

Three-terminal adjustable negative voltage regulators

Features

- Output voltage adjustable down to V_{REF}
- 1.5 A guaranteed output current
- 0.3%/V typical load regulation
- 0.01%/V typical line regulation
- Current limit constant with temperature
- Ripple rejection: 77 dB
- Standard 3-lead transistor packages
- Excellent thermal regulation: 0.002%/V
- 50 ppm/°C temperature coefficient

Description

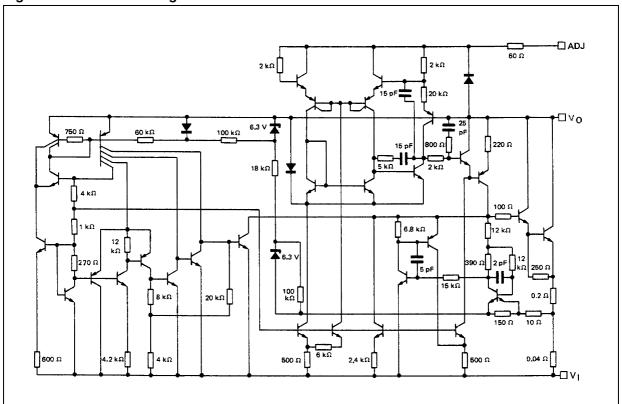
The LM137 series are adjustable 3-terminal negative voltage regulators capable of supplying in excess -1.5 A over a -1.2 to -37 V output voltage range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, LM137 regulators are supplied in standard transistor packages which are easily mounted and handled. In addition to higher performance than fixed regulators, the LM137 series offer full overload protection available only in integrated circuits. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Table 1. Device summary

Part numbers	Order codes	Packages	Temperature range
LM137	LM137K	TO-3	- 55 °C to 150 °C
LM337	LM337K	TO-3	0 °C to 125 °C
LM337	LM337SP	TO-220	0 °C to 125 °C

October 2011 Doc ID 2167 Rev 4 1/18

Contents LM137, LM337

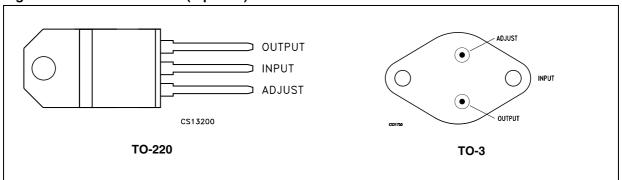

Contents

1	Diagram	3
2	Pin configuration	4
3	Maximum ratings	5
4	Electrical characteristics	6
5	Typical characteristics	8
6	Thermal regulation 1	0
7	Typical application 1	1
8	Package mechanical data 1	l 4
9	Revision history	17

LM137, LM337 Diagram

1 Diagram

Figure 1. Schematic diagram



Pin configuration LM137, LM337

2 Pin configuration

Figure 2. Pin connections (top view)

4/18

LM137, LM337 Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _I - V _O	Input output voltage differential	40	V	
Io	Output current	1.5	Α	
P _D	Power dissipation	Internally limited		
T _{STG}	Storage temperature range	- 65 to 150	°C	
Т	Operating junction temperature range	LM137	- 55 to 150	°C
T _{OP}	Operating junction temperature range LM337		0 to 125	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-3	Unit
R _{thJC}	Thermal resistance junction-case max.	3	4	°C/W
R _{thJA}	Thermal resistance junction-ambient max.	70	35	°C/W

Electrical characteristics LM137, LM337

4 Electrical characteristics

 $\rm T_J$ = -55 to 150 °C, $\rm V_I$ - $\rm V_O$ = 5 V, $\rm I_O$ = 0.5 A unless otherwise specified.

Table 4. Electrical characteristics of LM137

Symbol	Parameter	Test condi	Min.	Тур.	Max.	Unit	
		$T_a = 25^{\circ}C$		-1.225	-1.25	-1.275	
V _{REF}	Reference voltage	$ V_I - V_O = 3 \text{ to } 40 \text{ V}, T_J = T_{min} \text{ to } T_{max}$ $ I_O = 10 \text{mA to } I_{O(max)} \text{ P} \leq P_{max}$		-1.2	-1.25	-1.3	V
K _{VI}	Line regulation ⁽¹⁾	T _a = 25°C	I _O = 0.1 A		0.01	0.02	%/V
KVI	Line regulation V	$ V_1 - V_0 = 3 \text{ to } 40 \text{ V}$	I _O = 20 mA		0.01	0.02	/o/ v
K _{VO}	Load regulation ⁽¹⁾	T _a = 25°C	$ V_O \le 5 V$		15	25	mV
IVVO	Load regulation **	$ I_O = 10$ mA to $ I_{O(max)} $	$ V_O \ge 5 V$		0.3	0.5	%
	Thermal regulation	$T_a = 25$ °C, pulse 10 ms			0.002	0.02	%/W
I _{ADJ}	Adjustment pin current				65	100	μΑ
Δl _{ADJ}	Adjustment pin current change	$T_a = 25^{\circ}C$, $II_OI = 10$ mA to $II_{O(max)}I$ $IV_I - V_OI = 3$ to 40 V			2	5	μΑ
K _{VI}	Line regulation (1)	$ V_1 - V_0 = 3 \text{ to } 40 \text{ V}$			0.02	0.05	%/V
V	Load regulation (1)	= 10m	$ V_0 \le 5 \text{ V}$		20	50	mV
K _{VO}	Load regulation (*)	$II_OI = 10mA \text{ to } II_{O(max)}I$	$ V_O \ge 5 V$		0.3	1	%
	Minimum In and assument	$ V_I - V_O \le 40 \text{ V}$			2.5	5	Л
II _{O(min)} I	Minimum load current	V _I - V _O ≤ 10 V			1.2	3	mA
	Oh - d -iit - ddt	$ V_I - V_O \le 15 \text{ V}$		1.5	2.2		Δ.
los	Short circuit output current	IV _I - V _O I = 40 V, T _J =25°C		0.24	0.4		Α
V _{NO}	RMS output noise (% of V _O)	$T_a = 25^{\circ}\text{C}$, $f = 10 \text{ Hz to}$		0.003		%	
	D. 1	V _O = -10 V, f = 120 Hz			60		
R _{VF}	Ripple rejection ratio	C _{ADJ} = 10 μF		66	77		dB
K _{VT}	Temperature stability				0.6		%
K _{VH}	Long term stability	T _a = 125°C, 1000 H		0.3	1	%	

Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

 $T_J = 0$ to 150 °C unless otherwise specified.

Table 5. Electrical characteristics of LM337

Symbol	Parameter	Test condi	Min.	Тур.	Max.	Unit	
		T _a = 25°C		-1.213	-1.25	-1.287	
V _{REF}	Reference voltage	$ V_I - V_O = 3 \text{ to } 40 \text{ V}, T_J = T_{min} \text{ to } T_{max}$ $ I_O = 10 \text{mA to } I_{O(max)} , P \le P_{max}$		-1.2	-1.25	-1.3	V
K	Line regulation (1)	T _a = 25°C	I _O = 0.1 A		0.01	0.04	%/V
K _{VI}	/ Line regulation	$ V_1 - V_0 = 3 \text{ to } 40 \text{ V}$	I _O = 20 mA		0.01	0.04	/0/ V
K.	Load regulation (1)	T _a = 25°C	$ V_O \le 5 V$		15	50	mV
K _{VO}	Load regulation V	$ I_O = 10$ mA to $ I_{O(max)} $	$ V_O \ge 5 V$		0.3	1	%
	Thermal regulation	T _a = 25°C, pulse 10 ms			0.003	0.04	%/W
I _{ADJ}	Adjustment pin current				65	100	μΑ
Δl _{ADJ}	Adjustment pin current change	$T_a = 25^{\circ}C$, $II_OI = 10 \text{ mA}$ $IV_I - V_OI = 3 \text{ to } 40 \text{ V}$		2	5	μΑ	
K _{VI}	Line regulation (1)	$ V_1 - V_0 = 3 \text{ to } 40 \text{ V}$			0.02	0.07	%/V
V	Load regulation ⁽¹⁾	H	$ V_O \le 5 V$		20	70	mV
K _{VO}	Load regulation (*)	$ I_O = 10$ mA to $ I_{O(max)} $	$ V_O \ge 5 V$		0.3	1.5	%
	Minimum load aurrent	$ V_I - V_O \le 40 \text{ V}$			2.5	10	m 1
II _{O(min)} I	Minimum load current				1.5	6	mA
	Chart singuit autout august	$ V_I - V_O \le 15 \text{ V}$		1.5	2.2		۸
los	Short circuit output current	$ V_I - V_O = 40 \text{ V}, T_J = 2.5^{\circ}\text{C}$	0.15	0.4		Α	
V _{NO}	RMS output noise (% of V _O)	$T_a = 25^{\circ}\text{C}$, f = 10 Hz to		0.003		%	
Б	Distriction votice	V _O = -10 V, f = 120 Hz			60		5
R _{VF}	Ripple rejection ratio	C _{ADJ} = 10 μF		66	77		dB
K _{VT}	Temperature stability				0.6		%
K _{VH}	Long term stability	T _a = 125°C, 1000 H			0.3	1	%

Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

5 Typical characteristics

Figure 3. Load regulation

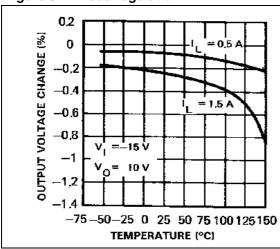


Figure 4. Current limit

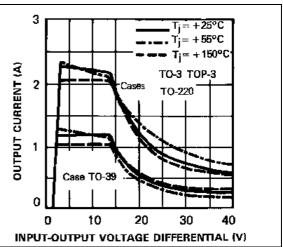


Figure 5. Adjustment current

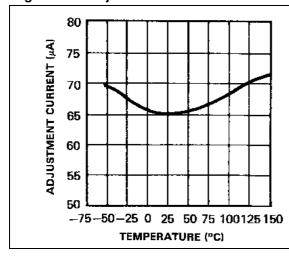


Figure 6. Dropout voltage

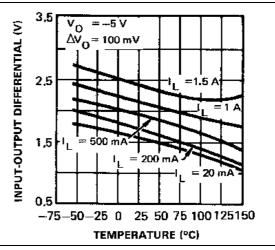
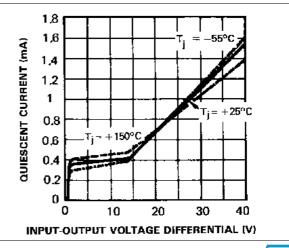



Figure 7. Temperature stability

Figure 8. Minimum operating current

100 k

Figure 9. Ripple rejection vs. output voltage Figure 10. Ripple rejection vs. frequency

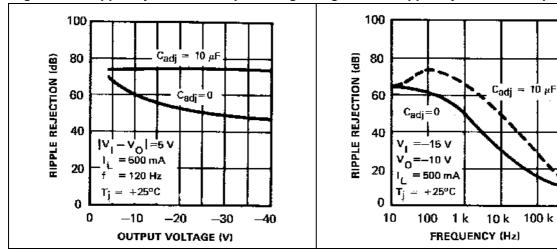


Figure 11. Ripple rejection vs. output current Figure 12. **Output impedance**

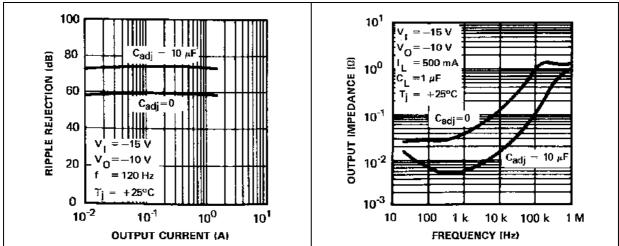


Figure 13. Line transient response

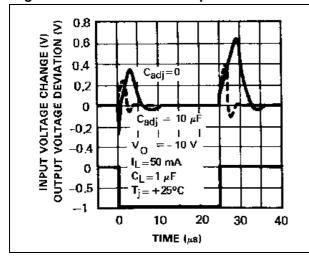
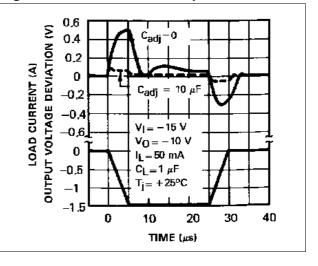



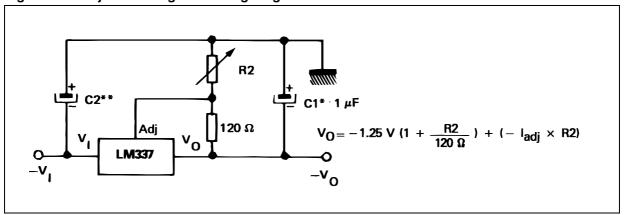
Figure 14. Load transient response

Thermal regulation LM137, LM337

6 Thermal regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large.

Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $V_{\rm O}$, per watt, within the first 10ms after a step of power, is applied.


The LM137 specification is 0.02%/W max. In *Figure 1*, a typical LM337's output drifts only 3 mV for 0.03% of $V_O = -10$ V) when a 10 W pulse is applied for 10 ms. This performance is thus well inside the specification limit of 0.02%/W x 10 W = 0.2% max. When the 10 W pulse is ended the thermal regulation again shows a 3 mV step as the LM137 chip cools off. Note that the load regulation error of about 8 mV (0.08%) is additional to the thermal regulation error.

In *Figure 2*, when the 10 W pulse is applied for 100 ms, the output drifts only slightly beyond the drift in the first 10 ms and the thermal error stays well within 0.1% (10 mV).

LM137, LM337 Typical application

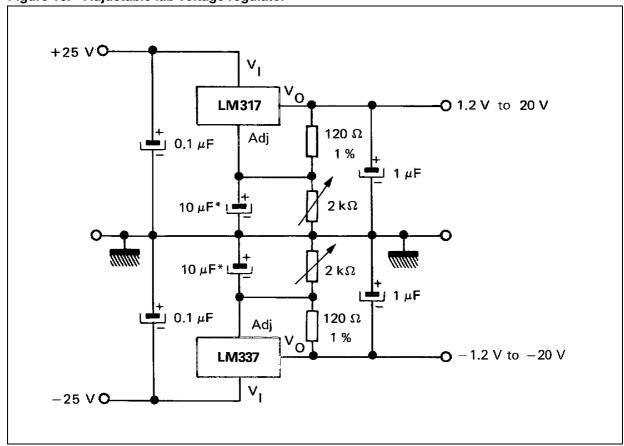

7 Typical application

Figure 15. Adjustable negative voltage regulator

^{*} C1 = 1 μ F solid tantalum or 10 μ F aluminium electrolytic required for stability.

Figure 16. Adjustable lab voltage regulator

 $^{^{\}star}$ The 10 μF capacitors are optimal to improve ripple rejection.

 $^{^{**}}$ C2 = 1 μ F solid tantalum is required only if regulator is more than 10 cm from power supply filter capacitors

Typical application LM137, LM337

Figure 17. Current regulator

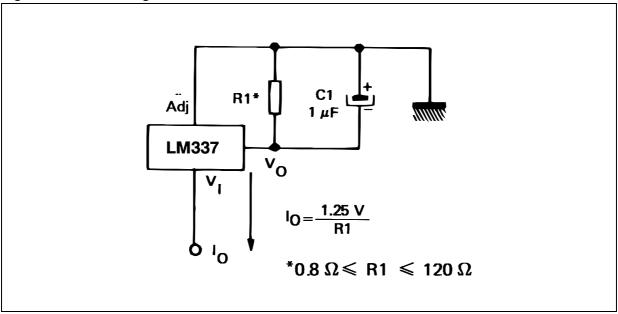
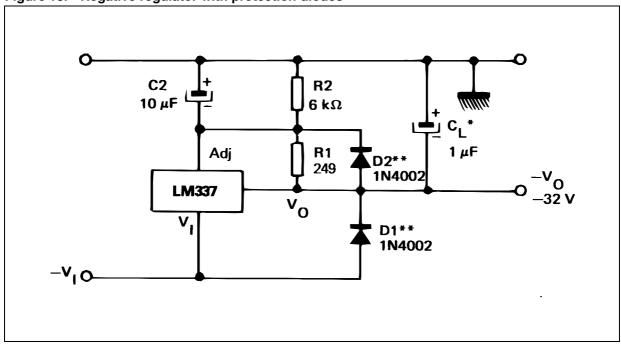
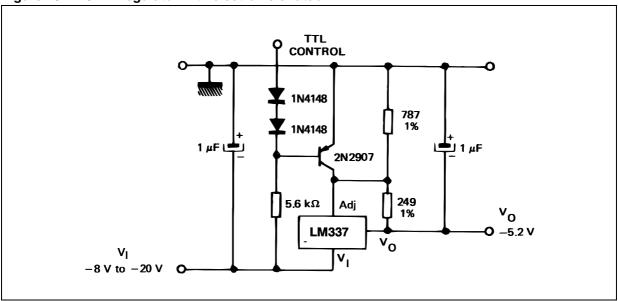



Figure 18. Negative regulator with protection diodes



 $^{^{\}star}$ When CL is larger than 20 $\mu F,\, D1$ protects the LM137 in case the input supply is shorted.

 $^{^{\}star\star}$ When C2 is larger than 10 μF and V $_{O}$ is larger than - 25 V, D2 protects the LM137 in case the output is shorted

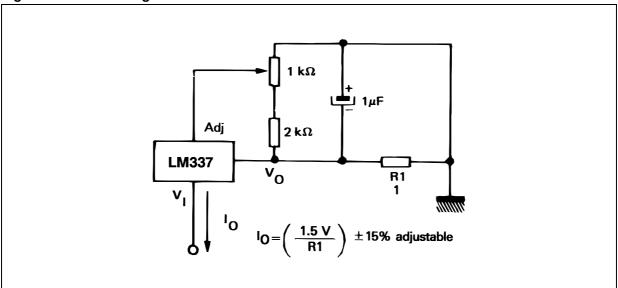
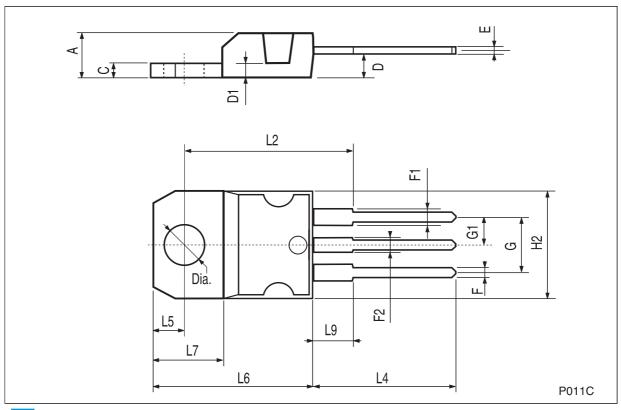

LM137, LM337 Typical application

Figure 19. - 5.2 V regulator with electronic shutdown (1)

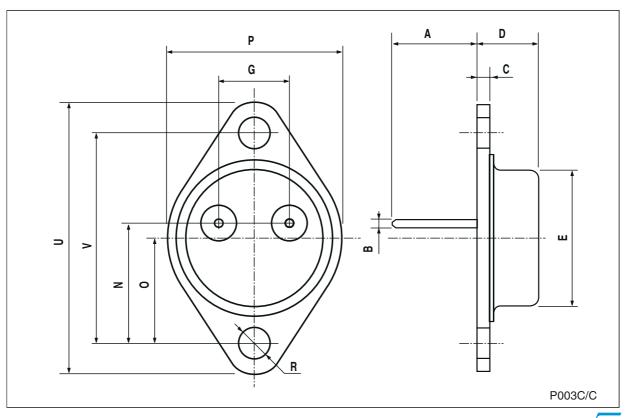
1. Minimum output = - 1.3 V when control input is low.

Figure 20. Current regulator


8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

14/18 Doc ID 2167 Rev 4


TO-	220	mec	hani	cal d	ata
10		11166	Halli	cai u	ala

Dim	mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-3 mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

LM137, LM337 Revision history

9 Revision history

Table 6. Document revision history

Date	Revision	Changes			
19-Jul-2004	1	First issue.			
10-Jan-2005	2	Modified pin connection for TO-3.			
17-Jul-2008	3	Added: Table 1 on page 1.			
03-Oct-2011	4	Modified: Table 1 on page 1.			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

18/18 Doc ID 2167 Rev 4

