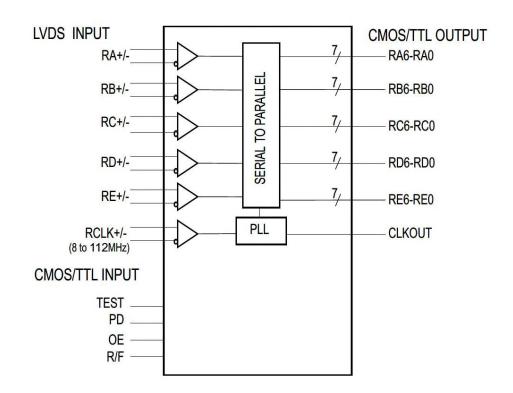


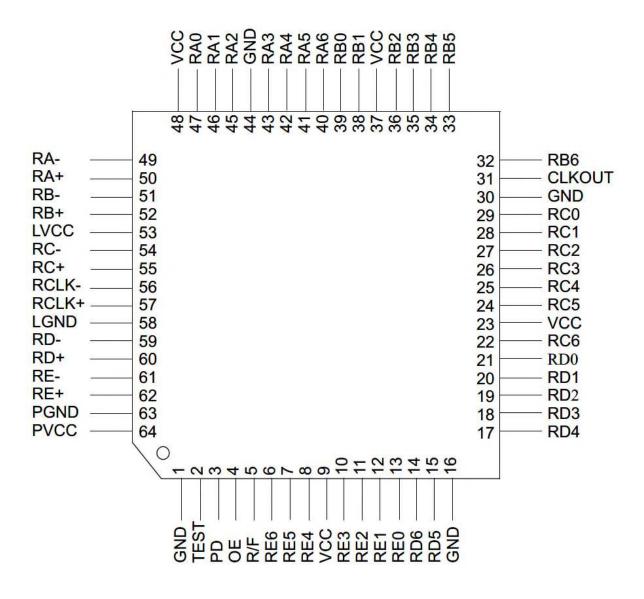
THC63LVD104C

112MHz 30Bits COLOR LVDS Receiver


General Description

The THC63LVD104C receiver is designed to support pixel data transmission between Host and Flat Panel Display from NTSC up to SXGA resolutions. The THC63LVD104C converts the LVDS data streams back into 35bits of CMOS/TTL data with the choice of the rising edge or falling edge clock for the convenience with a variety of LCD panel controllers. At a transmit clock frequency of 112MHz, 30bits of RGB data and 5bits of timing and control data (HSYNC, VSYNC,DE,CNTL1,CNTL2) are transmitted at an effective rate of 784Mbps per LVDS channel. Using a 112MHz clock, the data throughput is 490Mbytes per second

Features


- Wide dot clock range: 8-112MHz suited for NTSC, VGA, SVGA, XGA, and SXGA
- PLL requires no external components
- 50% output clock duty cycle
- TTL clock edge programmable
- Power down mode
- Low power single 3.3V CMOS design
- 64pin TQFP
- Backward compatible with THC63LVDF64x (18bits) / F84x(24bits)
- Pin compatible with THC63LVD104A
- Fail-safe for Open LVDS Input

Block Diagram

Pin Diagram

Pin Name	Pin #	Туре	Description
RA+, RA-	50, 49	LVDS IN	
RB+, RB-	52, 51	LVDS IN	
RC+, RC-	55, 54	LVDS IN	LVDS Data In.
RD+, RD-	60, 59	LVDS IN	
RE+,RE-	62, 61	LVDS IN	
RCLK+, RCLK-	57, 56	LVDS IN	LVDS Clock In.
RA6 ~ RA0	40,41,42,43,45,46,47	OUT	
RB6 ~ RB0	32,33,34,35,36,38,39	OUT	
RC6 ~ RC0	22,24,25,26,27,28,29	OUT	CMOS/TTL Data Outputs.
RD6 ~ RD0	14,15,17,18,19,20,21	OUT	
RE6 ~ RE0	6,7,8,10,11,12,13	OUT	
TEST	2	IN	Test pin, must be "L" for normal operation.
PD 3			H: Normal operation,
PD	3	IN	L: Power down (all outputs are "L")
OE	4	IN	H: Output enable (Normal operation).
	т		L: Output disable(all outputs are Hi-Z)
R/F	5	IN	Output Clock Triggering Edge Select.
1.01	5		H: Rising edge, L: Falling edge
VCC	9,23,37,48	Power	Power Supply Pins for TTL outputs and digital circuitry.
CLKOUT	31	OUT	Clock out.
GND	1,16,30,44	Ground	Ground Pins for TTL outputs and digital circuitry.
LVCC	53	Power	Power Supply Pin for LVDS inputs.
LGND	58	Ground	Ground Pin for LVDS inputs.
PVCC	64	Power	Power Supply Pin for PLL circuitry.
PGND	63	Ground	Ground Pin for PLL circuitry.

PD	R/F	OE	Data Outputs (Rxn)	CLKOUT	
0	0	0	Hi-Z	Hi-Z	
0	0	1	All 0	Fixed Low	
0	1	0	Hi-Z	Hi-Z	
0	1	1	All 0	Fixed Low	
1	0	0	Hi-Z	Hi-Z	
1	0	1	Data Out	The falling edge closer to the center of the data eye.	
1	1	0	Hi-Z	Hi-Z	
1	1	1	Data Out	The rising edge closer to the center of the data eye.	

** Rxn

x = A, B, C, D, E

n = 0, 1, 2, 3, 4, 5, 6

Absolute	Maximum	Ratings	*1
110501010	Mannun	raungo	1

Supply Voltage (VCC=VCC=LVCC=PVCC)	-0.3V ~ +4.0V
CMOS/TTL Input Voltage	-0.3V ~ (VCC + 0.3V)
CMOS/TTL Output Voltage	$-0.3V \sim (VCC + 0.3V)$
LVDS Receiver Input Voltage	-0.3V ~ (VCC + 0.3V)
Output Current	-30mA ~ 30mA
Junction Temperature	+125 °C
Storage Temperature Range	-55 ° C ~ +150 °C
Reflow Peak Temperature / Time	+260 ° C / 10sec.
Maximum Power Dissipation @+25 °C	2.1W

Electrical Characteristics

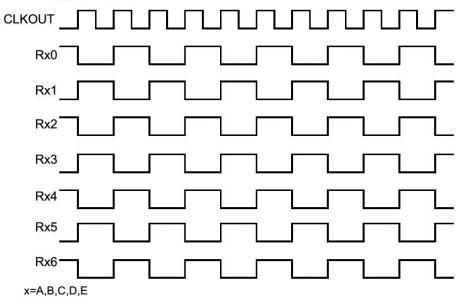
CMOS/TTL DC Specifications

	VCC =LVCC=PVCC= 3.0V ~ 3.6V, Ta = -20° C~ +85°C					- +85°C
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Vih	High Level Input Voltage	-	2.0	-	Vcc	V
VIL	Low Level Input Voltage	-	GND	-	0.8	V
Vон	High Level Output Voltage	IOH= -4mA (data) IOH= -8mA (clock)	2.4	-	-	V
Vol	Low Level Output Voltage	IOL= 4mA (data) IOL= 8mA (clock)	-	-	0.4	V
linc	Input Current	0V δ VIN δ Vcc	-		±10	μA

LVDS Receiver DC Specifications

	VCC =LVCC=PVCC= 3.0V ~ 3.6V, Ta = -20° C~ +					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Vтн	Differential Input High Threshold	VIC= 1.2V	_	-	100	mV
Vtl	Differential Input Low Threshold	VIC= 1.2V	-100	-	-	mV
linl	Input Current	VIN= 2.4V / 0V VCC= 3.6V	-		30	μA

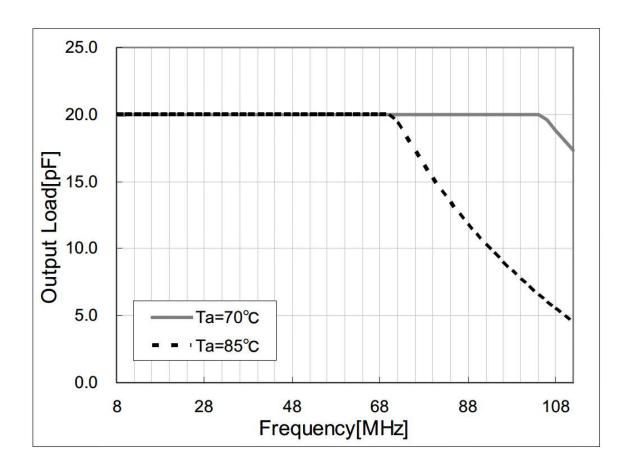
1. "Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.


Supply Current

Symbol	Parameter	Conditions			Max.	Units
IRCCW	Receiver Supply Current (LVDS Full Toggle)	fclkout = 75MHz fclkout = 90MHz fclkout = 112MHz	CL=8pF,Vcc=3.6V, Ta= -20 ° C ~ 85 °C CL=8pF,Vcc=3.6V, Ta= -20 ° C ~70 °C*	Typ. - - -	205 236 280	mA mA mA
IRCCS	Receiver Power Down Supply Current	PD = L		-	25	μ A

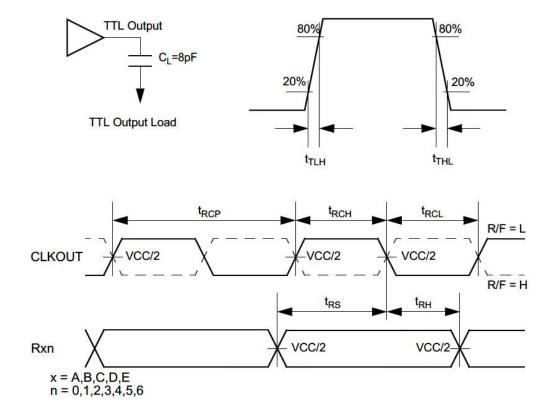
VCC =LVCC=PVCC= 3.0V ~ 3.6V, Ta = -20° C~ +85°C

*The trade-off between the output load and the ambient temperature exists so that the junction temperature does not exceed 125°C.


LVDS Full Toggle Pattern

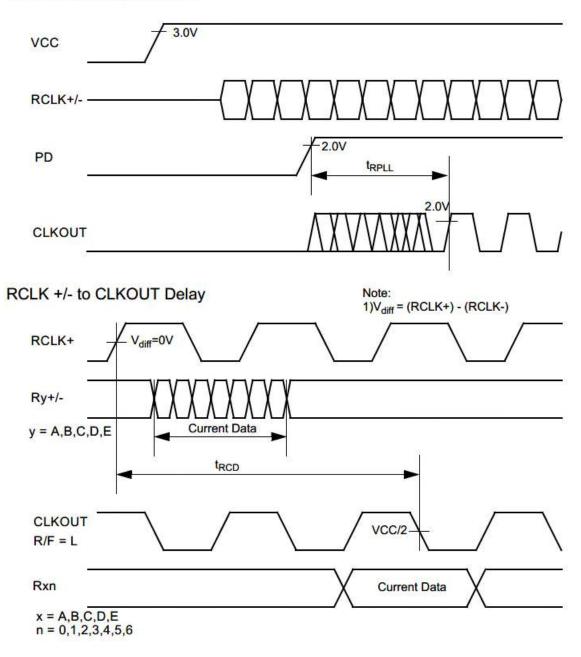
Output load limitation

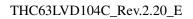
The output load is limited so that the junction temperature does not exceed 125°C.


Switching Characteristics

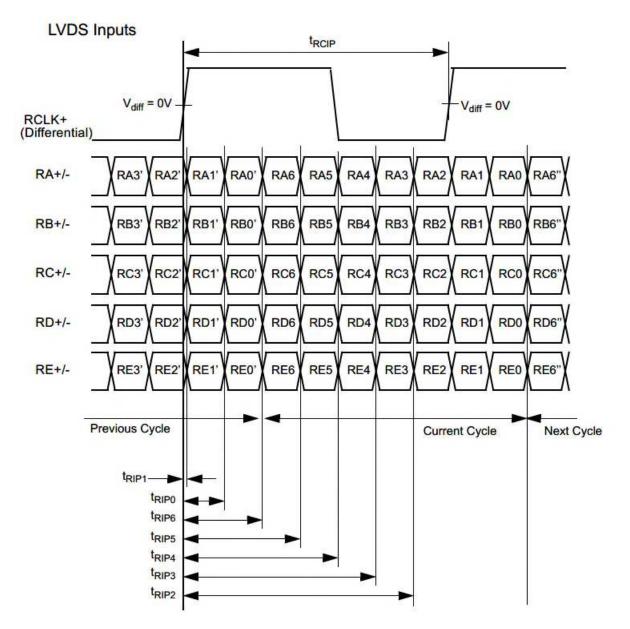
VCC =LVCC=PVCC= 3.0V ~ 3.6V, Ta = -20° 0						~+85°C
Symbol	Par	ameter	Min.	Тур.	Max.	Units
tRCP	CLKOUT Period		8.92	Т	125.0	ns
tRCH	CLKOU	IT High Time	-	T/2	-	ns
tRCL	CLKOL	JT Low Time	-	T/2	-	ns
tRS	TTL Data S	etup to CLKOUT	4/7t _{RCP} -1	-	-	ns
tRH	TTL Data Ho	old from CLKOUT	3/7t _{RCP} -1	-	-	ns
t⊤LH	TTL Low to H	igh Transition Time	-	1.0	3.0	ns
t⊤н∟	TTL High to L	ow Transition Time	-	1.0	3.0	ns
		CLKOUT=50MHz	-1000	0	1000	ps
tsĸ	Receiver Skew	CLKOUT=75MHz	-550	0	550	ps
isk	Margin	CLKOUT=90MHz	-400	0	400	ps
		CLKOUT=112MHz	-250	0	250	ps
tRIP1	Input Data Position0		-tsк	0	+ t sк	ns
tRIP0	Input Data Position1		T/7-t _{SK}	T/7	Т/7+t _{sк}	ns
tRIP6	Input Data Position2		2Т/7-t _{sк}	2T/7	2T/7+tsк	ns
tRIP5	Input Data Position3		3T/7-tsк	3T/7	3T/7+tsк	ns
tRIP4	Input Data Position4		4Т/7-t _{sк}	4T/7	4T/7+tsк	ns
tRIP3	Input Data Position5		5Т/7-t _{sк}	5T/7	5T/7+tsк	ns
tRIP2	Input Data Position6		6Т/7-t _{sк}	6T/7	6T/7+tsк	ns
tRPLL	Phase L	ock Loop Set	-	-	10.0	ms
tRCD	RCLK +/- to CLKOUT Delay	CLKOUT=75MHz	46.5	-	52.5	ns
tRCIP	CLK	IN Period	8.92	-	125.0	ns

Switching Characteristics


TTL Outputs



AC Timing Diagram

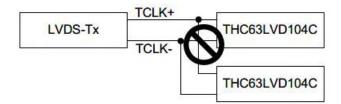

Phase Lock Loop Set Time

AC Timing Diagram

Note

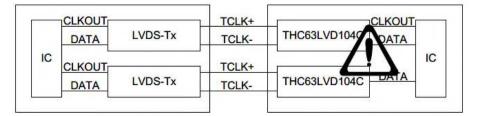
1)Power On Sequence Power on LVDS-Tx after THC63LVD104C.

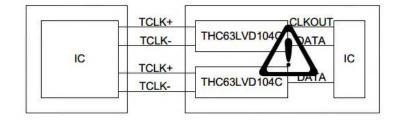
2)Cable Connection and Disconnection


Don't connect and disconnect the LVDS cable, when the power is supplied to the system.

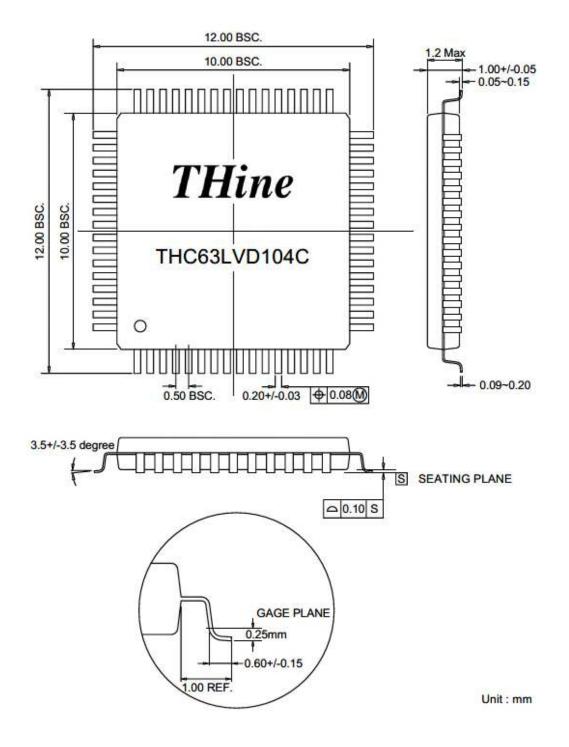
3)GND Connection

Connect the each GND of the PCB which LVDS-Tx and THC63LVD104C on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.


4)Multi Drop Connection


Multi drop connection is not recommended.

5)Asynchronous use


Asynchronous use such as following systems are not recommended.

Package

Notices and Requests

1. The product specifications described in this material are subject to change without prior notice.

2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. Thine Electronics, Inc. ("Thine") is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, Thine may not be able to correct them immediately.

3. This material contains THine's copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without THine's prior permission is prohibited.

4. Note that even if infringement of any third party's industrial ownership should occur by using this product, THine will be exempted from the responsibility unless it directly relates to the production process or functions of the product.

5. This product is not designed for applications that require extremely high-reliability/safety such as aerospace device, nuclear power control device, or medical device related to critical care, excluding when this product is specified for automotive use by THine and used it for that purpose. THine accepts no liability whatsoever for any damages, claims or losses arising out of the uses set forth above.

6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.

7. Please note that this product is not designed to be radiation-proof.

8. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.

9. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act.

10. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses.

11. This product is prohibited for the purpose of developing military modernization, including the development of weapons of mass destruction (WMD), and the purpose of violating human rights.

THine Electronics, Inc.

https://www.thine.co.jp/