NXP Semiconductors

Data Sheet: Technical Data

Document Number: IMX7SCEC Rev. 4, 04/2017

MCIMX7SxDxxxxxC MCIMX7SxExxxxxC

i.MX 7Solo Family of Applications Processors Datasheet

Package Information Plastic Package BGA 12 x 12 mm, 0.4 mm pitch BGA 19 x 19 mm, 0.75 mm pitch

Ordering Information

See [Table 1 on page 3](#page-2-1)

1 i.MX 7Solo introduction

The i.MX 7Solo family of processors represents NXP's latest achievement in high-performance processing for low-power requirements with a high degree of functional integration. These processors are targeted towards the growing market of connected and portable devices.

The i.MX 7Solo family of processors features advanced implementation of the ARM® Cortex®-A7 core, which operates at speeds of up to 800 MHz. The i.MX 7Solo family provides up to 32-bit

DDR3/DDR3L/LPDDR2/LPDDR3-1066 memory interface and a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth, GPS, displays, and camera sensors.

© 2016–2017 NXP B.V. NXP Reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products

The i.MX 7Solo family of processors is specifically useful for applications such as:

- Audio
- Connected devices
- Access control panels
- Human-machine interfaces (HMI)
- Portable medical and health care
- IP phones
- Smart appliances
- Point of Sale
- eReaders
- Wearables
- Home energy management systems

The features of the i.MX 7Solo family of processors include the following:

- ARM Cortex-A7 plus ARM Cortex-M4—Heterogeneous Multicore Processing architecture enables the device to run an open operating system like Linux/Android on the Cortex-A7 core and an RTOS like FreeRTOS™ on the Cortex-M4 core.
- ARM Cortex-A7 core—The processor enhances the capabilities of portable, connected applications by fulfilling the ever-increasing MIPS needs of operating systems and applications at lowest power consumption levels per MHz.
- Multilevel memory system—The multilevel Cortex-A7 memory system is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processor supports many types of external memory devices, including DDR3, DDR3L, LPDDR2 and LPDDR3, NOR Flash, NAND Flash (MLC and SLC), QSPI Flash, and managed NAND, including eMMC rev.
- Power efficiency—Power management implemented throughout the IC enables features and peripherals to consume minimum power in both active and various low-power modes.
- Multimedia—The multimedia performance is enhanced by a multilevel cache system, NEONTM MPE (Media Processor Engine) coprocessor, a programmable smart DMA (SDMA) controller.
- Gigabit Ethernet with AVB—10/100/1000 Mbps Ethernet controllers supporting IEEE Std 1588 time synchronization.
- Human-machine interface (HMI)—i.MX 7Solo processor provides up to two separate display interfaces (parallel display and two-lane MIPI-DSI), CMOS sensor interface (two-lane MIPI-CSI and parallel).
- Interface flexibility—i.MX 7Solo processor supports connections to a variety of interfaces: one high-speed USB on-the-go module with PHY, High-Speed Inter-Chip USB, multiple expansion card ports (high-speed MMC/SDIO host and other), a Gigabit Ethernet controller with support for Ethernet AVB, two 12-bit ADCs with a total of 8 single-ended inputs, two CAN ports, and a variety of other popular interfaces (such as UART, $I²C$, and $I²S$).
- Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure

software downloads. The security features are discussed in detail in the i.MX 7Dual security reference manual.

• Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different power domains. This significantly simplifies system power management structure.

For a comprehensive list of the i.MX 7Solo features, see [Section 1.2, "Features.](#page-3-0)"

1.1 Ordering information

[Table 1](#page-2-1) provides examples of orderable sample part numbers covered by this data sheet.

Part Number	Options	Cortex-A7 CPU Speed Grade	Qualification Tier	Temperature (T_i)	Package
MCIMX7S5EVM08SC	CAN, 1 x Gb ETH 10 tamper pins $2 \times ADC$	800 MHz	Industrial ¹	-20 to $+105^{\circ}$ C	19x19 mm 0.75mm pitch BGA
MCIMX7S3DVK08SC	No CAN, 1 x Gb ETH 4 tamper pins 1 x ADC	800 MHz	Consumer ²	0 to $+95^{\circ}$ C	$12x12$ mm 0.4 mm pitch BGA
MCIMX7S5EVK08SC	CAN 1 x Gb ETH 4 tamper pins 1 x ADC	800 MHz	Industrial ¹	-20 to $+105^{\circ}$ C	$12x12$ mm 0.4 mm pitch BGA
MCIMX7S3EVK08SC	No CAN 1 x Gb ETH 4 tamper pins 1 x ADC	800 MHz	Industrial ¹	-20 to $+105^{\circ}$ C	$12x12$ mm 0.4 mm pitch BGA

Table 1. Orderable parts

1 Industrial qualification grade assumes 10-year lifetime with 100% duty cycle.

² Consumer qualification grade assumes 5-year lifetime with 50% duty cycle.

[Figure 1](#page-3-1) describes the part number nomenclature so that the users can identify the characteristics of the specific part number.

Figure 1. Part number nomenclature—i.MX 7Solo family of processors

1.2 Features

The i.MX 7Solo family of processors is based on ARM Cortex-A7 MPCore™ Platform, which has the following features:

- ARM Cortex-A7 Core (with TrustZone[®] technology)
- The core includes:
	- 32 KByte L1 Instruction Cache
	- 32 KByte L1 Data Cache
	- Private Timer and Watchdog
	- NEON MPE (media processing engine) coprocessor

The ARM Cortex-A7 Core complex shares:

- General interrupt controller (GIC) with 128 interrupt support
- Global timer
- Snoop control unit (SCU)
- 512 KB unified I/D L2 cache
- Two master AXI bus interfaces output of L2 cache

- Frequency of the core (including NEON and L1 cache), as per Table 9.
- NEON MPE coprocessor
	- SIMD Media Processing Architecture
	- NEON register file with 32x64-bit general-purpose registers
	- NEON Integer execute pipeline (ALU, Shift, MAC)
	- NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
	- NEON load/store and permute pipeline

The ARM Cortex-M4 platform:

- Cortex-M4 CPU core
- MPU (memory protection unit)
- FPU (floating-point unit)
- 16 KByte instruction cache
- 16 KByte data cache
- 64 KByte TCM (tightly-coupled memory)

The SoC-level memory system consists of the following additional components:

- Boot ROM, including HAB (96 KB)
- Internal multimedia / shared, fast access RAM (256 KB of total OCRAM)
- Secure/nonsecure RAM (32 KB)
- External memory interfaces: The i.MX 7Solo family of processors supports the latest, high-volume, cost effective DRAM, NOR, and NAND Flash memory standards.
	- Up to 32-bit LP-DDR2-1066, DDR3-1066, DDR3L-1066, and LPDDR3-1066
	- 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 62 bits.
	- 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.

Each i.MX 7Solo processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously):

- Displays—Available interfaces.
	- One parallel 24-bit display port
	- One MIPI DSI port
- Camera sensors:
	- One parallel Camera port (up to 24 bit and up to 133 MHz peak)
	- One MIPI-CSI port
- Expansion cards:
	- Three MMC/SD/SDIO card ports all supporting the following. Moreover, the third port can support HS400.
		- 1-bit or 4-bit transfer mode specifications for SD and SDIO cards, up to 208 MHz

- 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 200 MHz in both SDR and DDR modes, including HS200 and HS400 DDR modes
- USB:
	- One high-speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY
	- One high-speed USB 2.0 (480 Mbps) host with integrated HSIC USB (high-speed inter-chip USB) PHY
- Miscellaneous IPs and interfaces:
	- Three instances of SAI supporting up to three I^2S and AC97 ports
	- Seven UARTs, up to 4.0 Mbps:
		- Providing RS232 interface
		- Supporting 9-bit RS485 Multidrop mode
	- Four eCSPI (Enhanced CSPI)
	- Four I²C, supporting 400 kbps
	- 1-gigabit Ethernet controller (designed to be compatible with IEEE Std 1588), 10/100/1000 Mbps with AVB support
	- Four pulse width modulators (PWM)
	- System JTAG controller (SJC)
	- GPIO with interrupt capabilities
	- 8x8 key pad port (KPP)
	- One quad SPI
	- Four watchdog timers (WDOG)
	- One $(12 \times 12 \text{ mm})$ or two $(19 \times 19 \text{ mm})$ 2-channel, 12-bit analog-to-digital converters (ADC)—effective number of bits (ENOB) can vary (typically 9–10 bits) depending on the system implementation and the condition of the power/ground noise condition

The i.MX 7Solo family of processors integrates advanced power management unit and controllers:

- PMU (power-management unit), multiple LDO supplies, for on-chip resources
- Temperature sensor for monitoring the die temperature
- Software state retention and power gating for ARM and NEON
- Support for various levels of system power modes
- Flexible clock gating control scheme

The i.MX 7Solo family of processors uses dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks.

The i.MX 7Solo family of processors incorporates the following hardware accelerators:

• PXP—PiXel processing pipeline for imagine resize, rotation, overlay and CSC. Off loading key pixel processing operations are required to support the LCD.

Security functions are enabled and accelerated by the following hardware:

• ARM TrustZone technology including separation of interrupts and memory mapping

- SJC—System JTAG controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features.
- CAAM—Cryptographic acceleration and assurance module, containing cryptographic and hash engines supporting DPA (differential power analysis) protection, 32 KB secure RAM, and true and pseudo random number generator (NIST certified).
- SNVS—Secure non-volatile storage, including secure real time clock
- CSU—Central security unit. Enhancement for the IC identification module (IIM). Configured during boot and by eFuses and determines the security-level operation mode as well as the TrustZone policy.
- A-HAB—Advanced high-assurance boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, SRK revocation mechanism, warm boot, CSU, and TrustZone initialization.

NOTE

The actual feature set depends on the part numbers as described in [Table 1](#page-2-1). Functions, such as display and camera interfaces, connectivity interfaces, may not be enabled for specific part numbers.

Architectural overview

2 Architectural overview

The following subsections provide an architectural overview of the i.MX 7Solo processor system.

2.1 Block diagram

[Figure 2](#page-7-2) shows the functional modules in the i.MX 7Solo processor system.

Figure 2. i.MX 7Solo System block diagram

3 Modules list

The i.MX 7Solo family of processors contains a variety of digital and analog modules. [Table 2](#page-8-1) describes these modules in alphabetical order.

Modules list

Table 2. i.MX 7Solo modules list(continued)

Table 2. i.MX 7Solo modules list(continued)

Modules list

Table 2. i.MX 7Solo modules list(continued)

Modules list

Block Mnemonic	Block Name	Subsystem	Brief Description
USBOTG ₂	USB 2.0 High Speed OTG and HSIC USB	Connectivity peripherals	USBOTG2 contains: • One high-speed OTG module with integrated HS USB PHY _s • One high-speed Host module connected to HSIC USB port.
WDOG1 WDOG3 WDOG4	Watchdog	Timer peripherals	The Watch dog timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
WDOG ₂ (TrustZone)	Watchdog (TrustZone technology)	Timer peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping Normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW.

Table 2. i.MX 7Solo modules list(continued)

3.1 Special signal considerations

Table 3 lists special signal considerations for the i.MX 7Solo family of processors. The signal names are listed in alphabetical order.

Modules list

The package contact assignments can be found in [Section 6, "Package information and contact](#page-115-0) [assignments.](#page-115-0)" Signal descriptions are provided in the *[i.MX 7Solo Application Processor Reference](http://fsls.co/doc/IMX7SRM) [Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM).

Table 3. Special signal considerations

Modules list

Table 3. Special signal considerations(continued)

Table 4. JTAG controller interface summary

3.2 Recommended connections for unused analog interfaces

Table 5 shows the recommended connections for unused analog interfaces.

Table 5. Recommended connections for unused analog interfaces

Electrical characteristics

Module	Package Net Name	Recommendation if Unused			
SNVS	SNVS_TAMPER00, SNVS_TAMPER01, SNVS_TAMPER02, SNVS_TAMPER03, SNVS_TAMPER04, SNVS_TAMPER05, SNVS_TAMPER06, SNVS_TAMPER07, SNVS_TAMPER08, SNVS TAMPER09	Float-configure with software			
Temperature sensor	TEMPSENSOR REXT	Tie to ground or pulldown with 100 K Ω resistor			
	TEMPSENSOR_RESERVE	Floating			
	VDD TEMPSENSOR 1P8	1.8V			
USB HSIC	VDD USB H 1P2	Tie to ground			
	USB_H_DATA, USB_H_STROBE	Floating			
USB OTG1	VDD USB OTG1 3P3 IN, VDD USB OTG1 1P0 CAP	Tie to ground			
	USB OTG1 ID. USB OTG1 REXT. USB OTG1 CHD B	Floating			
USB OTG2	VDD_USB_OTG2_3P3_IN, VDD_USB_OTG2_1P0_CAP	Tie to ground			
	USB OTG2 ID. USB OTG2 REXT	Floating			

Table 5. Recommended connections for unused analog interfaces(continued)

4 Electrical characteristics

This section provides the device and module-level electrical characteristics for the i.MX 7Solo family of processors.

4.1 Chip-level conditions

This section provides the device-level electrical characteristics for the IC. See [Table 6](#page-18-2) for a quick reference to the individual tables and sections.

Table 6. i.MX 7Solo Chip-level conditions

4.1.1 Absolute maximum ratings

CAUTION

Stresses beyond those listed under Table 7 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operating ranges or parameters tables is not implied.

¹ OVDD is the I/O supply voltage.

4.1.2 Thermal resistance

4.1.2.1 FPBGA case "X" and case "Y" package thermal resistance

Table 8 displays the thermal resistance data.

Table 8. Thermal Resistance Data

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

 5 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

 6 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.1.3 Operating ranges

Table 9 provides the operating ranges of the i.MX 7Solo family of processors. For details on t[he chip](#page-2-1)'s power structure, see the "Power Management Unit (PMU)" chapter of the *[i.MX 7Solo Application](http://fsls.co/doc/IMX7SRM) [Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM).

Table 9. Operating ranges

Table 9. Operating ranges(continued)

l,

Table 9. Operating ranges(continued)

 1 Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the supply tolerance) is recommended. This results in an optimized power/speed ratio. Operating a voltage of 1.2V and above will reduce the overall lifetime of the part. For details, see *i.MX 7Dual/Solo Product Lifetime Usage* (AN5334).

Table 10 shows on-chip LDO regulators that can supply on-chip loads.

Table 10. On-chip LDOs¹ and their on-chip loads

 $¹$ On-chip LDOs are designed to supply i.MX 7Solo loads and must not be used to supply external loads.</sup>

4.1.4 External clock sources

Each i.MX 7Solo processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI).

The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal resistor-capacitor (RC) oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.

Electrical characteristics

The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either an external oscillator or a crystal using internal oscillator amplifier.

Table 11 shows the interface frequency requirements.

 1 External oscillator or a crystal with internal oscillator amplifier.

² The required frequency stability of this clock source is application dependent. See Hardware Development Guide for [i.MX7Dual and 7Solo Applications Processors.](http://fsls.co/doc/IMX7DSHDG)

³ Recommended nominal frequency 32.768 kHz.

⁴ External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier.

The typical values shown in Table 11 are required for use with NXP BSPs to ensure precise time keeping and USB operation. For RTC_XTALI operation, two clock sources are available. If there is not an externally applied oscillator to RTC_XTALI, the internal oscillator takes over.

- On-chip 32 kHz RC oscillator—this clock source has the following characteristics:
	- Approximately 25 μ A more I_{DD} than crystal oscillator
	- Approximately $\pm 10\%$ tolerance
	- No external component required
	- Starts up faster than 32 kHz crystal oscillator
	- Three configurations for this input:
		- External oscillator
		- External crystal coupled to RTC_XTALI and RTC_XTALO
		- Internal oscillator

External crystal oscillator with on-chip support circuit:

- At power up, RC oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.
- Higher accuracy than RC oscillator
- If no external crystal is present, then the RC oscillator is utilized

The decision of choosing a clock source should be taken based on real-time clock use and precision timeout.

4.1.5 Maximum supply currents

The Power Virus numbers shown in [Table 12](#page-24-0) represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption.

The MC3xPF3000xxxx, NXP's power management IC targeted for the i.MX 7Solo family of processors, supports the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal design is required for the increased system power dissipation.

[Table 12](#page-24-0) represents the maximum momentary current transients on power lines, and should be used for power supply selection. Maximum currents are higher by far than the average power consumption of typical use cases. For typical power consumption information, see the application note, *[i.MX 7DS Power](http://fsls.co/doc/AN5383) [Consumption Measurement](http://fsls.co/doc/AN5383)* (AN5383).

Table 12. Maximum supply currents

Electrical characteristics

Table 12. Maximum supply currents(continued)

¹ The actual maximum current drawn from VDDA_1P8_IN is as shown plus any additional current drawn from the VDDD_1P0_CAP, VDD_1P2_CAP, VDDA_PHY_1P8 outputs, depending on actual application configuration (for example, VDD_MIPI_1P0, VDD_USB_H_1P2 and supplies).

² General equation for estimated, maximal power consumption of an I/O power supply:

 $I_{max} = N \times C \times V \times (0.5 \times F)$

where:

 $N =$ Number of I/O pins supplied by the power line

C = Equivalent external capacitive load

 $V = IO$ voltage

 $(0.5 \times F)$ = Data change rate, up to 0.5 of the clock rate (F)

In this equation, I_{max} is in amps, C in farads, V in volts, and F in hertz.

³ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take into account factors such as signal termination. See the application note, [i.MX 7DS Power Consumption Measurement](http://fsls.co/doc/AN5383) (AN5383) for examples of DRAM power consumption during specific use case scenarios.

4.1.6 Power modes

The i.MX 7Solo has the following power modes:

- OFF mode: all power rails are off
- SNVS mode: only RTC and tamper detection logic is active
- LPSR mode: an extension of SNVS mode, with 16 GPIOs in low power state retention mode
- RUN Mode: all external power rails are on, CPU is active and running, other internal module can be on/off based on application;
- Low Power mode (System Idle, Low Power Idle, and Deep Sleep): most external power rails are still on, CPU is in WFI state or power gated, most of the internal modules are clock gated or power gated

The valid power mode transition is shown in this diagram.

Figure 3. i.MX 7Solo Power Modes

The power mode transition condition is defined in the following table.

Electrical characteristics

The following table summarizes the external power supply state in all the power modes.

Table 14. Power modes

The NVCC_DRAM_CKE can be still ON during SNVS/LPSR mode to keep the CKE/RESET pad in correct state to hold DRAM device in self-refresh mode.

The NVCC_XXX can be off in RUN mode / Low Power mode if all the pads in that IO bank is not used in the application, the NVCC_XXX supply could be tied to GND.

The VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN are fully asynchronous to other power rails, so it can be either ON/OFF in any of the power modes.

4.1.6.1 OFF Mode

In OFF mode, all the power rails are shut off.

4.1.6.2 SNVS Mode

SNVS mode is also called RTC mode, where only the power for the SNVS domain remain on. In this mode, only the RTC and tamper detection logic is still active.

The power consumption in SNVS model with all the tamper detection logic enabled will be less than 5 uA @ 3.0 V on VDD_SNVS_IN for typical silicon at 25°C.

The external DRAM device can keep in self-refresh when the chip stays in SNVS mode with NVCC_DRAM_CKE still powered. During the state transition between SNVS mode to/from ON mode, the DRAM_CKE pad and DRAM_RESET pad has to always stay in correct state to keep DRAM in self-refresh mode. No glitch / floating is allowed.

4.1.6.3 LPSR Mode

LPSR is considered as an extension of the SNVS mode. All the features supported in SNVS mode is also supported in LPSR mode, including the capability of keeping DRAM device in self-refresh.

In LPSR mode, three additional power rails will remain on: VDD LPSR IN, NVCC GPIO1, and NVCC_GPIO2. These three power rails are used to supply the logic and IO pads in the LPSR domain. The purpose of this mode is to retain the state of 16 GPIO pads, so the other components in the whole system will have their control signal in correct state.

Among all the 16 GPIO pads, the NVCC_GPIO1 supply the power for 8 GPIO pads, and the NVCC_GPIO2 supply the power for the other 8 GPIO pads. This allows the SoC to have some of its GPIO working at 1.8 V while others working at 3.3 V in the LPSR mode.

When LPSR mode is not needed for the application, the VDD_LPSR can be connected to VDDA_1P8 and NVCC_GPIO1/2 can be connected to the same power supply as NVCC_XXX for other GPIO banks.

In LPSR mode, the supported wakeup source are RTC alarm, ONOFF event, security/tamper and also the 16 GPIO pads.

4.1.6.4 RUN Mode

In RUN mode, the CPU is active and running, and the analog / digital peripheral modules inside the processor will be enabled. In this mode, all the external power rails to the processor have to be ON and the SoC will be able to draw as many current as listed in the Table 5 Maximum Power Requirement.

In this mode, the PMIC should allow SoC to change the voltage of power rails through I2C/SPI interface. Typically, when the CPU is doing DVFS, it switches the VDD_ARM voltage according to Table 9.

4.1.6.5 Low Power Mode

When the CPU is not running, the processor can enter low power mode. *i.MX 7Dual processor supports a* very flexible set of power mode configurations in low power mode.

Typically there are 3 low power modes used, System IDLE, Low Power IDLE and SUSPEND:

- System IDLE—This is a mode that the CPU can automatically enter when there is no thread running. All the peripherals can keep working and the CPU's state is retained so the interrupt response can be very short. The cores are able to individually enter the WAIT state.
- Low Power IDLE—This mode is for the case when the system needs to have lower power but still keep some of the peripherals alive. Most of the peripherals, analog modules, and PHYs are shut off; see Table 5-5, "Low Power Mode Definition," in the *[i.MX 7Solo Application Processor](http://fsls.co/doc/IMX7SRM) [Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM) for details. The interrupt response in this mode is expected to be longer than the System IDLE, but its power is much lower.
- Suspend—This mode has the greatest power savings; all clocks, unused analog/PHYs, and peripherals are off. The external DRAM stays in Self-Refresh mode. The exit time from this mode is much longer.

In System IDLE and Low Power IDLE mode, the voltage on external power supplies remains the same as in RUN mode, so the external PMIC is not aware of the state of the processor. If any low-power setting

Electrical characteristics

needs to be applied to PMIC, it is done through the I2C/SPI interface before the processor enters a low-power mode.

When the processor enters SUSPEND mode, it will assert the PMIC_STBY_REQ signal to PMIC. When this signal is asserted, the processor allows the PMIC to shut off VDD_ARM externally. However, in some application scenario, SW want to keep the data in L2 Cache to avoid performance impact on cache miss. In this case, the VDD_ARM cannot be shut off. To support both scenarios, the PMIC should have an option to shut off or keep VDD_ARM when it receives the PMIC_STBY_REQ. This should be configured through I2C/SPI interface before the processor enters SUSPEND mode.

Except the VDD_ARM, the other power rails have to keep active in SUSPEND mode. Since the current on each power rail is greatly reduced in this mode, PMIC can enter its own low power mode to get extra power saving. For example, the PMIC can change the DCDC rails to PFM mode to reduce the power consumption.

Table 15. Low Power Measurements

The power consumption in low power modes is defined in [Table 15.](#page-29-0)

	System IDLE			Low Power IDLE		SUSPEND			LPSR			
Power rail	Voltage	Current Power		Voltage	Current Power		Voltage	Current	Power	Voltage	Current	Power
	(V)	(mA)	(mW)	(V)	(mA)	(mW)	(V)	(mA)	(mW)	(V)	(mA)	(mW)
VDD_ARM	1.0	2.7	2.70	1.0	0.428	0.43	1.0	0.3	0.30	0.0		0.00
VDD_SOC	1.0	19.38	19.38	1.0	1.423	1.42	1.0	0.6	0.60	0.0		0.00
VDDA 1P8 IN	1.8	3.46	6.23	1.8	0.206	0.37	1.8	0.4	0.72	0.0		0.00
VDD_SNVS_IN	3.0	0.006	0.018	3.0	0.005	0.015	3.0	0.006	0.018	3.0	0.003	0.009
VDD LPSR IN	1.8	0.04	0.07	1.8	0.041	0.07	1.8	0.039	0.0702	1.8	0.04	0.07
NVCC_GPIO1/2	1.8	0.072	0.13	1.8	0.073	0.13	1.8	0.072	0.13	1.8	0.072	0.13
Total			28.53			2.45			1.84			0.21

All the power numbers defined in [Table 15](#page-29-0) are based on typical silicon at 25°C.

4.1.7 USB PHY Suspend current consumption

4.1.7.1 Low Power Suspend Mode

The VBUS Valid comparators and their associated bandgap circuits are enabled by default. [Table 16](#page-30-1) shows the USB interface current consumption in Suspend mode with default settings.

Table 16. USB PHY current consumption with default settings¹

Low Power Suspend is enabled by setting USBx_PORTSC1 [PHCD]=1 [Clock Disable (PLPSCD)].

4.1.7.2 4.1.7.2 Power-Down modes

[Table 17](#page-30-2) shows the USB interface current consumption with only the OTG block powered down.

Table 17. USB PHY current consumption with VBUS Valid Comparators disabled¹

¹ VBUS Valid comparators can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1. This signal powers down only the VBUS Valid comparator, and does not control power to the Session Valid Comparator, ADP Probe and Sense comparators, or the ID detection circuitry.

In Power-Down mode, everything is powered down, including the USB_VBUS valid comparators and their associated bandgap circuity in typical condition. [Table 18](#page-30-3) shows the USB interface current consumption in Power-Down mode.

Table 18. USB PHY current consumption in Power-Down mode¹

 1 The VBUS Valid Comparators and their associated bandgap circuits can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1 and USBNC_OTG*_PHY_CFG2[DRVVBUS0] to 0, respectively.

The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations:

- Excessive current during power-up phase
- Prevention of the device from booting
- Irreversible damage to the processor (worst-case scenario)

4.1.8 Power-up sequence

The i.MX7 processor has the following power-up sequence requirements:

- VDD_SNVS_IN to be turned on before any other power supply. If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on.
- VDD_SOC to be turned on before NVCC_DRAM and NVCC_DRAM_CKE.
- VDD_ARM, VDD_SOC, VDDA_1P8_IN, VDD_LPSR_IN and all I/O power (NVCC_*) should be turned on after VDD SVNS IN is active. But there is no sequence requirement among these power rails other than the sequence requirement between VDD_SOC and NVCC_DRAM/NVCC_DRAM_CKE.
- There are no special timing requirements for VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN.

The POR_B input (if used) must be immediately asserted at power-up and remain asserted until the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control.

The power-up sequence is shown in [Figure 4](#page-32-0) with the following timing parameters:

- T1 Time from SVNS power stable to other power rails start to ramp, minimal delay is 2ms, no max delay requirement.
- T2 Time from first power rails (except SNVS) ramp up to all the power rails get stable, minimal delay is 0ms, no max delay requirement.
- T3 Time from all power rails get stable to power-on reset, minimal delay is 0ms, no max delay requirement.
- T6 Time from VDD_SOC get stable to NVCC_DRAM/NVCC_DRAM_CKE start to ramp, minimal delay is 0ms, no max delay requirement.

Figure 4. i.MX 7Solo power-up sequence

4.1.9 Power-down sequence

The i.MX7 processors have the following power-down sequence requirements:

- VDD SNVS IN to be turned off last after any other power supply.
- NVCC_DRAM/NVCC_DRAM_CKE to be turned off before VDD_SOC.
- There are no special timing requirements for VDD USB OTG1 3P3 IN andVDD_USB_OTG2_3P3_IN.

The power-down sequence is shown in [Figure 5](#page-33-1) with the following timing parameters:

- T4 Time from first power rails (except SNVS) to ramp down to all the power rails (except SNVS) get to ground, minimal delay is 0ms, no max delay requirement.
- T5 Time from all the power rails power down (except SNVS) to SVNS power down, minimal delay is 0ms, no max delay requirement.
- T7 Time from NVCC_DRAM/NVCC_DRAM_CKE power down to VDD_SOC power down, minimal delay is 0ms, no max delay requirement.

Electrical characteristics

Figure 5. i.MX 7Solo power-down sequence

4.1.10 Power supplies usage

I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of [Section 6, "Package information and](#page-115-0) [contact assignments](#page-115-0)."

4.2 Integrated LDO voltage regulator parameters

Various internal supplies can be powered from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the *[i.MX 7Solo Application Processor](http://fsls.co/doc/IMX7SRM) [Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM) for details on the power tree scheme.

NOTE

The *_CAP signals must not be powered externally. The *_CAP pins are for the bypass capacitor connection only.

4.2.1 Internal regulators

Table 19. LDO parameters

4.2.1.1 LDO_1P2

The LDO 1P2 regulator implements a programmable linear-regulator function from VDDA 1P8 IN (see Table 9 for minimum and maximum input requirements). The typical output of the LDO, VDD_1P2_CAP, is 1.2 V. It is intended for use with the USB HSIC PHY, which uses this voltage level for its output driver. For additional information, see the "Power Management Unit (PMU)" chapter of the *[i.MX 7Solo](http://fsls.co/doc/IMX7SRM) [Application Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM).

4.2.1.2 LDO_1P0D

The LDO_1P0D regulator implements a programmable linear-regulator function from VDDA_1P8_IN (see Table 9 for minimum and maximum input requirements). The typical output of the LDO, VDD_1P0D_CAP, is 1.0 V. It is intended for use with the internal physical interfaces, including MIPI. For additional information, see the *[i.MX 7Solo Application Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM).

4.2.1.3 LDO_1P0A

The LDO_1P0A regulator implements a programmable linear-regulator function from VDDA_1P8_IN (see Table 9 for minimum and maximum input requirements). The typical output of the LDO, VDD_1P0A_CAP, is 1.0 V. It is intended for use with the internal analog modules, including the XTAL, ADC, PLL, and Temperature Sensor. For additional information, see the *[i.MX 7Solo Application Processor](http://fsls.co/doc/IMX7SRM) [Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM).

4.2.1.4 LDO_USB1_1PO/LDO_USB2_1P0

The LDO_USB1_1P0/LDO_USB2_1P0 regulators implement a fixed linear-regulator function from VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN power inputs respectively (see Table 9 for minimum and maximum input requirements). The typical output voltage is 1.0 V. It is intended for use with the internal USB physical interfaces (USB PHY1 and USB PHY2). For additional information, see the *[i.MX 7Solo Application Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM).

4.2.1.5 LDO_SVNS_1P8

1.8 V LDO from coin cell to generate 1.8 V power for SNVS and 32 K RTC. The LDO_SNVS_1P8 regulator implements a fixed linear-regulator function from VDD_SNVS_IN (see Table 9 for minimum and maximum input requirements). The typical output is 1.7 V. It is intended for use with the internal SNVS circuitry. For additional information, see the *[i.MX 7Solo Application Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM).

4.3 PLL electrical characteristics

Table 20. PLL Electrical Parameters

4.4 On-chip oscillators

4.4.1 OSC24M

Power for the oscillator is supplied from a clean source of VDDA_1P8. This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from VDDA_1P8.
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.4.2 OSC32K

This block implements an internal amplifier, trimable load capacitors and a resistor that when combined with a suitable quartz crystal implements a low power oscillator.

In addition, if the clock monitor determines that the OSC32K is not present then the source of the 32 kHz clock will automatically switch to the internal relaxation oscillator of lesser frequency accuracy.

CAUTION

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage and temperature variations. NXP strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The OSC32k runs from VDD_SNVS_1p8_CAP, which is regulated from VDD SNVS. The target battery is an \sim 3 V coin cell for VDD SNVS and the regulated output is \sim 1.75V.

Table 21. OSC32K Main Characteristics

4.5 I/O DC parameters

This section includes the DC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR3 and DDR3 modes
- Differential I/O (CCM_CLK1)

4.5.1 General purpose I/O (GPIO) DC parameters

[Table 22](#page-37-0) shows DC parameters for GPIO pads. The parameters in [Table 22](#page-37-0) are guaranteed per the operating ranges in Table 9, unless otherwise noted.

Parameter	Symbol	Test Conditions		Max	Units
High-level output voltage	V_{OH}	$I_{OH} = -1.8$ mA, -3.6 mA, -7.2 mA, -10.8 mA	$0.8\times$ OVDD	OVDD	\vee
Low-level output voltage	V_{OL}	$I_{\text{OI}} = 1.8 \text{mA}$, 3.6mA, 7.2mA, 10.8mA	$\mathbf 0$	$0.2 \times$ OVDD	\vee
High-level input voltage	V_{IH}		$0.7 \times$ OVDD	$OVDD + 0.3$	\vee
Low-level input voltage	V_{IL}		-0.3	$0.3 \times$ OVDD	\vee
Input hysteresis	V_{HYS}		0.15		\vee
Pull-up resistor $(5_k\Omega$ PU)		$V_{DD} = 1.8 \pm 0.15$ V	5.94	5.98	KΩ
Pull-up resistor $(5_k\Omega$ PU)		$V_{DD} = 3.3 \pm 0.3 V$	4.8	5.3	KΩ
Pull-up resistor $(47$ _{-$k\Omega$} PU)		$V_{DD} = 1.8 \pm 0.15$ V	46.1	50.6	KΩ
Pull-up resistor $(47$ _{-$k\Omega$} PU)		$V_{DD} = 3.3 \pm 0.3 V$	45.8	49.8	KΩ
Pull-up resistor (100_k Ω PU)		$V_{DD} = 1.8 \pm 0.15$ V	97.5	105.9	KΩ
Pull-up resistor (100_k Ω PU)		$V_{DD} = 3.3 \pm 0.3 V$	101	105	KΩ
Pull-down resistor (100_k Ω PU)		$V_{DD} = 1.8 \pm 0.15$ V	101	108.6	KΩ
Pull-down resistor (100_k Ω PD)		$V_{DD} = 3.3 \pm 0.3 V$	101	108	KΩ
Input current (no PU/PD)	I_{OZ}		-5	5	μA
Sink/source current in Push-Pull mode		Driving currents (@100MHz, $V_{OL}/H = 0.5 \times OV_{DD}$, SS, 125°C) $OVDD = 2.7 V$	-32.9	32.9	mA

Table 22. GPIO DC Parameters

4.5.2 DDR I/O DC electrical characteristics

The DDR I/O pads support DDR3/DDR3L, LPDDR2, and LPDDR3 operational modes. The DDR Memory Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs. The DDRC supports the following memory types:

- DDR3 SDRAM compliant to JESD79-3E DDR3 JEDEC standard release July, 2010
- LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009
- LPDDR3 SDRAM compliant to JESD209-3B LPDDR3 JEDEC standard release August, 2013

DDRMC operation with the standards stated above is contingent upon the board DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 7 application processor.

Table 23. DC input logic level

It is the relationship of the V_{DDQ} of the driving device and the V_{REF} of the receiving device that determines noise margins. However, in the case of $V_{H}(DC)$ max (that is, input overdrive), it is the V_{DDQ} of the receiving device that is referenced.

Table 24. Output DC current drive

¹ When DDS=[111] and without ZQ calibration.

1

² The values of V_{OH} and V_{OL} are valid only for 1.2 V range.

Table 25. Input DC current

¹ The values of V_{OH} and V_{OL} are valid only for 1.2 V range.

² Driver Hi-Z and input power-down (PD=High)

4.5.2.1 LPDDR3 mode I/O DC parameters

Table 26. LPDDR3 I/O DC electrical parameters

Table 26. LPDDR3 I/O DC electrical parameters(continued)

 $\frac{1}{1}$ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

4.5.3 Differential I/O port (CCM_CLK1P/N)

The clock I/O interface is designed to be compatible with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, *Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits* (2001)*,* for details.

[Table 27](#page-39-0) shows the clock I/O DC parameters.

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit	Notes
$ cc$ -ovdd- $ p $	Tri-state I/O supply current in low-power mode	ipp_pwr_stable_b_1p8 =1 (means $1.8 V$) vddi is OFF irefin disabled (0 uA)		0.35		uA	
Icc-vddi	Tri-state core supply current	ipp_ibe=ipp_obe=0 irefin disabled (0 uA)			0.8		
Icc	Power supply current (ovdd)	Rload=100 Ω between padp and padn			4.7	mA	This is not including current through external Rload=100 Ω

Table 27. Differential clock I/O DC electrical characteristics(continued)

¹ VOH_max = Vos_max + Vod_max/2 = 1.1+0.225 = 1.325 V. VOH_min = Vos_min + Vod_min/2 = 0.9+0.125 = 1.025 V. ² VOL_max = Vos_max - Vod_min/2 = 1.1-0.125 = 0.975 V. VOL_min = Vos_min - Vod_max/2 = 0.9 - 0.225 = 0.675 V

4.6 I/O AC parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2, LPDDR3 and DDR3/DDR3L modes
- Differential I/O (CCM_CLK1)

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 6 and Figure 7.

CL includes package, probe and fixture capacitance

Figure 6. Load circuit for output

Figure 7. Output transition time waveform

4.6.1 General purpose I/O AC parameters

This section presents the I/O AC parameters for GPIO in different modes. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers.

Table 28. Maximum input cell delay time

Table 29. Output cell delay time for fixed load

Table 30. Maximum frequency of operation for input

			Maximum frequency (MHz)									
Parameter		$VDD = 1.8 V$		$VDD = 2.5 V$			$VDD = 3.3 V$					
D _{S0}	DS ₁	SR	Driver Type	$CL =$ 5 pF	$CL =$ 10 pF	$CL =$ 40 pF	$CL =$ 5 pF	$CL =$ 10pF	$CL =$ 40 pF	$CL =$ 5 pF	$CL =$ 10 pF	$CL =$ 40 pF
Ω	$\mathbf 0$	1	$1\times$ Slow Slew	100	70	25	90	60	20	95	60	20
0	0	0	$1\times$ Fast Slew	110	75	25	100	65	20	100	65	20
Ω	1	1	$2\times$ Slow Slew	120	100	50	120	100	40	115	95	40
Ω	1	0	$2\times$ Fast Slew	185	145	50	180	130	40	170	130	40
1	0	$\mathbf{1}$	$4\times$ Slow Slew	140	125	85	135	120	70	130	115	70
1	0	0	$4\times$ Fast Slew	235	200	100	225	195	80	215	185	80
1	1	1	$6\times$ Slow Slew	140	125	90	135	120	85	130	115	80
1	1	0	$6\times$ Fast Slew	250	225	140	240	215	120	235	205	120

Table 31. Maximum frequency of operation for output¹

1 Maximum frequency value is obtained with lumped capacitor load. If you consider transmission line or SSN noise effect, it could be worse than suggested value.

4.6.2 Clock I/O AC parameters—CCM_CLK1_N/CCM_CLK1_P

The differential output transition time waveform is shown in [Figure 8.](#page-43-0)

Figure 8. Differential LVDS driver transition time waveform

[Table 32](#page-43-1) shows the AC parameters for clock I/O.

¹ At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%. Output differential signal measured.

² WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 20-80%. Output differential signal measured

³ At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%.

⁴ TX startup time is defined as the time taken by transmitter for settling after its ipp_obe has been asserted. It is to stabilize the current reference. Functionality is guaranteed only after the startup time

4.7 Output buffer impedance parameters

This section defines the I/O impedance parameters of the i.MX 7Solo family of processors for the following I/O types:

- Double Data Rate I/O (DDR) for LPDDR2, LPDDR3, and DDR3/DDR3L modes
- Differential I/O (CCM_CLK1)
- USB battery charger detection open-drain output (USB_OTG1_CHD_B)

NOTE

DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 9).

Figure 9. Impedance matching load for measurement

4.7.1 DDR I/O output buffer impedance

The LPDDR2 interface is designed to be fully compatible with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The LPDDR3 interface mode is designed to be compatible with JESD209-3B JEDEC standard released August, 2013. The DDR3 interface is designed to be fully compatible with JESD79-3F DDR3 JEDEC standard release July, 2012.

Table 33 shows DDR I/O output buffer impedance of i.MX 7Solo family of processors.

Table 33. DDR I/O output buffer impedance

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

2. Calibration is done against 240 Ω external reference resistor.

3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.7.2 Differential I/O output buffer impedance

The Differential CCM interface is designed to be compatible with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, *Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits* (2001) for details.

4.7.3 USB battery charger detection driver impedance

The USB_OTG1_CHD_B open-drain output pin can be used to signal the results of USB Battery Charger detection routines for the USB_OTG1 PHY instance to power management and monitoring devices. Use of this pin requires an external pullup resistor, for more information see Table 3, and Table 7.

[Table 34](#page-46-0) shows the USB_OTG1_CHD_B pulldown driver impedance for the USB_OTG1_CHD_B pin.

4.8 System modules timing

This section contains the timing and electrical parameters for the modules in each i.MX 7Solo processor.

4.8.1 Reset timings parameters

Figure 10 shows the reset timing and Table 35 lists the timing parameters.

POR_B (Input)

Figure 10. Reset timing diagram

Table 35. Reset timing parameters

4.8.2 WDOG Reset timing parameters

Figure 11 shows the WDOG reset timing and Table 36 lists the timing parameters.

Figure 11. WDOGx_B timing diagram

Table 36. WDOGx_B timing parameters

NOTE

RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 µs.

NOTE

WDOG_x B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the *[i.MX 7Solo Application Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM) for detailed information.

4.8.3 External interface module (EIM)

The following subsections provide information on the EIM.

4.8.3.1 EIM interface pads allocation

EIM supports 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 37 provides EIM interface pads allocation in different modes.

Table 37. EIM internal module multiplexing¹

 1 [For more information on configuration ports mentioned in this table, see the](http://fsls.co/doc/IMX7SRM) i.MX 7Solo Application Processor Reference Manual (IMX7SRM).

4.8.3.2 General EIM Timing—Synchronous mode

Figure 12, Figure 13, and Table 38 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields.

Figure 12. EIM outputs timing diagram

Figure 13. EIM inputs timing diagram

4.8.3.3 Examples of EIM synchronous accesses

Table 38. EIM bus timing parameters ¹

ID	Parameter	$BCD = 0$		$BCD = 1$			$BCD = 2$	$BCD = 3$		
		Min	Max	Min	Max	Min	Max	Min	Max	
WE1	EIM_BCLK Cycle time ²	t		$2 \times t$		$3x$ t		$4 \times t$		
WE ₂	EIM_BCLK Low Level Width	$0.4 \times t$		$0.8 \times t$	$\overline{}$	$1.2 \times t$		$1.6 \times t$		
WE3	EIM_BCLK High Level Width	$0.4 \times t$	$\overline{}$	$0.8 \times t$	$\overline{}$	$1.2 \times t$		$1.6 \times t$		
WE4	Clock rise to address valid ³	$-0.5 \times t -$ 1.25	-0.5 x t + 1.75	$-t - 1.25$	$-t + 1.75$	-1.5 x t - 1.25	$-1.5x$ t $+1.75$	$-2x$ t - 1.25	$-2xt + 1.75$	
WE5	Clock rise to address invalid		0.5 x t - 1.25 0.5 x t + 1.75	$t - 1.25$	$t + 1.75$	1.5 x t - 1.25	$1.5 \times t + 1.752 \times t - 1.252 \times t + 1.75$			
WE6	Clock rise to EIM_CSx_B valid	$-0.5 \times t -$ 1.25	$-0.5 \times t + 1.75$	$-t - 1.25$	$-t + 1.75$	-1.5 x t - 1.25	$-1.5 \times t$ $+1.75$	$-2 \times t$ - 1.25	$-2xt + 1.75$	
WE7	Clock rise to EIM CSx B invalid		0.5 x t - 1.25 0.5 x t + 1.75	$t - 1.25$	$t + 1.75$	1.5 x t - 1.25	$1.5 \times t + 1.75$ 2 x t - 1.25 2 x t + 1.75			
WE8	Clock rise to EIM_WE_B Valid	$-0.5 \times t -$ 1.25	-0.5 x t + 1.75	$-t - 1.25$	$-t + 1.75$	-1.5 x t - 1.25	$-1.5 \times t$ $+1.75$	$-2 \times t -$ 1.25	$-2xt + 1.75$	
WE9	Clock rise to EIM_WE_B Invalid		$0.5 \times t - 1.25$ 0.5 $\times t + 1.75$	$t - 1.25$	$t + 1.75$	$\overline{1.5}$ x t - 1.25	$1.5 \times t + 1.75$ 2 x t - 1.25 2 x t + 1.75			
	WE10 Clock rise to EIM_OE_B Valid	$-0.5 \times t -$ 1.25	$-0.5 \times t + 1.75$	$-t - 1.25$	$-t + 1.75$	$-1.5 \times t -$ 1.25	$-1.5 \times t$ $+1.75$	$-2 \times t$ - 1.25	$-2xt + 1.75$	
	WE11 Clock rise to EIM_OE_B Invalid		$0.5 \times t - 1.25$ 0.5 $\times t + 1.75$	$t - 1.25$	$t + 1.75$	$1.5 \times t -$ 1.25	$1.5 \times t + 1.75$ 2 x t - 1.25 2 x t + 1.75			
	WE12 Clock rise to EIM_EBx_B Valid	$-0.5 \times t -$ 1.25	$-0.5 \times t + 1.75$	$-t - 1.25$	$-t + 1.75$	-1.5 x t - 1.25	$-1.5 \times t$ $+1.75$	$-2 \times t$ - 1.25	$-2xt + 1.75$	
	WE13 Clock rise to EIM_EBx_B Invalid		$0.5 \times t - 1.25$ 0.5 $\times t + 1.75$	$t - 1.25$	$t + 1.75$	1.5 x t - 1.25	$1.5 \times t + 1.75$ 2 x t - 1.25 2 x t + 1.75			
	WE14 Clock rise to EIM_LBA_B Valid	$-0.5 \times t -$ 1.25	-0.5 x t + 1.75	$-t - 1.25$	$-t + 1.75$	-1.5 x t - 1.25	$-1.5x$ t $+1.75$	$-2 \times t$ - 1.25	$-2xt + 1.75$	
	WE15 Clock rise to EIM LBA B Invalid		$0.5 \times t - 1.25$ 0.5 $\times t + 1.75$	$t - 1.25$	$\frac{1}{1 + 1.75}$	$1.5 \times t -$ 1.25	$1.5 \times t + 1.75$ 2 x t - 1.25 2 x t + 1.75			
	WE16 Clock rise to Output Data Valid	$-0.5 \times t -$ 1.25	$-0.5 \times t + 1.75$	$-t - 1.25$	$-t + 1.75$	$-1.5 \times t -$ 1.25	$-1.5 \times t$ $+1.75$	$-2x$ t - 1.25	$-2xt + 1.75$	
	WE17 Clock rise to Output 0.5 x t - 1.25 0.5 x t + 1.75 Data Invalid			t - 1.25	$t + 1.75$	$1.5 \times t -$ 1.25	$1.5 \times t + 1.75$ 2 x t - 1.25 2 x t + 1.75			
	WE18 Input Data setup time to Clock rise	\overline{c}		$\overline{4}$						
	WE19 Input Data hold time from Clock rise	\overline{c}		$\mathbf{2}$						
	WE20 EIM_WAIT_B setup time to Clock rise	\overline{c}		4						
WE21	EIM_WAIT_B hold time from Clock rise	$\overline{2}$		$\overline{2}$						

- ¹ t is the maximum EIM logic (axi_clk) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed latency configuration, whereas the maximum allowed EIM_BCLK frequency is:
	- —Fixed latency for both read and write is 132 MHz.
	- —Variable latency for read only is 132 MHz.
	- —Variable latency for write only is 52 MHz.
- In variable latency configuration for write, if $BCD = 0$ & WBCDD = 1 or $BCD = 1$, axi_clk must be 104 MHz. Write $BCD = 1$ and 104 MHz axi_clk, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other buses [are impacted which are clocked from this source. See the CCM chapter of the](http://fsls.co/doc/IMX7SRM) i.MX 7Solo Application Processor Reference Manual (IMX7SRM) for a detailed clock tree description.
- ² EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is defined as 50% as signal value.
- 3 For signal measurements, "High" is defined as 80% of signal value and "Low" is defined as 20% of signal value.

Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings.

Figure 14. Synchronous memory read access, WSC=1

Figure 16. Muxed Address/Data (A/D) mode, synchronous write access, WSC=6, ADVA=0, ADVN=1, and ADH=1

NOTE

In 32-bit Muxed Address/Data (A/D) mode the 16 MSBs are driven on the data bus.

Figure 17. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0

4.8.3.4 General EIM timing—Asynchronous mode

Figure 18 through Figure 22, and Table 39 help you determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above.

Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN and CSN is configured differently. See the *[i.MX 7Solo Application Processor](http://fsls.co/doc/IMX7SRM) [Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM) for the EIM programming model.

Figure 18. Asynchronous memory read access (RWSC = 5)

Figure 21. Asynchronous A/D muxed write access

Figure 22. DTACK mode read access (DAP=0)

Figure 23. DTACK Mode write access (DAP=0)

Table 39. EIM asynchronous timing parameters table relative chip to select(continued)

Table 39. EIM asynchronous timing parameters table relative chip to select(continued)

Ref No.	Parameter	Determination by Synchronous measured parameters ¹	Min	Max	Unit
MAXDTI	MAXIMUM delay from EIM_DTACK_B to its internal $FF + 2$ cycles for synchronization	10			ns
WE47	EIM DTACK B Active to EIM_CSx_B Invalid	MAXCO - MAXCSO + MAXDTI	MAXCO- MAXCSO + MAXDTI		ns
WE48	EIM_CSx_B Invalid to EIM_DTACK_B Invalid	0	Ω		ns

¹ [For more information on configuration parameters mentioned in this table, see the](http://fsls.co/doc/IMX7SRM) *i.MX 7Solo Application Processor Reference* Manual (IMX7SRM).

² In this table, CSA means WCSA when write operation or RCSA when read operation.

 3 In this table, CSN means WCSN when write operation or RCSN when read operation.

⁴ t is axi_clk cycle time.

⁵ In this table, ADVN means WADVN when write operation or RADVN when read operation.

⁶In this table, ADVA means WADVA when write operation or RADVA when read operation.

4.8.4 DDR SDRAM-specific parameters (DDR3, DDR3L, LPDDR3, and LPDDR2)

4.8.4.1 DDR3/DDR3L parameters

Figure 24 shows the DDR3 basic timing diagram with the timing parameters provided in Table 40.

Figure 24. DDR3 Command and Address Timing Diagram

Table 40. DDR3 timing parameters

¹ All measurements are in reference to Vref level.

² Measurements were done using balanced load and 25 $Ω$ resistor from outputs to VDD_REF.

Figure 25 shows the DDR3 write timing diagram. The timing parameters for this diagram appear in Table 41.

Figure 25. DDR3 write cycle

Table 41. DDR3 write cycle

¹ To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.
³ Measurements were taken using balanced load.

Measurements were taken using balanced load and 25 Ω resistor from outputs to DDR_VREF.

Figure 26 shows the DDR3 read timing diagram. The timing parameters for this diagram appear in Table 42.

Table 42. DDR3 read cycle

 $¹$ To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P</sup> in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

3 Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

4.8.4.2 LPDDR3 parameters

[Figure 27](#page-61-0) shows the LPDDR3 basic timing diagram. The timing parameters for this diagram appear in [Table 43](#page-62-0).

ID	Parameter		$CK = 533 MHz$	Unit	
		Symbol	Min	Max	
LP1	SDRAM clock high-level width	t_{CH}	0.45	0.55	t_{CK}
LP ₂	SDRAM clock low-level width	t_{CL}	0.45	0.55	t_{CK}
LP ₃	DRAM_CSx_B	t_{IS}	390		ps
LP4	DRAM_CSx_E	t _{IН}	390		ps
LP3	DRAM_CAS_B setup time	$t_{\rm IS}$	275		ps
LP4	DRAM_CAS_B hold time	t _{IН}	275		ps

Table 43. LPDDR3 timing parameters1,2

 $\frac{1}{1}$ All measurements are in reference to V_{ref} level.

² Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF.

[Figure 28](#page-62-1) shows the LPDDR3 write timing diagram. The timing parameters for this diagram appear in [Table 44](#page-63-0).

Figure 28. LPDDR3 write cycle

Table 44. LPDDR3 write cycle1,2,3

 $\frac{1}{1}$ To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in the middle of DRAM_DATAxx window.

² All measurements are in reference to V_{ref} level.
³ Measurements were done using balanced load

Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF.

[Figure 29](#page-63-1) shows the LPDDR3 read timing diagram. The timing parameters for this diagram appear in [Table 45](#page-63-2).

Figure 29. LPDDR3 read cycle

 $\overline{1}$ To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATA_xx window.

² All measurements are in reference to V_{ref} level.

³ Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF.

4.8.4.3 LPDDR2 parameters

Figure 30 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in [Table 46](#page-64-0).

Figure 30. LPDDR2 command and address timing diagram

Table 46. LPDDR2 timing parameters1,2

 $\frac{1}{1}$ All measurements are in reference to Vref level.

² Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF

Figure 31 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in Table 47.

Table 47. LPDDR2 write cycle

 1 To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

 3 Measurements were done using balanced load and 25 $Ω$ resistor from outputs to DDR_VREF.

Figure 32 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in Table 48.

Figure 32. LPDDR2 read cycle

Table 48. LPDDR2 read cycle

ID	Parameter	Symbol	$CK = 533 MHz$	Unit	
			Min	Max	
LP26	Minimum required DRAM_DATAxx valid window width for LPDDR2	$\overline{}$	230		ps

 1 To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATA_xx window.

² All measurements are in reference to Vref level.

³ Measurements were done using balanced load and 25 $Ω$ resistor from outputs to DDR_VREF.

4.9 General-purpose media interface (GPMI) timing

The i.MX 7Solo GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select.

It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode separately, as described in the following subsections.

4.9.1 Asynchronous mode AC timing (ONFI 1.0 compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 33 through Figure 36 depicts the relative timing between GPMI signals at the module level for different operations under asynchronous mode. Table 49 describes the timing parameters (NF1–NF17) that are shown in the figures.

Figure 33. Command Latch cycle timing diagram

Figure 34. Address Latch cycle timing diagram

Figure 35. Write Data Latch cycle timing diagram

Figure 36. Read Data Latch cycle timing diagram (Non-EDO Mode)

Figure 37. Read Data Latch cycle timing diagram (EDO mode)

ID Parameter		Symbol	Timing T = GPMI Clock Cycle				
			Min.	Max.			
NF ₁	NAND_CLE setup time	tCLS	$(AS + DS) \times T - 0.12$ [see notes ^{2,3}]		ns		
NF ₂	NAND_CLE hold time	tCLH	DH \times T - 0.72 [see note ²]		ns		
NF ₃	NAND CEO B setup time	tCS	$(AS + DS + 1) \times T$ [see notes ^{3,2}]		ns		
NF ₄	NAND CEO B hold time	tCH	$(DH+1) \times T - 1$ [see note ²]		ns		
NF ₅	NAND WE B pulse width	tWP	DS \times T [see note ²]		ns		
NF ₆	NAND ALE setup time	tALS	$(AS + DS) \times T - 0.49$ [see notes ^{3,2}]		ns		
NF7	NAND_ALE hold time	tALH	(DH \times T - 0.42 [see note ²]		ns		
NF ₈	Data setup time	tDS	DS \times T - 0.26 [see note ²]		ns		
NF ₉	Data hold time	tDH	DH \times T - 1.37 [see note ²]		ns		
NF10	Write cycle time	tWC	$(DS + DH) \times T$ [see note ²]		ns		
NF11	NAND_WE_B hold time	tWH	DH \times T [see note ²]		ns		
NF12	Ready to NAND_RE_B low	tRR ⁴	$(AS + 2) \times T$ [see 3,2]		ns		
NF13	NAND RE B pulse width	tRP	$DS \times T$ [see note ²]		ns		
NF14	READ cycle time	tRC	$(DS + DH) \times T$ [see note ²]		ns		
NF15	NAND_RE_B high hold time	tREH	DH \times T [see note ²]		ns		
NF16	Data setup on read	tDSR	$(DS \times T - 0.67)/18.38$ [see notes ^{5,6}]		ns		
NF17	Data hold on read	tDHR	$0.82/11.83$ [see notes ^{5,6}]		ns		

Table 49. Asynchronous mode timing parameters¹

 1 GPMI's Asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

2 AS minimum value can be 0, while DS/DH minimum value is 1.

 $3 \text{ T} = \text{GPMI}$ clock period -0.075ns (half of maximum p-p jitter).

⁴ NF12 is guaranteed by the design.

⁵ Non-EDO mode.

 6 EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 36), NF16/NF17 are different from the definition in non-EDO mode (Figure 35). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the *i.MX 7Dual Application Processor Reference Manual* [IMX7DRM]). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.9.2 Source Synchronous mode AC timing (ONFI 2.x compatible)

NF₁₉ NF18 ┝┻ NAND_CE_B NF23 H DH NAND_CLE **NF25** $NF2$ NAND ALE NF₂₅ NF₂₆ NAND_WE/RE_B NF22 NAND_CLK NAND_DQS NAND_DQS Output enable NF20 NF20 **NF21** NF₂₁ NAND_DATA[7:0] $\begin{matrix} \text{CMD} & \text{\{X}}\ \end{matrix}$ NAND_DATA[7:0] Output enable

[Figure 38](#page-69-0) to [Figure 40](#page-70-0) show the write and read timing of Source Synchronous mode.

Figure 38. Source Synchronous mode command and address timing diagram

Electrical characteristics

Figure 41. NAND_DQS/NAND_DQ Read Valid window

ID	Parameter		Timing T = GPMI Clock Cycle	Unit	
			Min.	Max.	
NF18	NAND_CE0_B access time	tCE	CE_DELAY \times T - 0.79 [see note ²]		ns
NF19	NAND CEO B hold time	tCH	$0.5 \times$ tCK - 0.63 [see note ²]		ns
NF20	Command/address NAND_DATAxx setup time	tCAS	$0.5 \times$ tCK - 0.05		ns
NF21	Command/address NAND_DATAxx hold time	tCAH	$0.5 \times$ tCK - 1.23		ns
NF22	clock period	tCK			ns
NF23	preamble delay	tPRE	PRE_DELAY \times T - 0.29 [see note ²]		ns
NF24	postamble delay	tPOST	POST_DELAY \times T - 0.78 [see note ²]		ns
NF25	NAND_CLE and NAND_ALE setup time	tCALS	$0.5 \times$ tCK - 0.86		ns
	NF26 NAND CLE and NAND ALE hold time	tCALH	$0.5 \times$ tCK - 0.37		ns
NF27	NAND_CLK to first NAND_DQS latching transition	tDQSS	T - 0.41 [see note ²]		ns
NF28	Data write setup		$0.25 \times$ tCK - 0.35		
NF29	Data write hold		$0.25 \times$ tCK - 0.85		
NF30	NAND_DQS/NAND_DQ read setup skew		2.06		
NF31	NAND_DQS/NAND_DQ read hold skew			1.95	

Table 50. Source Synchronous mode timing parameters¹

 $¹$ GPMI's Source Synchronous mode output timing can be controlled by the module's internal registers</sup> GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.

² T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter).

For DDR Source Synchronous mode, Figure 41 shows the timing diagram of

NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the *i.MX 7Dual Application Processor Reference Manual* [IMX7DRM]). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.
4.9.3 ONFI NV-DDR2 mode (ONFI 3.2 compatible)

4.9.3.1 Command and address timing

ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See [Section 4.9.1, "Asynchronous mode AC timing \(ONFI 1.0 compatible\),](#page-66-0)" for details.

4.9.3.2 Read and write timing

ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See [Section 4.9.4, "Toggle](#page-72-0) [mode AC Timing](#page-72-0)," for details.

4.9.4 Toggle mode AC Timing

4.9.4.1 Command and address timing

NOTE

Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See [Section 4.9.1,](#page-66-0) ["Asynchronous mode AC timing \(ONFI 1.0 compatible\)](#page-66-0)," for details.

4.9.4.2 Read and write timing

Figure 43. Toggle mode data read timing

ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		Unit	
			Min.	Max.		
NF ₁	NAND_CLE setup time	tCLS	$(AS + DS) \times T - 0.12$ [see note ² s ^{, 3}]			
NF ₂	NAND_CLE hold time	tCLH	DH \times T - 0.72 [see note ²]			
NF ₃	NAND_CE0_B setup time	tCS	$(AS + DS) \times T - 0.58$ [see notes ²]			
NF4	NAND CEO B hold time	tCH	DH \times T - 1 [see note ²]			
NF5	NAND_WE_B pulse width	tWP	DS \times T [see note ²]			
NF6	NAND_ALE setup time	tALS	$(AS + DS) \times T - 0.49$ [see notes ²]			
NF7	NAND_ALE hold time	tALH	DH \times T - 0.42 [see note ²]			
NF8	Command/address NAND_DATAxx setup time	tCAS	DS \times T - 0.26 [see note ²]			
NF9	Command/address NAND_DATAxx hold time	tCAH	DH \times T - 1.37 [see note ²]			
NF18	NAND CEx B access time	tCE	CE_DELAY \times T [see notes ^{4,2}]		ns	
NF22	clock period	tCK			ns	
NF23	preamble delay	tPRE	PRE_DELAY \times T [see notes ^{5,2}]		ns	
NF24	postamble delay	tPOST	POST_DELAY \times T +0.43 [see $note2$]		ns	

Table 51. Toggle mode timing parameters¹

Table 51. Toggle mode timing parameters¹ (continued)

The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

 2^2 AS minimum value can be 0, while DS/DH minimum value is 1.

 $3 \text{ T} = \text{tCK}$ (GPMI clock period) -0.075 ns (half of maximum p-p jitter).

⁴ CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level.

 5 PRE_DELAY+1) \geq (AS+DS)

⁶ Shown in [Figure 42.](#page-72-1)

⁷ Shown in [Figure 43.](#page-73-0)

For DDR Toggle mode, Figure 41 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the *i.MX 7Dual Application Processor Reference Manual* [IMX7DRM]). Generally, the typical delay value is equal to 0x7 which means $1/4$ clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.10 External peripheral interface parameters

The following subsections provide information on external peripheral interfaces.

4.10.1 ECSPI timing parameters

This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes.

4.10.1.1 ECSPI Master mode timing

[Figure 44](#page-75-0) depicts the timing of ECSPI in master mode. Table 52 lists the ECSPI master mode timing characteristics.

Figure 44. ECSPI Master mode timing diagram

Table 52. ECSPI Master mode timing parameters

¹ See specific I/O AC parameters [Section 4.6, "I/O AC parameters](#page-40-0)."

² SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.

4.10.1.2 ECSPI Slave mode timing

Figure 45 depicts the timing of ECSPI in Slave mode. [Table 53](#page-76-0) lists the ECSPI Slave mode timing characteristics.

Figure 45. ECSPI Slave mode timing diagram

Table 53. ECSPI Slave mode timing parameters

4.10.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (single data rate) timing, eMMC4.4/4.41 (dual data rate) timing and SDR104/50(SD3.0) timing.

4.10.2.1 SD/eMMC4.3 (single data rate) AC timing

Figure 46 depicts the timing of SD/eMMC4.3, and Table 54 lists the SD/eMMC4.3 timing characteristics.

Figure 46. SD/eMMC4.3 Timing

Table 54. SD/eMMC4.3 interface timing specification(continued)

 $\overline{1}$ In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

2 In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In High-speed mode, clock frequency can be any value between 0–50 MHz.

3 In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In High-speed mode, clock frequency can be any value between 0–52 MHz.

⁴ To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.10.2.2 eMMC4.4/4.41 (dual data rate) AC timing

Figure 47 depicts the timing of eMMC4.4/4.41. Table 55 lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).

Figure 47. eMMC4.4/4.41 timing

Table 55. eMMC4.4/4.41 interface timing specification(continued)

4.10.2.3 HS400 AC timing—eMMC5.0 only

[Figure 48](#page-79-0) depicts the timing of HS400. [Table 56](#page-79-1) lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6 and SD7 parameters in Table 58 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode.

Table 56. HS400 interface timing specifications

ID	Parameter	Symbols	Min	Max	Unit		
uSDHC input/Card Outputs DAT (Reference to Strobe)							
SD ₆	uSDHC input skew	τ_{RO}		0.45	ns		
SD ₇	uSDHC hold skew	$t_{\sf RQH}$		0.45	ns		

Table 56. HS400 interface timing specifications(continued)

4.10.2.4 HS200 Mode Timing

Figure 49 depicts the timing of HS200 mode, and Table 57 lists the HS200 timing characteristics.

Figure 49. HS200 Mode Timing

¹HS200 is for 8 bits while SDR104 is for 4 bits.

4.10.2.5 SDR50/SDR104 AC timing

Figure 50 depicts the timing of SDR50/SDR104, and Table 58 lists the SDR50/SDR104 timing characteristics.

Figure 50. SDR50/SDR104 timing

Table 58. SDR50/SDR104 interface timing specification

¹Data window in SDR100 mode is variable.

4.10.2.6 Bus operation condition for 3.3 V and 1.8 V signaling

Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in [Table 22, "GPIO DC Parameters," on page 38](#page-37-0).

4.10.3 Ethernet controller (ENET) AC electrical specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

4.10.3.1 ENET MII mode timing

This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

4.10.3.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK)

The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

Figure 51 shows MII receive signal timings. Table 59 describes the timing parameters (M1–M4) shown in the figure.

Figure 51. MII receive signal timing diagram

Table 59. MII receive signal timing

¹ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

4.10.3.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)

The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency.

Figure 52 shows MII transmit signal timings. Table 60 describes the timing parameters (M5–M8) shown in the figure.

Figure 52. MII transmit signal timing diagram

 1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

4.10.3.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)

Figure 53 shows MII asynchronous input timings. Table 61 describes the timing parameter (M9) shown in the figure.

Figure 53. MII async inputs timing diagram

Table 61. MII asynchronous inputs signal timing

¹ ENET_COL has the same timing in 10-Mbit 7-wire interface mode.

4.10.3.1.4 MII Serial management channel timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

Figure 54 shows MII asynchronous input timings. Table 62 describes the timing parameters (M10–M15) shown in the figure.

Figure 54. MII serial management channel timing diagram

Table 62. MII serial management channel timing

4.10.3.2 RMII mode timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz \pm 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.

Figure 55 shows RMII mode timings. Table 63 describes the timing parameters (M16–M21) shown in the figure.

Figure 55. RMII mode signal timing diagram

4.10.3.3 Signal switching specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Symbol	Description	Min.	Max.	Unit
$T_{\rm cyc}^2$	Clock cycle duration	7.2	8.8	ns
$\mathsf{T}_{\mathsf{skewT}}^3$	Data to clock output skew at transmitter	-500	500	ps
$T_{\rm skewR}^3$	Data to clock input skew at receiver		2.6	ns
Duty_ $G4$	Duty cycle for Gigabit	45	55	$\%$
Duty_ T^4	Duty cycle for 10/100T	40	60	$\%$
Tr/Tf	Rise/fall time (20-80%)		0.75	ns

Table 64. RGMII signal switching specifications¹

 $\frac{1}{1}$ The timings assume the following configuration:

 DDR SEL = $(11)b$

DSE (drive-strength) = (111)b

² For 10 Mbps and 100 Mbps, T_{cyc} will scale to 400 ns ± 40 ns and 40 ns ± 4 ns respectively.

 3 For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified.

⁴ Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

Figure 56. RGMII transmit signal timing diagram original

Figure 57. RGMII receive signal timing diagram original

Figure 58. RGMII receive signal timing diagram with internal delay

4.10.4 Flexible controller area network (flexcan) ac electrical specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0 B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the *[i.MX 7Solo Application Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.

4.10.5 I2C module timing parameters

This section describes the timing parameters of the I^2C module. Figure 59 depicts the timing of I^2C module, and Table 65 lists the $I^2\overline{C}$ module timing characteristics.

Figure 59. I2C bus timing

 $\frac{1}{1}$ A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL.

² The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.

 $3\,$ A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode l^2C -bus specification) before the I2Cx_SCL line is released.

 4 C_b = total capacitance of one bus line in pF.

4.10.6 LCD controller (LCDIF) timing parameters

Figure 60 shows the LCDIF timing and Table yy lists the timing parameters.

Figure 60. LCD timing

4.10.7 Parallel CMOS sensor interface (CSI) timing parameters

4.10.7.1 Gated clock mode timing

Figure 61 and Figure 62 shows the gated clock mode timings for CSI, and Table 67 describes the timing parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC

(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.

Figure 61. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge

Figure 62. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge

4.10.7.2 Ungated clock mode timing

Figure 63 shows the ungated clock mode timings of CSI, and Table 68 describes the timing parameters (P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are used, and the CSI_HSYNC signal is ignored.

Figure 63. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge

ID	Parameter	Symbol	Min.	Max.	Units
P ₁	CSI_VSYNC to pixel clock time	tVSYNC	33.5		ns
P ₂	CSI DATA setup time	tDsu			ns
P3	CSI DATA hold time	tDh			ns
P ₄	CSI pixel clock high time	tCLKh	3.75		ns
P ₅	CSI pixel clock low time	tCLKI	3.75		ns
P ₆	CSI pixel clock frequency	fCLK		148.5	MHz

Table 68. CSI Ungated Clock Mode Timing Parameters

The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows:

- Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data.
- Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats).

The following subsections describe the CSI timing in gated and ungated clock modes.

4.10.8 MIPI PHY timing parameters

This section describes MIPI PHY electrical specifications, which are designed to be compatible with the following:

- MIPI-CSI-2 version 1.0 and PHY specification Rev. 1.0 (for MIPI sensor port x2 lanes)
- MIPI DSI Version 1.01 and PHY specification Rev. 1.0 (as well as DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes)

4.10.8.1 Electrical and Timing Information

Table 69. Electrical and Timing Information

Table 69. Electrical and Timing Information(continued)

4.10.8.2 MIPI PHY signaling levels

The signal levels are different for differential HS mode and single-ended LP mode. Figure 64 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.

Figure 64. MIPI PHY Signaling Levels

4.10.8.3 MIPI HS line driver characteristics

4.10.8.4 Possible ∆**VCMTX and** ∆**VOD Distortions of the Single-ended HS Signals**

Figure 66. Possible ∆**VCMTX and** ∆**VOD Distortions of the Single-ended HS Signals**

4.10.8.5 MIPI PHY switching characteristics

Table 70. Electrical and Timing Information

4.10.8.6 High-speed clock timing

Figure 67. DDR Clock Definition

4.10.8.7 Forward high-speed data transmission timing

The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 68:

Figure 68. Data to Clock Timing Definitions

4.10.8.8 Reverse high-speed data transmission timing

Figure 69. Reverse High-Speed Data Transmission Timing at Slave Side

4.10.8.9 Low-power receiver timing

Input Glitch Rejection of Low-Power Receivers

4.10.9 Pulse width modulator (PWM) timing parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

Figure 70 depicts the timing of the PWM, and Table 71 lists the PWM timing parameters.

Figure 70. PWM Timing

Table 71. PWM output timing parameters

4.10.10 QUAD SPI (QSPI) Timing Parameters

Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.

4.10.10.1 SDR Mode

Figure 71. QuadSPI Input/Read Timing (SDR mode with internal sampling)

Table 72. QuadSPI Input Timing (SDR mode with internal sampling)

Figure 72. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)

NOTE

• For internal sampling, the timing values assumes using sample point 0, that is $QuadSPIx_SMPR[SDRSMP] = 0$.

• For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data.

Figure 73. QuadSPI Output/Write Timing (SDR mode)

NOTE

 T_{css} and T_{csh} are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the *i.MX 6SoloX Reference Manual (IMX6ULLRM)* for more details.

4.10.10.2 DDR Mode

Figure 74. QuadSPI Input/Read Timing (DDR mode with internal sampling) Table 75. QuadSPI Input/Read Timing (DDR mode with internal sampling)

Figure 75. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)

Table 76. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)

NOTE

• For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx_SMPR[SDRSMP] $= 0$.

• For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data.

Figure 76. QuadSPI Output/Write Timing (DDR mode)

Table 77. QuadSPI Output/Write Timing (DDR mode)

NOTE

 T_{css} and T_{csh} are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the *i.MX 6SoloX Reference Manual (IMX6ULLRM)* for more details.

4.10.11 *[i.MX 7Dual Application Processor Reference Manual](http://fsls.co/doc/IMX7DRM)* (IMX7DRM)*[i.MX 7Solo Application](http://fsls.co/doc/IMX7SRM) [Processor Reference Manual](http://fsls.co/doc/IMX7SRM)* (IMX7SRM) **SAI/I2S switching specifications**

This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for noninverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and noninverted frame sync $(SAI_TCR|TFSI] = 0$, $SAI_RCR[RFSI] = 0$. If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.

Table 78. Master mode SAI timing(continued)

Figure 77. SAI timing — master modes

Table 79. Master mode SAI timing

Figure 78. SAI timing — slave modes

4.10.12 SCAN JTAG controller (SJC) timing parameters

Figure 79 depicts the SJC test clock input timing. Figure 80 depicts the SJC boundary scan timing. Figure 81 depicts the SJC test access port. Signal parameters are listed in Table 80.

Figure 79. Test clock input timing diagram

Figure 80. Boundary scan (JTAG) timing diagram

Electrical characteristics

Table 80. JTAG timing

 $\overline{1}$ T_{DC} = target frequency of SJC

² V_M = mid-point voltage

4.10.13 UART I/O configuration and timing parameters

4.10.13.1 UART RS-232 I/O configuration in different modes

The i.MX 7Solo UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0—DCE mode). Table 81 shows the UART I/O configuration based on the enabled mode.

4.10.13.2 UART RS-232 Serial mode timing

This section describes the electrical information of the UART module in the RS-232 mode.
4.10.13.2.1 UART transmitter

Figure 83 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit format. Table 82 lists the UART RS-232 Serial mode transmit timing characteristics.

¹ F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.

 $2 T_{ref~clk}$: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).

4.10.13.2.2 UART receiver

Figure 84 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 83 lists Serial mode receive timing characteristics.

Table 83. RS-232 Serial mode receive timing parameters

¹ The UART receiver can tolerate 1/(16 x $F_{baud\ rate}$) tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{\text{baud rate}})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.

4.10.14 USB HSIC timing

This section describes the electrical information of the USB HSIC port.

NOTE

HSIC is DDR signal, following timing spec is for both rising and falling edge.

4.10.14.1 Transmit timing

Figure 85. USB HSIC transmit waveform

4.10.14.2 Receive timing

Figure 86. USB HSIC receive waveform

Table 85. USB HSIC receive parameters¹

 1 The timings in the table are guaranteed when:

—AC I/O voltage is between 0.9x to 1x of the I/O supply

—DDR_SEL configuration bits of the I/O are set to (10)b

4.10.15 USB PHY parameters

This section describes the USB-OTG PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port):

- USB ENGINEERING CHANGE NOTICE
	- Title: 5V Short Circuit Withstand Requirement Change
	- Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
	- Title: Pull-up/Pull-down resistors
	- Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
	- Title: Suspend Current Limit Changes
	- Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
	- Title: USB 2.0 Phase Locked SOFs
	- Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
	- Revision 2.0, version 1.1a, July 27, 2010
- Battery Charging Specification (available from USB-IF)
	- Revision 1.2, December 7, 2010

4.10.15.1 USB_OTG*_REXT reference resistor connection

The bias generation and impedance calibration process for the USB OTG PHYs requires connection of reference resistors 200 Ω 1% precision on each of USB_OTG1_REXT and USB_OTG2_REXT pads to ground.

4.10.15.2 USB_OTG_CHD_B USB battery charger detection external pullup resistor connection

The usage and external resistor connection for the USB_OTG_CHD_B pin are described in Table 3, Table 7, and [Section 4.7.3, "USB battery charger detection driver impedance](#page-46-0)."

4.11 12-Bit A/D converter (ADC)

Table 86. Recommended operating conditions for 12-bit ADC

¹ DO=111111111111 @AIN=AVDD18 & DO=000000000000 @AIN=AVSS18 (Input full-scale voltage = AVDD18)

 2 R_{IEXT} = Output resistance of the ADC driver = Output resistance of signal generator + Series parasitic resistance between signal source and ADC input (for example, PCB and bonding wire resistance and ESD protection resistance)

Table 87. DC Electrical characteristics

Table 88. AC Electrical characteristics

¹ Normal operation current consumption includes only the current from the ADC core. It does not include static current from the power pads.

² Power-down current includes only the current from the ADC core. It does not include static current from the power pads.

 3 IOP and IPD are measurable only on the ADC core's test chips. Because AVDD10 is shared with internal logic power, IOP and IPD in the test plan only measure current consumption @ AVDD18, VREF.

5 Boot mode configuration

This section provides information on Boot mode configuration pins allocation and boot devices interfaces allocation.

5.1 Boot mode configuration pins

[Table 89](#page-112-1) provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is '0' (cleared, which is the case for an unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the "System Boot, Fusemap, and eFuse" chapter in the *i.MX 7Solo Application Processor Reference Manual* (IMX7SRM).

Pin	Direction at Reset	eFuse name	State during reset State after reset (POR_B) asserted)	(POR_B) deasserted)	Details				
BOOT MODE0	Input	N/A	Hi-Z	Hi-Z	Boot mode selection				
BOOT MODE1	Input	N/A	Hi-Z	Hi-Z	Boot mode selection				

Table 89. Fuses and associated pins used for boot

Boot mode configuration

Table 89. Fuses and associated pins used for boot(continued)

5.2 Boot device interface allocation

Table 90 lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate.

Interface	IP Instance	Allocated Pads During Boot	Comment					
QSPI	QSPI	EPDC_D0, EPDC_D1, EPDC_D2, EPDC_D3, EPDC_D4, EPDC_D5, EPDC_D6, EPDC_D7, EPDC_D8, EPDC_D9, EPDC_D10, EPDC_D11, EPDC_D12, EPDC_D13, EPDC_D14, EPDC_D15						
SPI	ECSPI-1	ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO, ECSPI1_SS0, UART1_RXD, UART1_TXD, UART2 RXD	The chip-select pin used depends on the fuse "CS select (SPI only)"					

Table 90. Interface allocation during boot

Boot mode configuration

6 Package information and contact assignments

This section includes the contact assignment information and mechanical package drawing.

6.1 12 x 12 mm package information

6.1.1 Case 1997-01, 12 x 12, 0.4 mm pitch, ball matrix

The following figure shows the top, bottom, and side views of the 12×12 mm BGA package.

Figure 87. 12 x 12 mm BGA, Case x Package Top, Bottom, and Side Views

6.1.2 12 x 12 mm supplies contact assignments and functional contact assignments

Table 91 shows supplies contact assignments for the 12 x 12 mm package.

Table 91. i.MX 7Solo 12 x 12 mm supplies contact assignments

Supply Rail	Ball(s) position(s)	Remarks
NVCC_UART	T09	Supply for UART
NC	A9, A11, B10, B11, C11, Y15, C11, AB13, AG11, AG13, AG14, AG15, AG16, AH11, AH13, AH16	NC
PVCC_ENET_CAP	G16	Secondary supply for ENET. Requires external capacitor
PVCC_EPDC_LCD_CAP	R ₂₀	Secondary supply for EPDC, LCD. Requires external capacitor
PVCC_GPIO_CAP	AB11	Secondary supply for GPIO. Requires external capacitor
PVCC_I2C_SPI_UART_CAP	W08	Secondary supply for I2C, SPI, UART. Requires external capacitor
PVCC_SAI_SD_CAP	J14	Secondary supply for SAI, SD. Requires external capacitor
USB_OTG1_VBUS	CO ₉	VBUS input for USB_OTG1
VDD_1P2_CAP	AA10	Supply for HSIC
VDD_ARM	A20,B20,C16,C17,C18,C19,C20,C21,C22,F1 9, H19, J20, K21, K23, K26, L27, L28	Supply voltage for ARM
VDD_LPSR_1P0_CAP	AG06	Secondary supply for LPSR. Requires external capacitor
VDD_LPSR_IN	AG05	Supply to LPSR
VDD_MIPI_1P0	J16	Supply for MIPI
VDD_SNVS_1P8_CAP	AG07	Secondary supply for SNVS. Requires external capacitor
VDD_SNVS_IN	Y13	Supply for SNVS
VDD_SOC	H10, J09, K03, K06, K08, L01, L02, L11, L18, N13, N16, P03, P06, P23, P26, R26, T13, T16, V11, V18 ,R03,R06,R23	Supply for SOC
VDD_TEMPSENSOR_1P8	AH05	Supply for temp sensor
VDD_USB_H_1P2	C12, G13	Supply input for the USB HSIC interface
VDD_USB_OTG1_1P0_CAP	E09	Secondary supply for OTG1. Requires external capacitor
VDD_USB_OTG1_3P3_IN	D ₀₉	Secondary supply for OTG1. Requires external capacitor
VDD_XTAL_1P8	AH02	
VDDA_1P0_CAP	AH07	Secondary supply for 1.0 V. Requires external capacitor
VDDA_1P8_IN	AF04, AG03, AG04	Supply for 1.8 V
VDDA_ADC1_1P8	AH04	Supply for ADC

Table 91. i.MX 7Solo 12 x 12 mm supplies contact assignments(continued)

Table 91. i.MX 7Solo 12 x 12 mm supplies contact assignments(continued)

Table 92 shows an alpha-sorted list of functional contact assignments for the 12 x 12 mm package.

Table 92. i.MX 7Solo 12 x 12 mm functional contact assignments

Table 92. i.MX 7Solo 12 x 12 mm functional contact assignments(continued)

Table 92. i.MX 7Solo 12 x 12 mm functional contact assignments(continued)

Ball	Ball Name	Power Group	Ball type ¹	Default Mode ¹	Default Function ¹	PD/PU
G ₂₇	LCD_DATA14	NVCC_LCD	GPIO	ALT5	GPIO3_IO[19]	
B28	LCD_DATA15	NVCC_LCD	GPIO	ALT5	GPIO3_IO[20]	
C ₂₇	LCD_DATA16	NVCC_LCD	GPIO	ALT5	GPIO3_IO[21]	
D ₂₆	LCD_DATA17	NVCC_LCD	GPIO	ALT5	GPIO3_IO[22]	
D ₂₇	LCD_DATA18	NVCC_LCD	GPIO	ALT5	GPIO3_IO[23]	
D ₂₈	LCD_DATA19	NVCC_LCD	GPIO	ALT5	GPIO3_IO[24]	
G ₂₆	LCD_DATA20	NVCC_LCD	GPIO	ALT5	GPIO3_IO[25]	
H ₂₆	LCD_DATA21	NVCC_LCD	GPIO	ALT5	GPIO3_IO[26]	
B27	LCD_DATA22	NVCC_LCD	GPIO3_IO[27]			
D ₂₅	LCD_DATA23	NVCC_LCD	GPIO	ALT5	GPIO3_IO[28]	
G ₂₈	LCD_ENABLE	NVCC_LCD	GPIO	ALT5	GPIO3_IO[1]	
F ₂₅	LCD_HSYNC	NVCC_LCD	GPIO	ALT5	GPIO3_IO[2]	
E20	LCD_RESET	NVCC_LCD	GPIO	ALT5	GPIO3_IO[4]	
F ₂₄	LCD_VSYNC	NVCC_LCD	GPIO	ALT5	GPIO3_IO[3]	
B16	MIPI_CSI_CLK_N	MIPI_VDDA_1P8			MIPI_CSI_CLK_N	
A16	MIPI_CSI_CLK_P	MIPI_VDDA_1P8			MIPI_CSI_CLK_P	
B18	MIPI_CSI_D0_N	MIPI_VDDA_1P8			MIPI_CSI_D0_N	
A18	MIPI_CSI_D0_P	MIPI_VDDA_1P8			MIPI_CSI_D0_P	
B15	MIPI_CSI_D1_N	MIPI_VDDA_1P8			MIPI_CSI_D1_N	
B14	MIPI_CSI_D1_P	MIPI_VDDA_1P8			MIPI_CSI_D1_P	
B24	MIPI_DSI_CLK_N	MIPI_VDDA_1P8			MIPI_DSI_CLK_N	
A24	MIPI_DSI_CLK_P	MIPI_VDDA_1P8			MIPI_DSI_CLK_P	
B25	MIPI_DSI_D0_N	MIPI_VDDA_1P8			MIPI_DSI_D0_N	
A ₂₅	MIPI_DSI_D0_P	MIPI_VDDA_1P8			MIPI_DSI_D0_P	
A22	MIPI_DSI_D1_N	MIPI_VDDA_1P8			MIPI_DSI_D1_N	
B22	MIPI_DSI_D1_P	MIPI_VDDA_1P8			MIPI_DSI_D1_P	
AD ₁₃	ONOFF	VDD_SNVS_IN			ONOFF	
AG13	NC	NC			NC	
AH13	NC	NC			NC	
AG11	NC	NC			NC	
AH11	NC	NC			NC	
AG16	NC	NC			NC	

Table 92. i.MX 7Solo 12 x 12 mm functional contact assignments(continued)

Table 92. i.MX 7Solo 12 x 12 mm functional contact assignments(continued)

Table 92. i.MX 7Solo 12 x 12 mm functional contact assignments(continued)

¹ The state immediately after RESET and before ROM firmware or software has executed.

6.1.3 i.MX 7Solo 12 x 12 mm 0.4 mm Pitch Ball Map

The following table shows the i.MX 7Solo 12 x 12 mm 0.4 mm pitch ball map.

Table 93. i.MX 7Solo 12 x 12 mm 0.4 mm pitch ball map

Table 93. i.MX 7Solo 12 x 12 mm 0.4 mm pitch ball map(continued)

Table 93. i.MX 7Solo 12 x 12 mm 0.4 mm pitch ball map(continued)

Package information and contact assignments

	1	$\boldsymbol{2}$	$\ensuremath{\mathsf{3}}$	$\overline{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
W		RTS UART3	vss			vss		PVCC_I2C_SPI_UART_CAP													NVCC_DRAM		NVCC_DRAM			NVCC_DRAM	DRAM_DATA16		W
Υ	BOOT_MODE0	BOOT_MODE1	POR_B	GPIO1_IO05	GPIO1_IO04	GPIO1_IO03	GPIO1_IO02		NVCC_GPIO1		NVCC_GPIO2		VDD_SNVS_IN	VDDA_PHY_1P8	$\frac{0}{2}$	vss		DRAM_ZQPAD		NVCC_DRAM		DRAM_SDCKEO	DRAM_SDQS3_P	DRAM_SDQS3_N	DRAM_DQM3	DRAM_DATA18	DRAM_DATA17	DRAM_DATA19	Y
A A			TEST_MODE	vss		vss				VDD_1P2_CAP									NVCC_DRAM				vss		vss	DRAM_DATA20			A A
A B	JTAG_MOD	JTAG_TRST_B	GPIO1_IO08	GPIO ₁ _IO09	GPIO1_IO10	GPIO1_IO11	ADC1_IN0		SNVS_TAMPER09		$-CAP$ PVCC_GPIO		$\frac{0}{2}$			DRAM_DATA14		DRAM_DATA09		DRAM_SDQS1_P		DRAM_SDBA1	DRAM_SDCKE1	DRAM_ADDR04	DRAM_ADDR03	DRAM_DATA21	DRAM_DATA22	DRAM_DATA23	A B
A C		JTAG_TDI	GPIO ₁ _IO15	GPIO1_IO14	GPIO _{1_IO13}	GPIO1_IO12	ADC1_IN1	vss	VVS_TAMPER02 ົທ	vss	SNVS_TAMPER01	vss	DDD_1P0_CAP >	vss	vss	DRAM_DATA11	vss	DRAM_DATA08	NVCC_DRAM	DRAM_SDQS1_N	vss	DRAM_ADDR09	DRAM_CS1_B	DRAM_ADDR00	DRAM_ADDR01	DRAM_ADDR02	DRAM_SDQS2_P		$_{\rm c}^{\rm A}$
A D	JTAG_TCK	JTAG_TMS	vss		vss	vss	ADC1_IN2		ADC1_IN3		RECQ $X = 5T$ PMIC		ONOFF			DRAM_DATA10		DRAM_DATA12		DRAM_DQM1		DRAM_ADDR08	DRAM_ADDR10	vss		vss	\mathbf{z} DRAM SDQS2	DRAM_DQM2	A D
	$\mathbf{1}$	$\boldsymbol{2}$	$\ensuremath{\mathsf{3}}$	4	5	6	7	$\bf8$	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	

Table 93. i.MX 7Solo 12 x 12 mm 0.4 mm pitch ball map(continued)

Table 93. i.MX 7Solo 12 x 12 mm 0.4 mm pitch ball map(continued)

i.MX 7Solo Family of Applications Processors Datasheet, Rev. 4**,** 04/2017

Package information and contact assignments

6.2 19 x 19 mm package information

6.2.1 Case "Y", 19 x 19 mm, 0.75 mm pitch, ball matrix

[Figure 88](#page-133-0) shows the top, bottom, and side views of the 19×19 mm BGA package.

Figure 88. 19 x 19 mm BGA, Case x Package Top, Bottom, and Side Views

6.2.2 19 x 19 mm supplies contact assignments and functional contact assignments

Table 94 shows supplies contact assignments for the 19 x 19 mm package.

Table 94. i.MX 7Solo 19 x 19 mm supplies contact assignments

Table 94. i.MX 7Solo 19 x 19 mm supplies contact assignments (continued)

Table 95 shows an alpha-sorted list of functional contact assignments for the 19 x 19 mm package.

Table 95. i.MX 7Solo 19 x 19 mm functional contact assignments

Table 95. i.MX 7Solo 19 x 19 mm functional contact assignments (continued)

Table 95. i.MX 7Solo 19 x 19 mm functional contact assignments (continued)

Table 95. i.MX 7Solo 19 x 19 mm functional contact assignments (continued)

Table 95. i.MX 7Solo 19 x 19 mm functional contact assignments (continued)

Table 95. i.MX 7Solo 19 x 19 mm functional contact assignments (continued)

i.MX 7Solo Family of Applications Processors Datasheet, Rev. 4**,** 04/2017

Table 95. i.MX 7Solo 19 x 19 mm functional contact assignments (continued)

i.MX 7Solo Family of Applications Processors Datasheet, Rev. 4**,** 04/2017

¹ The state immediately after RESET and before ROM firmware or software has executed.

6.2.3 Case "Y", i.MX 7Solo 19 × **19 mm 0.75 mm pitch ball map**

The following table shows the i.MX 7Solo 19×19 mm, 0.75 mm pitch ball map.

Table 96. i.MX 7Solo 19 × **19 mm, 0.75 mm pitch ball map**

Table 96. i.MX 7Solo 19 × **19 mm, 0.75 mm pitch ball map (continued)**

i.MX 7Solo Family of Applications Processors Datasheet, Rev. 4**,** 04/2017

Table 96. i.MX 7Solo 19 × **19 mm, 0.75 mm pitch ball map (continued)**

Package information and contact assignments

	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Υ	CCM_CLK1_N	CCM_CLK1_P	SNVS_TAMPER09	SNVS_TAMPER07	SNVS_TAMPER05	vss	SNVS_TAMPER03	SNVS_TAMPER01	VDDA_PHY_1P8	$\frac{0}{2}$	$\frac{0}{2}$	\gtrsim	vss	vss	vss	vss	vss	vss	vss	NVCC_DRAM_CKE	NVCC_DRAM	DRAM_ADDR07	DRAM_ADDR05	DRAM_SDQS2_P	DRAM_SDQS2_N	Υ
AA	vss	vss	SNVS_TAMPER08	SNVS_TAMPER06	SNVS_TAMPER04	vss	SNVS_TAMPER00	vss	VDDD_1P0_CAP	$\frac{0}{2}$	$\frac{0}{2}$	$\frac{0}{2}$	vss	DRAM_ODT1	vss	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	DRAM_CS1_B	vss	DRAM_DQM2	DRAM_DATA16	AA
AB	ADC2_IN2	ADC2_IN3	VDDA_ADC2_1P8	vss	vss	SNVS_TAMPER02	vss	SNVS_PMIC_ON_REQ	vss	$\frac{0}{2}$	$\frac{0}{2}$	vss	DRAM_ZQPAD	DRAM_SDWE_B	DRAM_RAS_B	DRAM_ADDR01	DRAM_SDCKE0	DRAM_ADDR14	DRAM_ADDR00	DRAM_ADDR15	DRAM_ADDR04	DRAM_SDCKE1	DRAM_CSO_B	DRAM_DATA22	DRAM_DATA21	AB
AC	ADC2_IN0	ADC2_IN1	VDDA_ADC1_1P8	VDD_TEMPSENSOR_1P8	VDD_LPSR_1P0_CAP	vss	PMIC_STBY_REQ	ONOFF	vss	$\frac{0}{2}$	$\frac{0}{2}$	vss	DRAM_VREF	DRAM_CAS_B	vss	DRAM_ODTO	vss	DRAM_ADDR02	vss	DRAM_ADDR03	vss	DRAM_RESET	vss	DRAM_DATA23	DRAM_DATA20	AC
AD	ADC1_IN0	vss	ADC1_IN1	SENSOR_RESERVE TEMP	vss	RTC_XTALO	vss	W_SNNS_NOV	vss	$\frac{0}{2}$	$\frac{0}{2}$	vss	DRAM_DATA14	DRAM_DATA13	DRAM_SDQS1_P	DRAM_DATA11	DRAM_DQM1	DRAM_DATA06	DRAM_DATA05	DRAM_DQM0	NAM_SDQSO_N ⊶	DRAM_DATA00	DRAM_DATA01	DRAM_SDCLKO_P	DRAM_SDCLKO_N	AD
AE	vss	ADC1_IN2	ADC1_IN3	TEMPSENSOR_REXT	vss	RTC_XTALI	vss	SNVS_1P8_CAP JOD	vss	$\frac{0}{2}$	$\frac{0}{2}$	vss	DRAM_DATA15	DRAM_DATA08	DRAM_SDQS1_N	DRAM_DATA12	DRAM_DATA10	DRAM_DATA09	DRAM_DATA07	DRAM_DATA02	DRAM_SDQSO_P	DRAM_DATA04	DRAM_DATA03	vss	vss	AE
	1	$\overline{\mathbf{c}}$	3	$\overline{\mathbf{4}}$	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	

Table 96. i.MX 7Solo 19 × **19 mm, 0.75 mm pitch ball map (continued)**

7 Revision history

Table 97 provides a revision history for this data sheet.

Table 97. Revision history

How to Reach Us:

Home Page: [nxp.com](http://www.nxp.com)

Web Support: [nxp.com/support](http://www.nxp.com/support)

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: [nxp.com/SalesTermsandConditions](http://www.nxp.com/SalesTermsandConditions)

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. Neon is a trademark of ARM Limited or its subsidiaries in the EU and/or elsewhere. All rights reserved.

© 2016–2017 NXP B.V.

