
www.vishay.com

Vishay Siliconix

EF Series Power MOSFET With Fast Body Diode

PRODUCT SUMMARY					
V _{DS} (V) at T _J max.	650				
R _{DS(on)} typ. (Ω) at 25 °C	$V_{GS} = 10 V$	0.075			
Q _g max. (nC)	63				
Q _{gs} (nC)	17				
Q _{gd} (nC)	9				
Configuration	Single				

FEATURES

- 4th generation E series technology
- Low figure of merit (FOM) Ron x Qg
- Low effective capacitance (Co(er))
- · Reduced switching and conduction losses
- Avalanche energy rated (UIS)
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
- Welding
- Induction heating
- Motor drives
- Battery chargers
- Solar (PV inverters)

ORDERING INFORMATION	
Package	PowerPAK 10 x 12
Lead (Pb)-free and halogen-free	SiHK085N60EF-T1GE3

ABSOLUTE MAXIMUM RATINGS ($T_c = 25 \degree C$, unless otherwise noted)							
PARAMETER			SYMBOL	LIMIT	UNIT		
Drain-source voltage			V _{DS}	600	v		
Gate-source voltage			V _{GS}	± 30	v		
Continuous drain current (T_J = 150 °C)	V _{GS} at 10 V	T _C = 25 °C T _C = 100 °C	I.	30			
	VGS AL TO V	T _C = 100 °C	I _D	19	А		
Pulsed drain current ^a			I _{DM}	75			
Linear derating factor				1.47	W/°C		
Single pulse avalanche energy ^b			E _{AS}	173	mJ		
Maximum power dissipation			PD	184	W		
Operating junction and storage temperature ra	inge		T _J , T _{stg}	-55 to +150	°C		
Drain-source voltage slope		T _J = 125 °C		100	V/ns		
Reverse diode dv/dt ^d			dv/dt	50	v/ns		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature

b. V_{DD} = 120 V, starting T_J = 25 °C, L = 28.2 mH, R_q = 25 Ω , I_{AS} = 3.5 A

c. 1.6 mm from case

d. $I_{SD} \leq I_D$, di/dt = 100 A/µs, starting T_J = 25 °C

Vishay Siliconix

	THERMAL RESISTANCE RAT	INGS							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP. MAX.			UNIT			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-ambient	R _{thJA}	- 50			80 AM			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-case (drain)	R _{thJC}	- 0.68					C/W	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
	SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$,	unless otherwi	se noted)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
	Static								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 2	250 µA	600	-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C,	I _D = 1 mA	-	0.56	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source threshold voltage (N)	V _{GS(th)}	V _{DS} =	$V_{GS}, I_D = 2$	250 µA	3.0	-	5.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1				-	-	± 100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gale-Source leakage	IGSS	N N				-	± 1	μA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zara acta valtaga drain avreat		V _{DS} =	480 V, V _G	_S = 0 V	-	-	1	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero gate voltage drain current	DSS	V _{DS} = 480 V	, V _{GS} = 0 V	∕, T _J = 125 °C	-	-	2	mA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	١	_D = 17 A	-	0.075	0.085	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward transconductance ^a		V _{DS} = 10 V, I _D = 17 A		-	16	-	S	
$ \begin{array}{ c c c c c c } \hline \text{Output capacitance} & C_{oss} & V_{DS}^{c} = 100 \text{ V}, \\ \hline \text{Reverse transfer capacitance} & C_{rss} & & & & & & & & & & & & & & & & & & $	Dynamic								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input capacitance	C _{iss}		$V_{cc} = 0.V$		-	2733	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output capacitance	C _{oss}	$V_{DS} = 100 V,$		-	100	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse transfer capacitance				-	3	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(er)}	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		-	107	-	pF	
$ \begin{array}{c c c c c c c c } \hline Gate-source charge & Q_{gs} & V_{GS} = 10 \ V & I_D = 17 \ A, \ V_{DS} = 480 \ V & - & 17 & - & nC \\ \hline Gate-drain charge & Q_{gd} & & & & & & & & & & & & & & & & & & &$		C _{o(tr)}			-	645	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total gate charge	Qg				-	42	63	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source charge	Q _{gs}	V _{GS} = 10 V	V _{GS} = 10 V I _D = 17 A, V		-	17	-	nC
Rise time t_r $V_{DD} = 480 \text{ V}, \text{ I}_D = 17 \text{ A}, V_{GS} = 10 \text{ V}, \text{ R}_g = 9.1 \Omega$ $ 75$ 113 ns Fall time t_{f} t_{f} $ 53$ 80 $ 53$ 80 Gate input resistance R_g $f = 1 \text{ MHz}$ 0.3 0.7 1.4 Ω Drain-Source Body Diode CharacteristicsContinuous source-drain diode current I_S $MOSFET$ symbol showing the integral reverse $p - n$ junction diode $ 30$ A Pulsed diode forward current I_{SM} $T_J = 25 \degree C$, $I_S = 17 \text{ A}$, $V_{GS} = 0 \text{ V}$ $ 1.2$ V Reverse recovery time t_{rr} $T_J = 25\degree C$, $I_F = I_S = 17 \text{ A}$, di/dt = 100 A/µs, $V_R = 400 \text{ V}$ $ 0.6$ 1.2 μ	Gate-drain charge	Q _{gd}				-	9	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on delay time	t _{d(on)}		· · · · · · · · · · · · · · · · · · ·		-	32	64	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time				-	75	113	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-off delay time	t _{d(off)}			-	48	96		
Train-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse p - n junction diode30APulsed diode forward currentIsmIsm $T_J = 25 \ ^{\circ}C$, Is = 17 A, VGS = 0 V75-1.2VDiode forward voltageVsD $T_J = 25 \ ^{\circ}C$, Is = 17 A, VGS = 0 V1.2VVReverse recovery time t_{rr} $T_J = 25 \ ^{\circ}C$, IF = IS = 17 A, di/dt = 100 A/µs, VR = 400 V-0.61.2µC	Fall time	t _f			-	53	80		
Continuous source-drain diode currentIsMOSFET symbol showing the integral reverse p - n junction diode30APulsed diode forward currentIsmIsm $T_J = 25 ^{\circ}C$, Is = 17 A, VGS = 0 V75Diode forward voltageVsD $T_J = 25 ^{\circ}C$, Is = 17 A, VGS = 0 V1.2VReverse recovery time t_{rr} $T_J = 25 ^{\circ}C$, IF = IS = 17 A, di/dt = 100 A/µs, VR = 400 V-0.61.2µC	Gate input resistance	R _g	f = 1 MHz		0.3	0.7	1.4	Ω	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Body Diode Characterist	ics							
Pulsed diode forward current I_{SM} $rest = 100000000000000000000000000000000000$	Continuous source-drain diode current	١ _S	showing the integral reverse		-	-	30		
Reverse recovery time t_{rr} $T_J = 25 \ ^\circ C$, $I_F = I_S = 17 \ A$, di/dt = 100 A/µs, $V_R = 400 \ V$ -109218ns $I_J = 25 \ ^\circ C$, $I_F = I_S = 17 \ A$, di/dt = 100 A/µs, $V_R = 400 \ V$ $I_R = 100 \ A_R = 100 \ A$	Pulsed diode forward current	I _{SM}			-	-	75	~	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Diode forward voltage	V _{SD}	T _J = 25 °C, I _S = 17 A, V _{GS} = 0 V		-	-	1.2	V	
Reverse recovery charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 17 \ A$, di/dt = 100 A/µs, $V_R = 400 \ V$ - 0.6 1.2 µC	Reverse recovery time		T _J = 25 °C, I _F = I _S = 17 A,		-	109	218	ns	
	· · ·				-	0.6	1.2	μC	
	Reverse recovery current	I _{RRM}			-	11	-	A	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 V to 400 V

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 V to 400 V

c. When mounted on 1" x 1" FR4 board

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

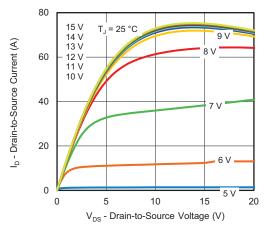


Fig. 1 - Typical Output Characteristics

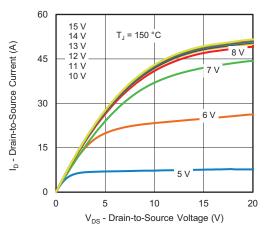


Fig. 2 - Typical Output Characteristics

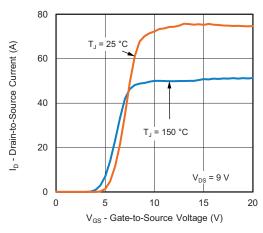


Fig. 3 - Typical Transfer Characteristics

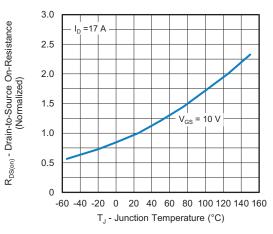


Fig. 4 - Normalized On-Resistance vs. Temperature

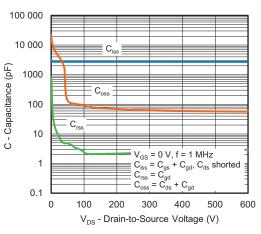
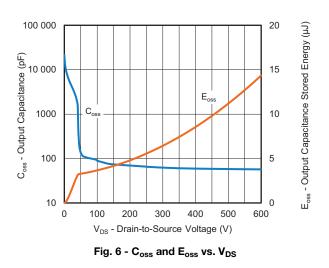



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

3 questions contact: hym@vis

Document Number: 92447

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

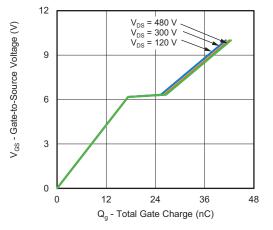


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

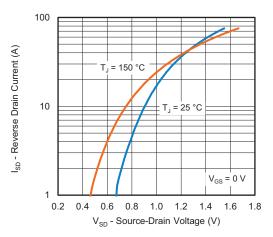


Fig. 8 - Typical Source-Drain Diode Forward Voltage

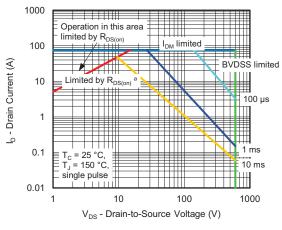


Fig. 9 - Maximum Safe Operating Area

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

S22-0907-Rev. A, 14-Nov-2022

4

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

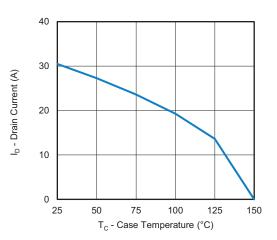


Fig. 10 - Maximum Drain Current vs. Case Temperature

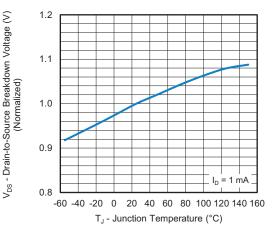
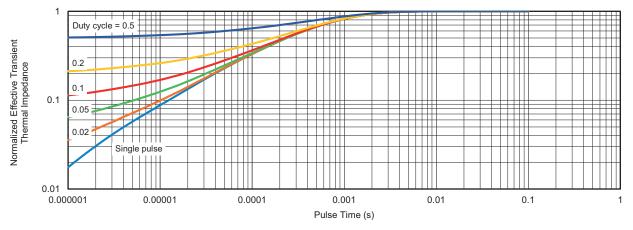



Fig. 11 - Temperature vs. Drain-to-Source Voltage

Vishay Siliconix

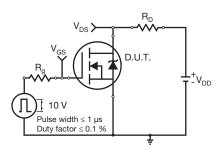


Fig. 13 - Switching Time Test Circuit

Fig. 14 - Switching Time Waveforms

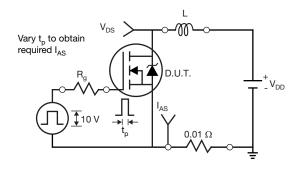


Fig. 15 - Unclamped Inductive Test Circuit

S22-0907-Rev. A, 14-Nov-2022

5

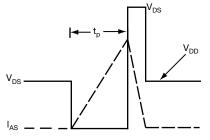


Fig. 16 - Unclamped Inductive Waveforms

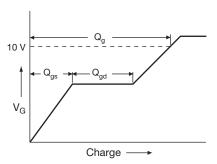
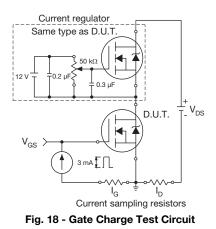
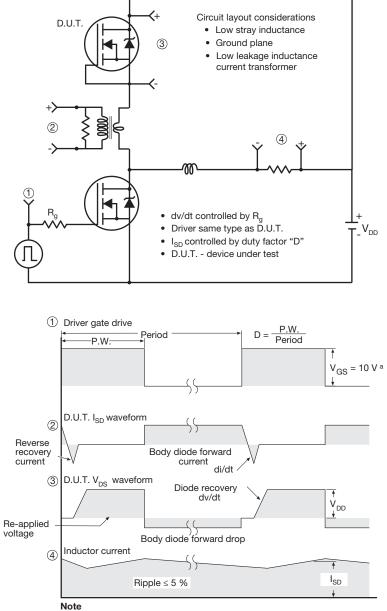



Fig. 17 - Basic Gate Charge Waveform

Document Number: 92447

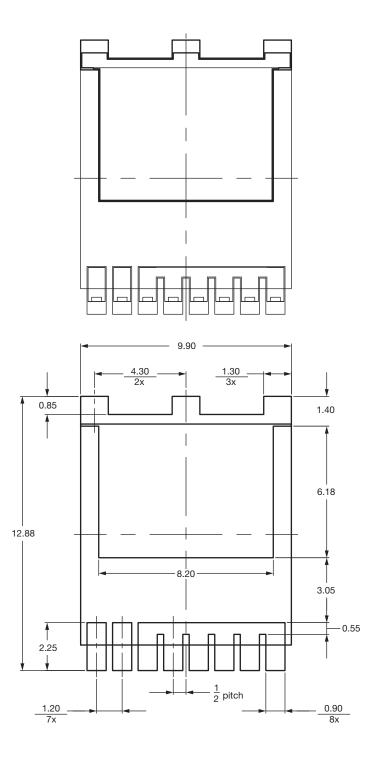

For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Peak Diode Recovery dv/dt Test Circuit

a. $V_{GS} = 5$ V for logic level devices

Fig. 19 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92447.

PAD Pattern

Vishay Siliconix

Recommended Land Pattern PowerPAK[®] 10 x 12 (TOLL) (High Voltage)

Note

• Dimensions in mm

ECN: S22-1061-Rev. C, 26-Dec-2022 DWG: 3013

Revision: 26-Dec-2022

1 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 92489

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.