	t va	lue	= 0×	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
Bľ	TS		F	IEL	D N	АМЕ	•		_	S/W CES		RES VAL								FII	ΞLD	DE	SCR	IPT	ION						
31	:0	D	MA_	_WIV	1ARI	<_C	NT_	n	F	RW	(00x00	-	Wi Wa be	nen aterr gen	the I	DMA Co ted f	A Tra	ans (DN	mark (sfer Co MA_W chann	ount 'MAI	(DM RK_	IA_C CNT	CNT. [_n),	a w	ater	mar	k int	erru	ot w	ill
Not	e th	at 'n	rep	rese	ents	the I	DMA	\ ch	anne	l nui	mbe	r, ie.	0, 1	, 2 .	31	1.															

Table 155 DMA_WMARK_CNT_n Register

DMA_CTRL1 REGISTER

				MA_CTRL1_n ONTROL 1 REGISTER
	ss = 0xF040_0128 + (n * 0x MA Channel, valid from 0 t	•		Default value = 0x0000_0000
	29 28 27 26 25 24 23		19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
31:28	Reserved		0x0	
27:26	DMA_DST_HSIZE	RO	0x0	DMA Destination data word size. The DMA uses the programmed DMA_DST_HSIZE for all AHB write transfers for this channel. 00 = 8 bits 01 = 16 bits 10 = 32 bits 11 = 64 bits Must be the same as DMA_SRC_HSIZE. For DMA transfers to/from the AIF modules, the data word size must be 32 bits (DMA_DST_HSIZE=10). When Linked List DMA chaining is enabled (DMA_LINK_ENA=1), then the data word size must be 32 bits (DMA_DST_HSIZE=10).
25	Reserved		0x0	
24:23	DMA_SRC_HSIZE	RW	0x0	DMA Source data word size. The DMA uses the programmed DMA_SRC_HSIZE for all AHB read transfers for this channel. 00 = 8 bits 01 = 16 bits 10 = 32 bits 11 = 64 bits Must be the same as DMA_DST_HSIZE. For DMA transfers to/from the AIF modules, the data word size must be 32 bits (DMA_DST_HSIZE=10). When Linked List DMA chaining is enabled (DMA_LINK_ENA=1), then the data word size must be 32 bits (DMA_SRC_HSIZE=10).
22	DMA_LOCAL_DST_ADD R	RW	0x0	Indicates the destination address is local (internal to the DMA Controller) when set to a 1. Write half of the DMA transfer completes without AHB cycles. Un-decoded destinations result in a DMA write to "null". In the current implementation all local addresses are undefined and undecoded. The definition of local addresses is reserved for future implementations.
21	DMA_LOCAL_SRC_AD DR	RW	0x0	Indicates the source address is local (internal to the DMA Controller) when set to a 1. Read half of the DMA transfer completes without AHB cycles. Un-decoded sources result in a DMA null read of all 0s. In the current implementation, all local addresses are undefined and undecoded. The definition of local addresses is reserved for future implementations.
20	DMA_LINK_INT	RW	0x0	For linked DMA transfers (DMA_LINK_ENA=1), this bit controls whether the Terminal Count Status (DMA_TC_STS, bit [n]) is set every time the Terminal Count is reached, or is set only at the Terminal Count of the final DMA transfer in a chain (final DMA transfer in a chain for which DMA_LINK_ADDR_n=0x0000_0000, ie. 'NULL'). 0 = Set DMA_TC_STS bit [n] at the Terminal Count for each transfer 1 = Set DMA_TC_STS bit [n] at the Terminal Count of the last transfer only

											D			_	_CTR	_	_	TE	ER															
Addres				_		•																			De	faul	lt	valu	ie	= 02	(000	00_	_00	000
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	1	16 15	14	13	,	12	11	10	9		8	7	6		5	4	3	2		1	0
BITS				FIELD				_	S/W			SET			ı						DE	FII			N.									
												<u></u>	0 = 1 =	= =	ble Lin Disable Enable	ed ed					ainir	ng.												
19		DN	1A_	_LINK	(_EN	NA		F	RW		0	x0	tra to No siz	ote ze	en enal A to the sfer. TI x0000_ e that, must b IA_DW	e SR he lii _000 whe be 3	C, I nke 0. n Li 2 bi	DS d nk	ST, list ked , ar	LEI tern List	N an ninat DM	d LI es v A cl	NI wh	K_A nen iinin	DD t re	R re each	eg ne al	giste s a oled	rs LIN , th	for e NK_A ne da	ach ADD ita w	lir R	nke eqi	
18:17	DM	1A_/	ΑН	B_M <i>i</i> T	AX_	BUR	S	H	RW		0	x0	00 01 10 11	urs) = =) =	ximum st Data = SING = INCR = INCR = Reser	tran LE 4 8 rved	sfe	ri	s e	nab	ed (ĎΜ	A_	_AH	B_I	BUF	35	ST_E	EN.			er	1	
16	DM	ЛА_ <i>,</i>	ΑН	B_Bl A	JRS	T_E	Ν	F	RW		0	x0	Err 0 = 1 = Bu Bu Ac	nal = = urs	ble AH Disable Enable st Data st Data ordingl	B bued d tran tran y, D	urst isfe isfe	tra rs rs _A	mı mı MHE	ist b	e er e di	nabl sabl T_E	ec lec	d for d fo IA a	Lo Hi	w-P gh-l	Pri Pr	ority	D y [OMA	cha	nr	nels	6.
15	DM	//Α_:	SH	A_XF	-ER	_EN	Α	F	RW		0	×0	En 0 = 1 = No tra	na = I = I	ble SH Disable Enable e that the sfer is A_PRI_	A da ed d he S enat	ata f	tra	ansi ata n ad	er. trar	nsfer on to	· is \	via	aa							s SH	IA	da	ta
14			R	eserv	ed						0	x0																						
13:11	DM	IA_E	ΞNI	DIAN EN	_sv	VAP_	Ļ	F	RW		0	x0	00 00 01 01 10	0 0 1 0 1 0 1	ian Byt = 16-b = 24-b = 24-b = 32-b = 64-b to 111	it wo = R	ord ord ord ord ord ord	siz siz siz siz	ze ze (ze (ze ze ved	pad pad	MS futur	Byt e im	te)) Iem				8						
10			R	eserv	ed						0	x0																						
9	DM	IA_E	ENI	DIAN NA	_SW	VAP_	E	F	RW		0	x0	0 = 1 =	= =	ian Byt Disable Enable	ed ed																		
8	Ν	MA_	_Al	⊣B_A	.RB_	_SE1	-	F	RW		0	x0	Co for 0 =	on r a = I	B Maste atrols w accessi DMA c DSP C	hich ng t	mo he A	odi AF r h	ule HB I nas	has ous. higl	ner p	rior			e e\	/ent	c	of co	nfli	ictinç	g de	m	anc	ds

				MA_CTRL1_n
Addre	ss = 0xF040_0128 + (n * 0x	40)		Default value = 0x0000_0000
(n = DI	MA Channel, valid from 0 t	o 31)		
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION
	IVAIIL	AUGEGO	VALUE	Channel Priority group selection.
7	DMA_CH_PRI_LOW_EN A	RW	0x0	0= High priority 1= Low priority Burst Data transfers must be enabled for Low-Priority DMA channels. Burst Data transfers must be disabled for High-Priority DMA channels. Accordingly, DMA_AHB_BURST_ENA and DMA_CH_PRI_LOW_ENA must always be set to the same value.
6	DMA_SRC_ACK_CTRL	RW	0x0	ACK control 0 = ACK asserted during Destination Address or Data phase 1 = ACK asserted during Source Address or Data phase In each case, the applicable Address or Data phase is selected by the DMA_ADP_ACK_CTRL bit. When Software Transfer control is enabled (DMA_SOFT_XFER_ENA=1), then this ACK control field is ignored.
5	DMA_ADP_ACK_CTRL	RW	0x0	ACK control 0 = ACK is associated with Data phase (Source or Destination) 1 = ACK is associated with Address phrase (Source or Destination) The DMA_SRC_ACK_CTRL bit determines whether the Source phase or Destination phase is applicable. When Software Transfer control is enabled (DMA_SOFT_XFER_ENA=1), then this ACK control field is ignored.
4	DMA_DWB_ENA	RW	0x0	Double Buffer Control 0 = Disabled 1 = Enabled When Double-Buffering is enabled, the Secondary SRC, DST, LEN registers are used to define the next DMA transfer. These registers are copied into the Primary SRC, DST, LEN registers upon reaching Terminal Count, and the corresponding DMA_CH_ENA bit is set to 1, allowing a new transfer to begin. The DMA_DWB_ENA bit resets to 0 when the Secondary Buffers are empty. The Secondary Buffers must be re-loaded (and DMA_DWB_ENA set to 1) to configure the next transfer. If the current transfer completes before DMA_DWB_ENA has been enabled, then the DMA channel will be disabled and must be enabled again by setting DMA_CH_ENA=1. When Linked List DMA chaining is enabled (DMA_LINK_ENA=1), then Double-Buffering must be enabled (DMA_DWB_ENA=1).
3	DMA_DST_NINC	RW	0x0	Destination Address Increment Control 0 = Destination Address is incremented for each data transfer 1 = Destination Address is not incremented When striding is enabled for destination addresses (DMA_STRIDE_DST_ENA=1), then DMA_DST_NINC must set be 0.
2	DMA_SRC_NINC	RW	0x0	Source Address Increment Control 0 = Source Address is incremented for each data transfer 1 = Source Address is not incremented When striding is enabled for source addresses (DMA_STRIDE_SRC_ENA=1), then DMA_SRC_NINC must set be 0.

WM0011 Production Data

										DN			_	TRL L 1 R	_		ER	2												
			F040_0		•		•															I	Def	faul	t val	lue	= 0	x000	0_0	0000
(n	אט =	IA Cha	nnel, v	alid fi	rom	U to	31)												1		_									_
31	30	29 28	27 26	25	24	23	22	21	20	19	18	17	16	15 1	4	13	12	11	10	9	ŧ	8 7	7	6	5	4	3	2	1	0
BI	ΓS		FIEL	_D			S	/W		RES	SET									FI	EL	.D								
			NAN	ΛE			ACC	ES	S	VAL	UE								DE	SC	RII	PTIC	N							
1		DMA <u>.</u>	_SOFT_	_XFR_	_EN/	A	R	W		0x	(0	0 = Ha to/ 1 =	Hairdwa from Sof	Soft dwar are ha SPI of tware re tra	e hands nds or A tra	and shal JF r	sha ke moder o	ake conti	(ACk rol m s. rol. (() cc nust ACK	be	sele ontro	ol s	ettir	ngs a	are	igno	red.)	·S.
C	1	С	DMA_CH	H_EN/	A		R	W		0x	κ0	0 = 1 = Th Cc If [Dis Enais bit ount, Doub	hann abled abled will a or un le-Bu toma	uto der fferi	oma Err	tica or	ally r cond	dition oled (s. (DM	A_	_DW	B_I	ENA	\=1)			Ū		
No	te th	at 'n' re	present	ts the	DMA	A cha	anne	l nu	mbe	er, ie	e. 0,	1, 2	3	1.																

Table 156 DMA_CTRL1_n Register

DMA_CTRL2 REGISTER

												DN			_	TR DL 2	_	-	ER												
					0_012 el, val		•		,															Def	fault	val	ue =	= 0x	FAC	6_8	800
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВГ	ΓS				FIELD					S/W CES		RES VAL									DE		ELD RIPT	ION							
31:	29		DMA	4_E	BYTE	7_S	RC		F	RW		0x	7	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 7	(bits	63	3:56])			
28:	26		DMA	4_E	BYTE	6_S	RC		F	RW		0x	6	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 6	(bits	s [55	5:48])			
25:	23		DMA	4_E	BYTE	5_S	RC		F	RW		0x	5	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 5	(bits	s [47	′ :40])			
22:	20		DMA	4_E	BYTE	4_S	RC		F	RW		0x	4	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 4	(bits	[39	9:32])			
19:	17		DMA	4_E	BYTE	3_S	RC		F	RW		0x	3	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 3	(bits	[31	:24])			
16:	14		DMA	4_E	BYTE	2_S	RC		F	RW		0x	2	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 2	(bits	[23	3:16])			
13:	11		DMA	4_E	BYTE	1_S	RC		F	RW		0x	1	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 1	(bits	s [15	5:8])				
10	:8		DMA	4_E	BYTE	.0_S	RC		F	RW		0x	0	So	ourc	e byt	e se	lecti	ion f	or d	estin	atio	n by	te 0	(bits	i [7:	0])				
7:	0			R	eserv	ed						0x0	00	Re	eser	ved -	- Do	Not	Cha	ange	fror	n 0x	:00								
					sents e Swa							-), the	en th	ie Dl	MA_	BYT	En_	SR	C re	giste	ers a	ıre ig	nore	ed.		

Table 157 DMA_CTRL2_n Register

DMA_SOFT_ABORT REGISTER

																_	ABO RE AI		_	1											
	dres = DN				_		•		40) o 31)	ı														De	faul	t va	lue	= 0x	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
Bľ	TS		F	IEL	D N	AME	•		_	S/W CES		RES VAL								FI	ELD	DE	SCR	IPT	ION						
31	:1			Re	serv	ed					(00x0 00	_																		
C)		OMA	_SV	V_AI	BOF	RT_n	l	F	RW		0x	(Ο	Th	e Di	MA	_SW	_AB	OF	any v RT_n t leared	oit w	ill re	ad b	ack	'1' v	vhils	t the	abo	ort is		
Not	e tha	at 'n'	rep	rese	ents	the I	DMA	\ cha	anne	l nui	mbe	r, ie	0, 1	, 2 .	3′	1.															

Table 158 DMA_SOFT_ABORT_n Register

DMA_STRIDE REGISTER

										ı			_	STRI DE RE	-	_																
Addres			_		•		•)																Det	fau	lt v	alue	= 0)x(0000_	00	000
31 30	29	28	27 26	25	24	23	22	21	20	19	18	17	16	3 15	14	1	3	12	11	10	Ś	9 8		7	6	5	4	3		2 1		0
BITS		F	IELD N	AME	=		_	S/W CES	s	RES VAL				•					FI	ELD	D (ESC	RIF	PTI	ON		•	•				
31	DN	1A_S	STRIDE A	:_SR	C_	EN	F	RW		0x	0	0 = 1 = No (D	= S = S ote MA	that that the	g of g of he B B_B	So Su Ul	ouro ouro rst t RST	ce . ce . trai	Add Add nsfe ENA	ressoressor mo =0) v	es es de wh	disal enat mus nen us	oleo leo t be sing	d e d g th	ne E		-	de f	ur	oction	<u>-</u>	
30	DN	ЛА_S	STRIDE A	:_DS	ST_I	ΞN	F	RW	0x0 1 = Striding of Source Note that the Burst trai (DMA_AHB_BURST_E DMA Stride Control (D 0 = Striding of Destinal Note that the Burst trai (DMA_AHB_BURST_E 0x00 DMA_Stride Count											Addı Addı mo	res res	sses (sses (e mus	disa ena t be	able able e d	ed ed isal			de f	ur	oction	<u>-</u>	
29:22			Reserved 0x00																													
21:16	ı	OMA	_STRII	DE_0	(DMA_AHB_BUR											ber set dica ss b add mer	of tec eg Ire: nt or or	f stricted by ins was an of the to be to be	des a DMA vith the nd is e AF egini pegin	at A_ the s in HB nir nn	a bas SRC e con ncrem addr	e a _H! figu en ess new	add SIZ ureo ited s by v se	Ires ZE for d D I ea y the et set	s thor e	nat is each _PRI set o	incr set (_SF f str	rer of RC	mente stride ; / es. A	es.		
15:12			Reserved 0x0																													

WM0011 Production Data

												!	D DMA	MA ST	_			_	₹												
			0xF0 Chan	_			•		•															De	faul	t va	lue	= 0×	000	0_0	000
31			28	Ť							20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІТ				ELD					S	S/W CES		RES VAL	SET						• =			DES		IPT							
11:	0	1	DMA <u>.</u>	_STF	RIDE	E_L	.EN		F	RW		0x0	000	Se so 0 = 1 =	elect urce = 1 t = 2 t	s the des imes imes	e nur stina s the s the	tion # of # of	r of add f by f by	f byte dress ytes ir ytes ir	(es) ndica	whe ated ated	n st by [by [ridin DMA DMA	g is _SR _SR	enal C_F C_F	oled ISIZ ISIZ	E E	SIZE	<u> </u>	
Note	tha	at 'n'	repr	esen	ts th	ne E	OMA	cha	anne	l nur	mbe	r, ie.	0, 1	1							. ,				· <i>y</i> -						

Table 159 DMA_STRIDE_n Register

DMA PROGRAM EXAMPLES

EXAMPLE 1: PERIPHERAL TRANSFERS USING DMA

This example describes a mechanism to transfer 32-bit data words from an I/O peripheral into memory. It is assumed that 64 words (256 bytes) are to be transferred from the AIF1 module into memory.

The data words will be read from a fixed address in the AIF1 module; the AIF_RX_DAT register address for AIF1 is 0xF070_0000. The data will be written to a 256-word block of System RAM memory, starting at 0x6000_0000.

The AIF1 RX path requires the use of DMA channel 6. The handshake configuration must be Source Data Phase ACK. (These requirements are described in Table 131.)

The required register settings for this transfer are noted below. Note that the default setting is assumed for any register fields that are not quoted here.

REGISTER / FIELD NAME	VALUE	DESCRIPTION
DMA_GLB_CTRL		
DMA_ENA	0x1	Enables the DMA module
DMA_PRI_SRC_6		
DMA_PRI_SRC_6	0xF070_0000	Selects AIF_RX_DAT as the source
DMA_PRI_DST_6		
DMA_PRI_DST_6	0x6000_0000	Selects 0x6000_0000 as the destination
DMA_PRI_LEN_6		
DMA_PRI_LEN_6	0x100	Selects a transfer length of 256 bytes
DMA_CTRL1_6		
DMA_DST_HSIZE	0x2	Selects 32-bit word size
DMA_SRC_HSIZE	0x2	Selects 32-bit word size
DMA_SRC_ACK_CTRL	0x1	Selects Source Address ACK
DMA_ADP_ACK_CTRL	0x0	Selects Data Phase ACK
DMA_DST_NINC	0x0	Selects Incrementing Destination addresses
DMA_SRC_NINC	0x1	Selects Non-Incrementing Source addresses
DMA_SOFT_XFER_ENA	Selects Hardware handshake (ACK) control	
DMA_CH_ENA	0x1	Enables the DMA Channel
Note that the default setting is as	ssumed for any DM	A Controller register fields that are not quoted.

Table 160 DMA Example 1

The register settings described in Table 160 will initiate a 64-word (256 byte) transfer from the AIF1 module into a block of memory.

The DMA channel is automatically disabled (DMA_CH_ENA=0) on completion of the transfer.

On completion, the DMA controller will also assert bit [6] in the DMA Terminal Count Status (DMA_TC_STS) register, indicating that the Terminal Count for DMA channel 6 has been reached. When unmasked and enabled, this bit can be used to signal an Interrupt Event to the CCM module.

Note that the Terminal Count status bit should be reset (by writing '1' to the respective bit) in order to allow subsequent DMA transfers to be signalled.

EXAMPLE 2: MEMORY TO MEMORY TRANSFERS USING DMA

This example describes a mechanism to transfer 64-bit data words from one memory block to another. It is assumed that 512 words (4096 bytes) are to be transferred.

The data words will be read from a base address of 0x6000_0000, and will be written to a base address of 0x6000_4000.

Software transfer control will be used, as is required for 'memory-to-memory' transfers. In this example, DMA channel 12 will be used. (Note that SRAM-SRAM transfers can be supported on all DMA channels.)

The required register settings for this transfer are noted below. Note that the default setting is assumed for any register fields that are not quoted here.

REGISTER / FIELD NAME	VALUE	DESCRIPTION		
DMA_GLB_CTRL				
DMA_ENA	0x1	Enables the DMA module		
DMA_PRI_SRC_12				
DMA_PRI_SRC_12	0x6000_0000	Selects 0x6000_0000 as the source		
DMA_PRI_DST_12				
DMA_PRI_DST_12	0x6000_4000	Selects 0x6000_4000 as the destination		
DMA_PRI_LEN_12				
DMA_PRI_LEN_12	0x1000	Selects a transfer length of 4096 bytes		
DMA_CTRL1_12				
DMA_DST_HSIZE	0x3	Selects 64-bit word size		
DMA_SRC_HSIZE	0x3	Selects 64-bit word size		
DMA_DST_NINC	0x0	Selects Incrementing Destination addresses		
DMA_SRC_NINC	0x0	Selects Incrementing Source addresses		
DMA_SOFT_XFER_ENA	0x1	Selects Software transfer control		
DMA_CH_ENA	0x1	Enables the DMA Channel		
Note that the default setting is assumed for any DMA Controller register fields that are not quoted.				

Table 161 DMA Example 2

The register settings described in Table 161 will initiate a 256-word (1024 byte) transfer from base address 0x6000_0000 to base address 0x6000_4000.

The DMA channel is automatically disabled (DMA_CH_ENA=0) on completion of the transfer.

On completion, the DMA controller will also assert bit [12] in the DMA Terminal Count Status (DMA_TC_STS) register, indicating that the Terminal Count for DMA channel 12 has been reached. When unmasked and enabled, this bit can be used to signal an Interrupt Event to the CCM module.

Note that the Terminal Count status bit should be reset (by writing '1' to the respective bit) in order to allow subsequent DMA transfers to be signalled.

EXAMPLE 3: LINKED LIST DMA OPERATION

This example describes a mechanism to transfer 3 packets of 32-bit data words from memory to the AIF2 module. The packets are defined in a list of descriptor registers, with the first packet descriptor at memory address 0x6007_0000.

The first packet comprises 256 words (1024 bytes) read from base address 0x6000_0000. The DMA descriptors for this part of the transfer are located at address 0x6007_0000.

The second packet comprises 256 words (1024 bytes) read from base address 0x6001_0000. The DMA descriptors for this part of the transfer are located at address 0x6007 0010.

The third packet comprises 512 words (2048 bytes) read from base address 0x6002_0000. The DMA descriptors for this part of the transfer are located at address 0x6007_0020.

The DMA descriptors for each of the packet transfers are contained in the memory configuration described in Table 162.

ADDRESS	VALUE	DESCRIPTION
Packet 1 definition		
0x6007_0000	0x6000_0000	Selects 0x6000_0000 as the source
0x6007_0004	0xF080_0020	Selects AIF_TX_DAT as the destination
0x6007_0008	0x400	Selects a transfer length of 256 bytes
0x6007_000C	0x6007_0010	Identifies the next packet descriptors address
Packet 2 definition		
0x6007_0010	0x6001_0000	Selects 0x6001_0000 as the source
0x6007_0014	0xF080_0020	Selects AIF_TX_DAT as the destination
0x6007_0018	0x400	Selects a transfer length of 256 bytes
0x6007_001C	0x6007_0020	Identifies the next packet descriptors address
Packet 3 definition		
0x6007_0020	0x6002_0000	Selects 0x6002_0000 as the source
0x6007_0024	0xF080_0020	Selects AIF_TX_DAT as the destination
0x6007_0028	0x1000	Selects a transfer length of 512 bytes
0x6007_002C	0x0000_0000	Terminates the Linked List chain

Table 162 DMA Example 3 - Linked List Memory configuration

The data words will be written to a fixed address in the AIF2 module; the AIF_TX_DAT register address for AIF2 is 0xF080_0020.

The AIF2 TX path requires the use of DMA channel 9. The handshake configuration must be Destination Data Phase ACK. (These requirements are described in Table 131.)

The required register settings for this transfer are noted in Table 163. Note that the default setting is assumed for any register fields that are not quoted here.

REGISTER / FIELD NAME	VALUE	DESCRIPTION		
DMA_GLB_CTRL				
DMA_ENA	0x1	Enables the DMA module		
DMA_AHB_SLAVE_ADDR				
DMA_AHB_SLAVE_ADDR	0xF040_0000	Defines the AHB Slave Address of the DMA module		
DMA_LINK_ADDR_9				
DMA_LINK_ADDR_9	0x6007_0000	Defines the address of the DMA descriptors for the first transfer packet		
DMA_CTRL1_9				
DMA_DST_HSIZE	0x2	Selects 32-bit word size		
DMA_SRC_HSIZE	0x2	Selects 32-bit word size		
DMA_LINK_INT	0x1	Configures the Terminal Count Interrupt to assert on completion of the final packet transfer.		
DMA_LINK_ENA	0x1	Enables Linked List DMA function		
DMA_SRC_ACK_CTRL	0x0	Selects Destination Address ACK		
DMA_ADP_ACK_CTRL	0x0	Selects Data Phase ACK		
DMA_DWB_ENA	0x1	Enabled Double-Buffer operation		
DMA_DST_NINC	0x1	Selects Non-Incrementing Destination addresses		
DMA_SRC_NINC	0x0	Selects Incrementing Source addresses		
DMA_SOFT_XFER_ENA	0x0	Selects Hardware handshake (ACK) control		
DMA_CH_ENA	0x1	Enables the DMA Channel		
Note that the default setting is assumed for any DMA Controller register fields that are not quoted.				

Table 163 DMA Example 3 - DMA Register settings

The memory configuration described in Table 162, and the register settings described in Table 163 will initiate a sequence of 3 transfers from memory to the AIF TX port.

The DMA channel is automatically disabled (DMA_CH_ENA=0) on completion of the transfer.

On completion, the DMA controller will also assert bit [9] in the DMA Terminal Count Status (DMA_TC_STS) register, indicating that the Terminal Count for DMA channel 9 has been reached. When unmasked and enabled, this bit can be used to signal an Interrupt Event to the CCM module.

The Terminal Count Interrupt status is configurable for Linked List chains - it can be used to indicate completion of each packet, or else completion of the final packet only. In the example settings above, the DMA_LINK_INT bit configures the DMA channel to indicate only the final packet transfer.

Note that the Terminal Count status bit should be reset (by writing '1' to the respective bit) in order to allow subsequent DMA transfers to be signalled.

WM0011 Production Data

AIF INTERFACE MODULES

AIF1 - BASE ADDRESS 0xF070_0000

AIF2 - BASE ADDRESS 0xF080_0000

AIF3 - BASE ADDRESS 0xF090_0000

AIF FEATURES

The AIF Interface modules provide the following features:

- Runtime configurable multi-channel TDM format
- Runtime configurable serial audio format: I2S, Left-Justified or Right-Justified
- Supports all commonly used sample rates (8kHz to 192 kHz)
- Supports any audio sample sizes to 32 bits
- Reports status number of samples in FIFO
- Runtime configurable FIFO thresholds: an interrupt is asserted when the number of samples in the FIFO is greater and or lower than the applicable limit
- Reports loss of channel order (FIFO error conditions)
- Supports slave or master modes
- Supports up to 64 TDM audio channels

An overview of the AIF module is illustrated in Figure 51.

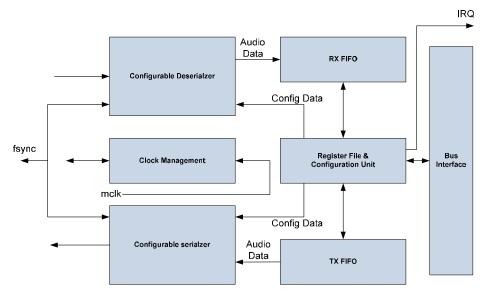


Figure 51 AIF Block Diagram

The RX path de-serializer can be configured to convert the incoming serial audio stream to a parallel interface. If the FIFO is full, the newly arrived samples are dropped until there is space in the FIFO. The RX path de-serializer should be reset before a stable serial audio signal is present at the input.

The TX path serializer reads the audio samples from the FIFO and converts the parallel audio stream interface into the desired output format. If the FIFO is empty, this module can be configured either to repeat the last sample present in the FIFO or to transmit zeros.

The clock management block provides the BCLK and LRCLK generator functions.

The RX FIFO and TX FIFO decouple the AIF clock domain from the host system clock domain. Each FIFO holds a maximum of 64 samples. The status and number of samples in each FIFO are

accessible by means of memory mapped registers and ports. The back-end interface supports blocking transactions.

AIF INTERFACE FORMATS

The AIF digital audio interface ports comprise 4 external connections:

- AIFnTXDAT Data output
- AIFnRX_DAT Data input
- AIFnLRCLK Left/Right frame alignment clock
- AIFnBCLK Bit clock, for data synchronisation

In Master mode, the clock signals BCLK and LRCLK are outputs from the WM0011. In Slave mode, these signals are inputs.

The AIF data format is highly configurable, using the AIF_DATA_CFG and AIF_CLK_CFG registers (see Table 173 and Table 174). The AIF modules support I2S, Left-Justified, Right-Justified, DSP Mode-A, DSP Mode-B formats, and many others. Typical configurations are described and illustrated below.

In l^2S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition. The other bits up to the LSB are then transmitted in order. Depending on the Channel length and Sample length configuration, there may be unused BCLK cycles between the LSB of one sample and the MSB of the next.

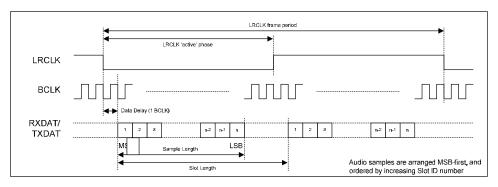


Figure 52 I2S Justified Audio Interface

In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK transition. The other bits up to the LSB are then transmitted in order. Depending on the Channel length and Sample length configuration, there may be unused BCLK cycles before each LRCLK transition.

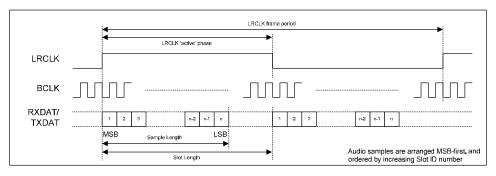


Figure 53 Left Justified Audio Interface

In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK transition. All other bits are transmitted before (MSB first). Depending on the Channel length and Sample length configuration, there may be unused BCLK cycles after each LRCLK transition.

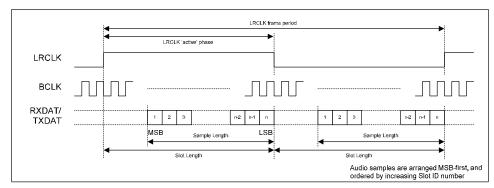
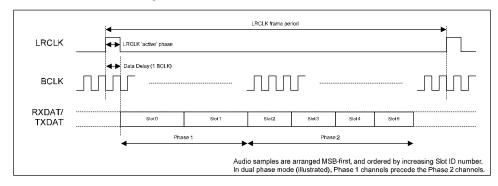
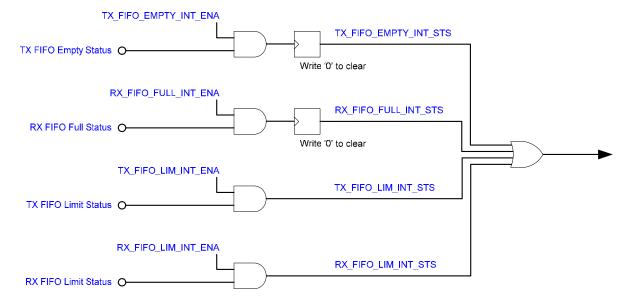


Figure 54 Right Justified Audio Interface

Many other AIF data formats can also be defined, supporting two or more channels of audio data. Dual phase mode can also be selected, allowing mixed-configuration sample slots for each channel. As an example, Figure 55 shows a format comprising 2 x 24-bit samples (Phase 1), followed by 4 x 16-bit samples (Phase 2). The first sample is delayed by 1 x BCLK cycle relative to the leading edge of the Frame Sync (LRCLK) signal.

Refer to the AIF_DATA_CFG and AIF_CLK_CFG register descriptions (Table 173 and Table 174) for further details on how to configure the AIF data format.




Figure 55 Multi-Channel Audio Interface

AIF INTERRUPTS

The AIF module can generate an interrupt when any of the conditions described in the AIF_INT_CTRL register occurs. The interrupt conditions provide status indications of the AIF TX and RX data buffers.

The AIF interrupt control registers are illustrated in Figure 56.

The interrupt control functions are replicated for each of the 3 AIF modules.

Figure 56 AIF Interrupts

WM0011

AIF REGISTER MAP

The register map of the AIF module is illustrated in Table 164.

ADDRESS	REGISTER	DESCRIPTION	RESET VALUE
Base + 0x00	AIF_RX_DAT	AIF Receive Data	0x0000_0000
Base + 0x04	AIF_RX_CH_ID	AIF Receive Channel ID	0x0000_0000
Base + 0x08	AIF_RX_STS	AIF Receive FIFO Status	0x0000_0000
Base + 0x10	AIF_RX_LIMIT	AIF Receive FIFO Upper Limit	0x0000_FFFF
Base + 0x20	AIF_TX_DAT	AIF Transmit Data	0x0000_0000
Base + 0x24	AIF_TX_CH_ID	AIF Transmit Channel ID	0x0000_0000
Base + 0x28	AIF_TX_STS	AIF Transmit FIFO Status	0x0000_0000
Base + 0x30	AIF_TX_LIMIT	AIF Transmit FIFO Lower Limit	0x0000_0000
Base + 0x40	AIF_DATA_CFG	AIF Data Configuration	0x01AC_01A4
Base + 0x44	AIF_CLK_CFG	AIF Serial Clocking Configuration	0x01F1_03F0
Base + 0x48	AIF_CTRL	AIF Control	0x0000_0022
Base + 0x4C	AIF_INT_CTRL	AIF Interrupt Control	0x0000_0000
Base + 0x60	AIF_MCLK_DIV	AIF MCLK Divider	0x0000_0000

Table 164 AIF Register Definition

AIF_RX_DAT - AIF RECEIVE DATA REGISTER

This register contains the received data from the RX FIFO. The audio samples have their MSB in bit 31, regardless of the number of bits per sample and the left/right justification being used.

The AIF_RX_DAT register can only be accessed when the RX FIFO is enabled using the AIF_CTRL register (see Table 175). For read access to the AIF_RX_DAT register, it is required that AIF_RX_ENA=1 and AIF_RX_RST=0.

The AIF_RX_DAT register cannot be read when the RX FIFO is empty. The RX FIFO status can be checked using the RX_EMPTY_STS bit in the AIF_RX_STS register (see Table 167).

Note that any attempt to read AIF_RX_DAT when the conditions described above do not support access may cause incorrect device behaviour. The restrictions noted also apply when accessing the register via the JTAG debug interface.

												AIF	REC		_	X_I ATA			TEF	₹											
Ad	dres	ss =	0xF	080	_000	00 (AIF 2 AIF 3	2)																De	efau	lt va	alue	= 0>	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS			-	IELI AMI	_				S/W CES	s	RES VAL									DE		ELD RIPT								
31	:0		Þ	AIF_	RX_	DAT	Γ		F	RO		0x0 000		Th		udio		•								•	less g us		ne nu	ımb	er

Table 165 AIF_RX_DAT Register

AIF_RX_CH_ID - AIF RECEIVE CHANNEL ID REGISTER

This register indicates the channel number of the last audio sample read from the AIF_RX_DAT register.

											AIF	RE		IF_ /E C	•	_	_		GIS	TER	ł										
Ad		ss =	0xF	080	_000	04 (AIF :	2)																De	efau	lt va	alue	= 0>	(000	0_0	000
31	30	ess = 0xF080_0004 (AIF 2) ess = 0xF090_0004 (AIF 3) 0 29 28 27 26 25 24 23 22 21 20 19 18 17															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bľ	TS				ELI AME				_	S/W CES		RES VAL									DE	FIE SCF	LD	ION					•		•
31	:8	NAME ACCESS VALUE 3 Reserved 0x00_ 0000																													
7:	:0	Slot ID															re ic	lenti	fied	by a	ın int	ege	r fro	m 0	to [N	N-1]					

Table 166 AIF_RX_CH_ID Register

AIF_RX_STS - AIF RECEIVE FIFO STATUS REGISTER

This register indicates the number of samples currently in the RX FIFO.

											AIF	RE		AIF	_	_			GIS	TEF	₹										
Ad	ldre: ldre: ldre:	ss =	0xF	080	_00	08 (AIF :	2)																De	efau	lt va	lue	= 0;	(000	0_0	000
31	30	ress = 0xF090_0008 (AIF 3) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bľ	TS			•	IELI AMI					S/W CES	s	RES VAL				•					DE	FIE SCF	LD			•				•	
31:	29			Re	serv	ed						0х	:0																		
2	8														K FIF	O E	mpt	y/Fu	II ind	dica	tion.	0 =	not	Emp	ty, 1	= E	mpt	у.			
27	27:0 RX_FIFO_SAMPLES RO 0x000 Numb													ımb	er of	san	nples	s in t	the I	RX F	IFO										

Table 167 AIF_RX_STS Register

AIF_RX_LIMIT - AIF RECEIVE FIFO UPPER LIMIT REGISTER

This register holds the RX FIFO Upper Limit value.

When the number of samples in the RX FIFO exceeds the Upper Limit value, the RX_FIFO_LIM_INT_STS interrupt will be asserted (if enabled by the RX_FIFO_LIM_INT_ENA bit in the AIF_INT_CTRL register).

The DMA handshake to the RX FIFO is also triggered by the same Upper Limit value (when enabled by RX_FIFO_LIM_DMA_ENA). The DMA operation will not execute while the number of samples in the buffer is less than or equal to AIF_RX_LIMIT.

The RX FIFO buffer size is 64 samples. Therefore, to support the functionality described above, the AIF RX LIMIT is valid from 0 to 63.

										Al	FR	ECE		-	_	RX_L JPPEI			REC	SIST	ER										
Ac	Address = 0xF070_0010 (AIF 1) Address = 0xF080_0010 (AIF 2) Address = 0xF090_0010 (AIF 3) 1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0_F	FFF														
31	30																14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS	 																			DE		ELD RIPT	ION							
31	:0		Α	IF_R	X_I	_IMI	Т		F	₹W		0xFI	FFF	va RX the	hei lue X_F e re	rIFO L n the le, the FIFO_ especupport	num RX_ LIM tive	ber of FIFO DIVIDITIES DIVIDITI DIVIDITIES D	of sa D_LI 1A_S in th	amp IM_I STS ne A	les ir NT_ hand IF_IN	STS dsha NT_0	inte ake v CTR	errup will b L re	ot an oe as giste	d ssert er).	ed (if en	able	d by	/

Table 168 AIF_RX_LIMIT Register

AIF_TX_DAT - AIF TRANSMIT DATA REGISTER

This register contains the data to be transmitted via the TX FIFO. The audio samples have their MSB in bit 31, regardless of the number of bits per sample and the left/right justification being used.

												AIF			_	X_[TAC			ISTE	R											
Ad	dre	ss =	0xF	080	_00	20 (<i>i</i>	AIF 1 AIF 2 AIF 3	<u>'</u>)																De	efau	lt va	alue	= 0;	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS				IELI AMI				_	S/W CES	s	RES VAL									DE		LD RIPT	ION							
31	:0		A	NF_	TX_	DAT	-		٧	VO		0x00 _00	000	Th		udio			s hav										ne nu	ımb	er

Table 169 AIF_TX_DAT Register

AIF_TX_CH_ID - AIF TRANSMIT CHANNEL ID REGISTER

This register indicates the channel number of the next audio sample that will be written to the AIF_TX_DAT register.

											AIF	TRA		NF_	-	_	_		EGIS	STEI	R										
Ac	dres dres	ss =	0xF	080	_00	24 (<i>i</i>	AIF 2	2)																De	efau	lt va	llue	= 0x	(000	0_0	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВІ	TS				IELI AMI	_				/W CES		RES VAL									DE		LD	ION					•		
31	:8			Res	serv	ed						0x0																			
7	:0		Т	X_S	SLO ⁻	T_ID)		F	RW		0x0	00		ot ID (Slo		re id	entif	ied	by a	n int	eger	fror	n 0	to [N	l-1]					

Table 170 AIF_TX_CH_ID Register

AIF_TX_STS - AIF TRANSMIT FIFO STATUS REGISTER

This register holds the number of samples currently in the TX FIFO.

										,	AIF	ΓRA			_	_	STS ATU		EG	ISTE	R										
Ad	dre	ss =	0xF	080	_002 _002 _002	28 (<i>)</i>	AIF 2	2)																D	efau	lt va	alue	= 0	k000	0_0	000
31	30	29	s = 0xF090_0028 (AIF 3) 29 28 27 26 25 24 23 22 21 20 19 18 17 FIELD S/W RESET														14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BI	TS			•	IEL[AC			RES VAL									DE		ELD	ION							
31:	:30			Re	serv	ed						0x	0																		
2	9		T.	X_F	ULL_	_ST	S		F	₹О		0x	0	TΧ	FIF	OE	mpt	y/Fu	II in	ndica	tion.	0 =	not l	Full,	1= F	-ull.					
2	8	Reserved 0x0																													
27	':0	TX FIFO SAMPLES 0x000 Numb													ımbe	er of	san	nple	s in	the	TX F	IFO									

Table 171 AIF_TX_STS Register

AIF_TX_LIMIT - AIF TRANSMIT FIFO LOWER LIMIT REGISTER

This register holds the TX FIFO Lower Limit value.

When the number of samples in the TX FIFO is less than the Lower Limit value, the TX_FIFO_LIM_INT_STS interrupt will be asserted (if enabled by the TX_FIFO_LIM_INT_ENA bit in the AIF_INT_CTRL register).

The DMA handshake to the TX FIFO is also triggered by the same Lower Limit value (when enabled by TX_FIFO_LIM_DMA_ENA). The DMA operation will not execute while the number of samples in the buffer is greater than or equal to AIF_TX_LIMIT.

The TX FIFO buffer size is 64 samples. Therefore, to support the functionality described above, the AIF TX LIMIT is valid from 1 to 64.

										AIF	TR	ANS			_	X_L .owe			Γ RE	GIS	TER	ł									
Ad	Address = 0xF070_0030 (AlF 1) Address = 0xF080_0030 (AlF 2) Address = 0xF090_0030 (AlF 3) 11 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0_0	000														
31	30	0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15															14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	TS	S FIELD S/W RESET NAME ACCESS VALUE																			DE		ELD	ION							
31	1:0		А	IF_T	Χ_L	-IMI	Т		F	RW		0xt	00	Lir TX the	her mit K_F e re	FO L value IFO_ especi pport	nume, the LIM tive	ber TX DM bits errup	of sa _FIF IA_S in th	amp FO_I STS ne A	les ir _IM_ hand IF_IN	INT dsha NT_(_ST ike v CTR	S int vill b L re	terru e as giste	pt a sert er).	nd ed (i	f en	able	d by	

Table 172 AIF_TX_LIMIT Register

AIF_DATA_CFG - AIF DATA CONFIGURATION REGISTER

The AIF data format comprises a sequence of data words corresponding to as many data slots as are configured. The number of slots, number of bits per slot, and audio sample size are configurable. Each audio sample may be Left or Right justified within the allocated time slots. Each audio sample is transmitted/received MSB-first. The first sample can be delayed relative to the leading edge of the Frame Sync (LRCLK) signal using the AIF_DATA_DLY control field.

In Dual-Phase mode (AIF_DUAL_PHASE=1), the sequence comprises two phases, where each phase is independently configurable. This allows, for example, 'n' channels of 24-bit samples to be followed by 'm' channels of 16-bit samples in an efficient manner. Phase 1 is transmitted/received before Phase 2.

The timing and polarity of the Frame Sync (LRCLK) signal is configurable, as described in the AIF_CLK_CFG register (see Table 174).

The AIF data format is highly flexible, supporting I2S, Left-Justified, Right-Justified, DSP Mode-A, DSP Mode-B formats, and many others.

												AIF	DA	A TA C	_		ATA	_			GIS	STE	R												
Addres Addres	ss =	0x	F0	80_	00	40	(Al	F 2)																		ı	Def	ault	t v	alue	=	0x0	01.	AC_	01A4
31 30							T			22	21	20	19	18	17	16	15	14	,	13	12	11	10	ę	9 8		7	6	Ę	5 4		3	2	2 .	1 0
BITS		I			ELI			<u> </u>			S/W	s		SET		l				1		1	DE		FIELI CRIP		ON								<u>I</u>
31		AIF	=_[PH	AS	βE			RW			к0									nase	e 1	only & Pha)									
30:24		S	LO	T_(CN.	T_F	PH2	2		F	RW		0x	01	90 01 01 	am h = h =	e Le = 1 S = 2 S = 128	ngth lot lots	(r ts	num	nber	of :	slots	s) iı	n pha	ase									
23:21	SLOT_CNT_PH2 RW 0x01 01h = 2 Slots 7Fh = 128 Slots Only valid when AIF_DUAL_PHASE=1 Slot Length (number of bits per slot) in phase 2 0h = 8 bits 1h = 12 bits 2h = 16 bits 3h = 20 bits 4h = 24 bits 5h = 32 bits 6h = Reserved 7h = Reserved Only valid when AIF_DUAL_PHASE=1 Data Delay select 0h = 0-bit data delay																																		
20:19		Δ	NF.	_DA	λTΑ	_D	LY	•		F	RW		0:	x 1	Da 0h 1h 2h	ata = = =	Dela 0-bit	y se data data data	le ı d	ct dela dela	y y		_												
18:16		SA	MF	PLE	_Li	ΞN_	_PI	1 2		F	W		O	x 4	Sa 0h 1h 2h 3h 4h 5h 6h 7h No	amp	ole L 8 bits 12 b 16 b 20 b 24 b 32 b Rese that, Justif	engt its its its its erved if th	h d d e or	Slo ¹ Rig	t Le	ngtl	n > S fied	Sai de	mple epend	Le	ngt	h, th	ne	n ead					
15			ı	Res	erv	ed							0:	к0																					
14:8		S	LO	T_(CN.	T_F	PH ⁻	1		F	RW		0×	01	00	h = h =	e Le = 1 S = 2 S = 128	lot lots			nber	of	slots	s) ii	n pha	ase	1								

		AIF		IF_DATA_CFG											
Addres	ss = 0xF070_0040 (AIF 1) ss = 0xF080_0040 (AIF 2) ss = 0xF090_0040 (AIF 3)	All	DATAG	Default value = 0x01AC_01A4											
31 30	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
BITS	BITS FIELD S/W ACCESS VALUE FIELD DESCRIPTION Slot Length (number of bits per slot) in phase 1 0h = 8 bits 1h = 12 bits														
7:5	BITS FIELD S/W ACCESS VALUE FIELD DESCRIPTION Slot Length (number of bits per slot) in phase 1 0h = 8 bits 1h = 12 bits 2h = 16 bits														
4	Reserved		0x0												
3	AIF_FORMAT	RW	0x0	Audio Sample Justification 0 = Left Justified 1 = Right Justified											
2:0	SAMPLE_LEN_PH1	RW	0x4	Sample Length (sample length per slot) in phase 1 0h = 8 bits 1h = 12 bits 2h = 16 bits 3h = 20 bits 4h = 24 bits 5h = 32 bits 6h = Reserved 7h = Reserved Note that, if the Slot Length > Sample Length, then each Slot will be Left-Justified or Right-Justified depending on the AIF_FORMAT bit.											

Table 173 AIF_DATA_CFG Register

AIF_CLK_CFG - AIF SERIAL CLOCKING CONFIGURATION REGISTER

This register selects AIF Master or Slave mode, and defines the timing and polarity of the LRCLK signal. The sample edge for the RX and TX data can also be configured.

		AIF SERI	AL CLOCK	AIF_CL	_			N RE	GIS.	TF	R										
Addres	ss = 0xF070_0044 (AIF 1) ss = 0xF080_0044 (AIF 2) ss = 0xF090_0044 (AIF 3)	All OLIVI	AL GLOGI			<u> </u>			.0.0	<u></u>	<u> </u>	D	efa	ult	va	lue	= 0:	c 01	F1_(031	=0
31 30	29 28 27 26 25 24 23	22 21 2	0 19 18	17 16	15	14	13 12	2 11	10	9	8	7	6	3	5	4	3	2	1		0
BITS	FIELD NAME	S/W ACCESS	RESET VALUE		I	1	ı		DE	-	IELE RIP		N								
31:28	Reserved																				
27:20	Sets the length of the LRCLK active phase at the start of each fram 00h = 1 BCLK cycle 01h = 2 BCLK cycles 02h = 3 BCLK cycles 02h = 3 BCLK cyclesetc. Default is 1Fh (32 BCLK cycles) Receive Data clock edge select AIF_RX_EDGE RW 0x0 Sets the length of the LRCLK active phase at the start of each fram 00h = 1 BCLK cycles 02h = 3 BCLK cyc															fram	e.				
19	O2h = 3 BCLK cyclesetc. Default is 1Fh (32 BCLK cycles) Receive Data clock edge select 0 = AIFnRXDAT is sampled at the rising edge of AIFnBCLK 1 = AIFnRXDAT is sampled at the falling edge of AIFnBCLK Master/Slave configuration																				
18	Receive Data clock edge select AIF_RX_EDGE RW 0x0 0 = AIFnRXDAT is sampled at the rising edge of AIFnBCLK 1 = AIFnRXDAT is sampled at the falling edge of AIFnBCLK)					
17	AIF_TX_EDGE	RW	0x0	Transr 0 = Alf 1 = Alf	FnTX	DAT	is va	lid at	the r	isir											
16	AIF_LRCLK_INV	RW	0x1	LRCLE 0 = LR 1 = LR	CLK	is a	ctive h	nigh													
15:4	AIF_LRCLK_PERIOD	RW	0x03F	Sets th 000h = 001h = 002h = etc. Defaul	= 1 B0 = 2 B0 = 3 B0	CLK CLK CLK	cycle cycle cycle	s s			ame.										
3:1	Reserved																				
0	AIF_TX_DAT_ENA	RW	0x0	AlFnT2 0 = Dis 1 = En Note th Contro times.	sable abled hat th	d d ne Al	· FnTX	DAT	outpı												

Table 174 AIF_CLK_CFG Register

AIF_CTRL - AIF CONTROL REGISTER

This register contains reset / enable control bits for the AIF modules.

	AIF_CTRL AIF CONTROL REGISTER																															
Add	dres	s =	0xF	07	0_00	48 (AIF	1)																D	efau	ılt	val	ue :	= 0x	000	0_0	022
					0_00	•		,																								
Add	Address = 0xF090_0048 (AIF 3)																															
31	31 30 29 28 27 26 25 24 23 22 21 20									19	18	17	16	15	14	13	1	2 11	10	9	8	7	6	į	5	4	3	2	1	0		
ВІТ	BITS FIELD S/W RESET NAME ACCESS VALUE									FIELD DESCRIPTION													•									
31:	6			R	eserv	ed																										
5	5 AIF_RX_RST						F	RW		0x	:1	0 =	= Do	K Re not set t	hing the I		reg	jisters	and	the	TX/	RX (comi	mc	on re	egis	sters	s. Flu	ıshe	es		
4			A	JF_	_RX_	ENA	Ą		F	RW $0x0$ Cont $0 = 0$							RX Enable atrols whether RX data is written to the RX FIFO. Disabled Enabled															
3:2	2			R	eserv	ed																										
1		Reserved AIF_TX_RST					F	RW		0x	:1	AIF TX Reset 0 = Do nothing 1 = Reset the TX registers and the TX/RX common regis the TX FIFO							isters. Flushes													
0	0 AIF_TX_ENA							F	RW		0x	:0	Cc 0 =	ntro = Di	TX Enable trols whether TX data is output from the TX FIFO. Disabled Enabled																	

Table 175 AIF_CTRL Register

AIF_INT_CTRL - AIF INTERRUPT CONTROL REGISTER

The AIF module can generate interrupts to indicate the TX and RX FIFO buffer status, as described in Table 176. Note that the Interrupt Status fields (bits [19:16]) can only be asserted when the respective Interrupt Enable bit is set.

The AIF Interrupt output to the Interrupt module is asserted when any of the enabled AIF interrupts are asserted.

The handshake (ACK) function for DMA transfers to/from the TX/RX FIFO buffers is controlled using the TX_FIFO_LIM_DMA_ENA and RX_FIFO_LIM_DMA_ENA fields. These must be enabled when using a DMA transfer of data to/from the respective buffer.

		Al		IF_INT_CTRL									
	ss = 0xF070_004C (AIF 1)			Default value = 0x0000_0000									
	ss = 0xF080_004C (AIF 2) ss = 0xF090 004C (AIF 3)												
	29 28 27 26 25 24 23	22 21 20	19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
BITS	FIELD NAME	S/W ACCESS	RESET VALUE	FIELD DESCRIPTION									
31:22	Reserved	ACCECC	0x000	BESSAII TION									
01.22	110001100		ONOGO	TX FIFO Lower Limit DMA Handshake status									
	TV FIFO LIM DMA CT			0 = TX FIFO Lower Limit has not been reached									
21	TX_FIFO_LIM_DMA_ST S	RO	0x0	1 = TX FIFO Lower Limit has been reached									
	G			This bit automatically de-asserts when the Lower Limit condition is no									
				longer met.									
				RX FIFO Upper Limit DMA Handshake status									
20	RX_FIFO_LIM_DMA_ST	RO	0x0	0 = RX FIFO Upper Limit has not been reached									
20	S	KO	UXU	1 = RX FIFO Upper Limit has been reached This bit automatically de-asserts when the Upper Limit condition is no									
				longer met.									
				TX FIFO Empty Interrupt									
40	TX_FIFO_EMPTY_INT_	D O		This bit asserted (logic '1') to indicate a TX FIFO read attempt when the									
19	STS	RC	0x0	TX buffer was empty.									
				Write '1' to clear.									
				RX FIFO Full Interrupt									
18	RX_FIFO_FULL_INT_ST	RC	0x0	This bit asserted (logic '1') to indicate a RX FIFO write attempt when									
10	S	RO	0.00	the RX buffer was full.									
				Write '1' to clear.									
				TX FIFO Lower Limit Interrupt									
17	TV FIFO LIM INT CTC	DO	0.40	0 = TX FIFO Lower Limit has not been reached									
17	TX_FIFO_LIM_INT_STS	RO	0x0	1 = TX FIFO Lower Limit has been reached This Interrupt automatically de-asserts when the Lower Limit condition									
				is no longer met.									
				RX FIFO Upper Limit Interrupt									
				0 = RX FIFO Upper Limit has not been reached									
16	RX_FIFO_LIM_INT_STS	RO	0x0	1 = RX FIFO Upper Limit has been reached									
				This Interrupt automatically de-asserts when the Upper Limit condition									
				is no longer met.									
15:6	Reserved		0x000										
	-v === =		1	TX FIFO Lower Limit DMA Handshake Enable									
5	TX_FIFO_LIM_DMA_EN	RW	0x0	0 = Disabled									
	A			1 = Enabled This bit must be set during a DMA transfer to the TX FIFO buffer.									
				RX FIFO Upper Limit DMA Handshake Enable									
	RX_FIFO_LIM_DMA_EN			0 = Disabled									
4	A	RW	0x0	1 = Enabled									
				This bit must be set during a DMA transfer from the RX FIFO buffer.									
	TV 5150 51551 117			TX FIFO Empty Interrupt Enable									
3	TX_FIFO_EMPTY_INT_	RW	0x0	0 = Disabled									
	ENA			1 = Enabled									
	RX_FIFO_FULL_INT_EN]	RX FIFO Full Interrupt Enable									
2	A A	RW	0x0	0 = Disabled									
	• •		ļ	1 = Enabled									
				TX FIFO Lower Limit Interrupt Enable									
1	TX_FIFO_LIM_INT_ENA	RW	0x0	0 = Disabled									
1			<u></u>	1 = Enabled									

	AIF_INT_CTRL AIF INTERRUPT CONTROL REGISTER																														
Ac	Address = 0xF070_004C (AIF 1) Address = 0xF080_004C (AIF 2) Address = 0xF090_004C (AIF 3)												Default value = 0x0000											0_0	000						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BITS FIELD S/W RESET NAME ACCESS VALUE									FIELD DESCRIPTION																						
0 RX_FIFO_LIM_INT_ENA RW 0x0 0 = 1									RX FIFO Upper Limit Interrupt Enable 0 = Disabled 1 = Enabled																						

Table 176 AIF_INT_CTRL Register

AIF_MCLK_DIV - AIF MCLK DIVIDER REGISTER

In AIF Master mode the AIF module generates the BCLK and LRCLK signals as outputs from the WM0011.

The BCLK output is generated as AIFn_MSTR_CLK (see Figure 16). The clock source is selected via a multiplexer, using the CLK_SEL_AIFn bits (see Table 19). The MCLK_AIFn signal, derived from PLLOUT, is one of the inputs to this multiplexer, and is configured as described below. See "Clocking" for further details.

The LRCLK output is derived from BCLK; the polarity, pulse length and frame period are configured using the AIF_CLK_CFG register (see Table 174).

The AIF_MCLK_DIV registers define the ratio of the PLLOUT frequency to the MCLK_AIFn frequency. MCLK_DIV_INTG defines the integer portion of the frequency ratio; MCLK_DIV_FRAC defines the fractional portion.

For example, if PLLOUT = 125MHz and the required BCLK frequency = 12.288MHz, the frequency ratio is approximately 10.172526. The corresponding register settings would be MCLK_DIV_INTG=0x00Ah, MCLK_DIV_FRAC=0x2C2AA.

When MCLK_AIFn is selected as the clock source (CLK_SEL_AIFn=1h), then the PLLOUT frequency ratio (MCLK_DIV) must be set to 4.0 or higher.

Note that the BCLK frequency can be calculated as Sample Frequency * AIF_LRCLK_PERIOD.

	AIF_MCLK_DIV AIF MCLK DIVIDER REGISTER																														
Ad	Address = 0xF070_0060 (AIF 1) Address = 0xF080_0060 (AIF 2) Address = 0xF090_0060 (AIF 3)										Default value = 0x0000_0000												000								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BITS FIELD S/W RESET NAME ACCESS VALUE								FIELD DESCRIPTION																							
31:20 MCLK_DIV_INTG RW								0x0	000	(C	ode nen	d as MCI	LSE _K_/	of P 3 = 1 AIFn TG r) is th	ne cl	lock	sour	ce (CLK	_	EL_A	MFn:	=1h)	, the	n					
19:0 MCLK_DIV_FRAC RW						0x _00_	(0)00		Fractional portion of PLLOUT / BCLK ratio (Coded as MSB = 0.5)																						

Table 177 AIF_MCLK_DIV Register

JTAG (JTAG) MODULE

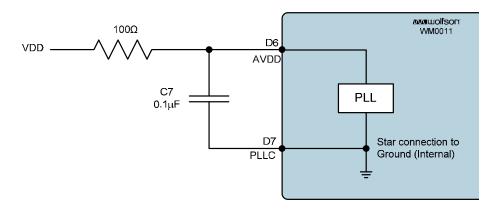
For further details on the JTAG module please refer to the documentation available from Tensilica (www.tensilica.com).

CROSS-TRIGGER MODULE (CTM)

For further details on the Cross-Trigger module please refer to the documentation available from Tensilica (www.tensilica.com).

ON-CHIP DEBUG (OCD) MODULE

For further details on the On-Chip Debug module please refer to the documentation available from Tensilica (www.tensilica.com).

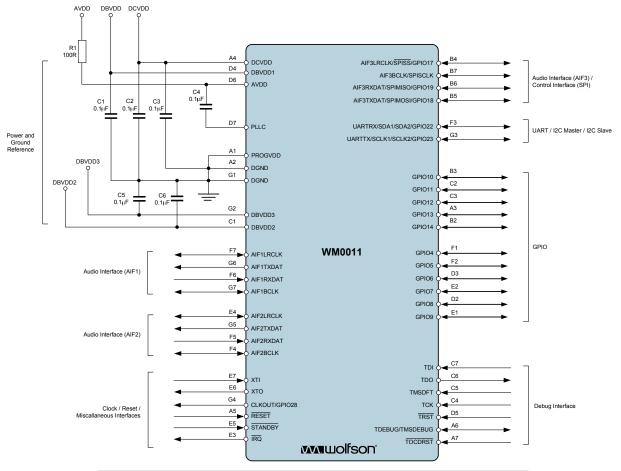

APPLICATIONS INFORMATION

To achieve a reasonable level of long term jitter, it is vital to deliver an analogue-grade power supply to the PLL via AVDD.

Board layout around the capacitor and the path from there to the AVDD and PLLC pins is critical. It is vital that the AVDD and power are treated as sensitive analogue signals.

The power (AVDD) path must be a single wire from the DSP pin to the capacitor, and then through the series resistor to board power (VDD). The distance from the DSP pin to the capacitor should be as short as possible.

Similarly, the ground (PLLC) path should be from the IC pin to the capacitor, with the distance from IC pin to capacitor being very short. This DSP has the PLL ground connection made on-chip, so the external PLLC connection must not be connected to PCB ground.

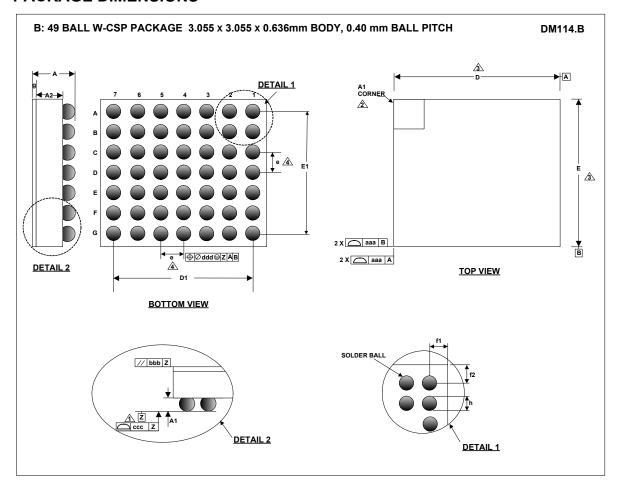

AVDD = PLL Supply (+ve)

VDD = Board Power

PLLC = PLL decoupling
(internally grounded)

Figure 57 Recommended Filter Circuit for the PLL

CONNECTIVITY DIAGRAM


- Notes:

 1. Decoupling track layout is critical. DCVDD and AVDD/PLLC decoupling must be placed as close to the device as possible.

 2. Do not connect the PLLC to any ground source on the PCB. The PLL DC ground connection is made on chip, so the external ground connection must not be connected to PCB ground.

 3. Observe best power supply design practice to accommodate the power demand of DSP

PACKAGE DIMENSIONS

Symbols		Dimensio	ns (mm)	
	MIN	NOM	MAX	NOTE
Α	0.592	0.636	0.681	
A1	0.175	0.190	0.205	
A2	0.381	0.406	0.432	
D	3.000	3.055	3.080	
D1		2.400 BSC		
E	3.000	3.055	3.080	
E1		2.400 BSC		
е		0.400 BSC		4
f1	0.300	0.328		Bump centre to die edge
f2	0.300	0.328		Bump centre to die edge
h	0.216	0.270	0.324	
g	0.036	0.040	0.044	
aaa		0.10		
bbb		0.10		
ccc		0.03		
ddd		0.015		

- NOTES:

 1. PRIMARY DATUM -Z- AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

 2. A1 CORNER IS IDENTIFIED BY INK/LASER MARK ON TOP PACKAGE.

 3. BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY.

 4. 'e' REPRESENTS THE BASIC SOLDER BALL GRID PITCH.

 5. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.

 6. FOLLOWS JEDEC DESIGN GUIDE MO-211-C.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc Westfield House 26 Westfield Road Edinburgh EH11 2QB

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001

Email :: sales@wolfsonmicro.com

REVISION HISTORY

DATE	REV	DESCRIPTION OF CHANGES	PAGE	CHANGED BY
2/08/12	1.0	Initial draft		PH
19/10/12	2.0	Updates to all sections, including some pin/register names.		PH
22/11/12	2.1	Maximum recommended DCVDD increased to 1.32V	14	PH
22/01/13	2.2	Pin Description updated, incorporating pull-up/down capabilities Max AVDD updated Electrical Characteristics updated Signal Timing Requirements updated Clocking diagram updated to incorporate TMRn_CLK signals Updates to PLL description, registers, and configuration examples Miscellaneous updates to I/O Control Registers Clarifications and updates to I2C module description Updates to GPIO/IRQC edge detect control register descriptions Minor clarifications to SPI module description Additions and edits in DMA module description, including examples Minor clarifications to AIF module description UART module description added		PH
06/02/13	3.0	I2S TDM mode deleted I2C 10-bit address mode deleted		PH
07/02/13	3.0	Block diagram updated (CLK DIV now labeled as Chip Config Module) 10-bit I2C addressing deleted I2S TDM mode deleted Typical Power Consumption data added Miscellaneous minor clarifications and corrections		PH
20/03/13	4.0	TRAX module description added Correction to Memory Map definition (APB Bridge space)		PH
20/05/13	4.0	Pin Description updates (name changes only) Minor clarifications to Warm Reset, Sleep/Wake-Up, AIF Bypass and SPI module descriptions Significant clarifications to I2C module description Notes added for avoidance of false interrupts in GPIO and IRQC. Noted requirements for accessing AIF_RX_DAT register.		PH
21/08/13	4.1	Front page description updated	1	JMacD

