

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

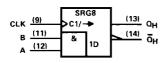
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

For applications in:
 Digital Computer Systems
 Data-Handling Systems
 Control Systems

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'91A	18 MHz	175 mW
'LS91	18 MHz	60 mW

description

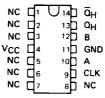

These monolithic serial-in, serial-out, 8-bit shift registers utilize transistor-transistor logic (TTL) circuits and are composed of eight R-S master-slave flip-flops, input gating, and a clock driver. Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock pulse.

FUNCTION TABLE

INP	UTS 't _n		PUTS n+8
A	В	QΗ	₫H
н	н	Н	L
L	X	L	Н
х	L	L	н

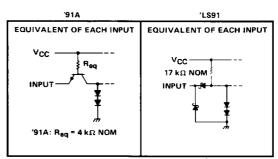
tn = Reference bit time, clock low tn+8 = Bit time after 8 low-to-high clock transitions.

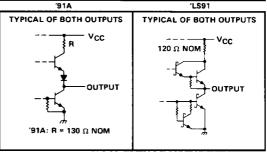
logic symbol†



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

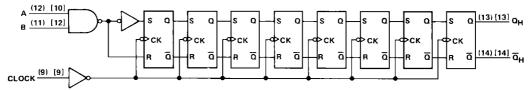
SN5491A, SN54LS91 ... J PACKAGE SN7491A ... N PACKAGE SN74LS91 ... D OR N PACKAGE (TOP VIEW)


NC	1	U 14	ם
NC [2	13	Дαн
NC	3	12	DA
NC [4	11	В□
/cc□	5	10	GND
NC [6	9	CLK
NC	7	8]NC


SN5491A, SN54LS91 ... W PACKAGE (TOP VIEW)

NC - No internal connection

schematics of inputs and outputs



PRODUCTION DATA documents contain information current as of publication dats. Products conform to specifications per the terms of Texae Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

logic diagram (positive logic)

Pin numbers shown in () are for the D. J or N packages and pin numbers shown in () are for the W package

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 							. 7V
Input voltage (see Note 2)			 							. 5.5 V
Operating free-air temperature range:	SN5491A		 						-55°C	to 125°C
	SN7491A		 					 	. 0°C	to 70°C
Storage temperature range									GE°C	to 150°C

- NOTES 1. Voltage values are with respect to network ground terminal
 - 2 Input signals must be zero or positive with respect to network ground terminal

recommended operating conditions

		SN5491A S			N7491		
	MIN	NOM	MAX	MIN	NOM	MAX	TINU
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			16			16	mA
Width of clock input pulse, tw	25			25			ns
Setup time, t _{su} (see Figure 1)	25			25			ns
Hold time, th (see Figure 1)	0			0			15
Operating free-air temperature, TA	-55		125	0		70	С

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†		SN5491	A				
	PARAMETER	TEST CONDITIONS.	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	٧
Voн	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -400 μA	2.4	3.5		2.4	3 5		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0 2	0.4		0 2	0.4	v
l _i	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V			1			1	mA
чн	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V			40			40	μА
կլ	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX	-20		-57	-18	_	-57	mA
Icc	Supply current	V _{CC} = MAX, See Note 3		35	50		35	58	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clo	ck frequency	C _L = 15 pF,	10	18		MHz
tpLH Propagation d	elay time, low-to-high-level output	R _L = 400 Ω,		24	40	ns
tpHL Propagation d	elay time, high-to-low-level output	See Figure 1		27	40	ns

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 \text{ C}$.

Not more than one output should be shorted at a time

NOTE 3: ^{1}CC is measured after the eighth clock pulse with the output open and A and B inputs grounded.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC (see Note 1) 0°C to 70°C Storage temperature range . . -65°C to 150°C

NOTES: 1. Voltage values are with respect to network ground terminal

recommended operating conditions

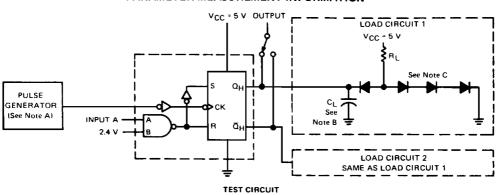
	S	N54LS	91	SN74LS91			
	MIN		NOM	MAX	דומט		
Supply voltage, VCC	4.5	5	5.5	4 75	5	5.25	ν
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Width of clock input pulse, tw	25			25			ns
Setup time, t _{su} (see Figure 1)	25			25			ns
Hold time, th (see Figure 1)	0	•		0			ns.
Operating free-air temperature, TA	-55		125	0		70	С

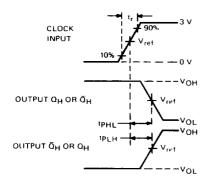
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

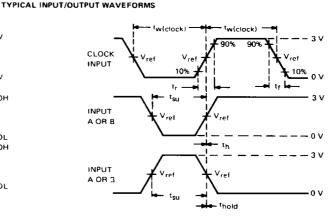
	TEST CONDITIONS†				N54LS9	1	SI			
PARAMETER	1163	SI CONDITION:	s'	MIN	TYP	—————UNI	UNII			
VIH High-level input voltage				2			2			v
VIL Low-level input voltage						0.7			0.8	V
V _{IK} Input clamp voltage	V _{CC} = MIN,	I ₁ = -18 mA				-15			-15	V
VOH High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, c, I _{OH} = -400 μ/	4	2 5	3.5		2 7	3.5		<
V- Low lovel autout voltage	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0 25	0 4		0.25	0.4	v
VOL Low-level output voltage	V _I L ≃ V _I L ma:		IOL = 8 mA					0 35	0 5	
finput current at figure maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0 1			0.1	mA
I _{IH} High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
IIL Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
IOS Short-circuit output current §	V _{CC} = MAX			-20		-100	-20		-100	mΑ
ICC Supply current	V _{CC} = MAX,	See Note 3			12	20		12	20	mA

TFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions All typical values are at VCC - 5 V, TA = 25 C

switching characteristics, VCC = 5 V, TA = 25°C


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C _L = 15 pF,	10	18		MHz
tPLH Propagation delay time, low-to-high-level output	R _L = 2 κΩ,		24	40	ns
TPHL Propagation delay time, high to-low-level output	Sec Figure 1		27	40	ns




Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3. Too is measured after the eighth clock pulse with the output open and A and B inputs grounded

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY TIMES VOLTAGE WAVEFORMS

SWITCHING TIMES VOLTAGE WAVEFORMS

- NOTES. A. The generator has the following characteristics: $t_{WIclock}$) = 500 ns, PRR \leq 1 MHz, $Z_{out} \approx$ 50 Ω . For SN5491A/SN7491A, $t_r \leq$ 10 ns and $t_f \leq$ 10 ns; for SN54LS91, $t_r =$ 15 ns, and $t_f =$ 6 ns.
 - B. Ct includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.
 - D For SN5491A/SN7491A, V_{ref} = 1.5 V; for SN54LS91/SN74LS91, V_{ref} = 1.3 V

FIGURE 1-SWITCHING TIMES

