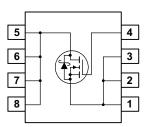
FAIRCHILD

SEMICONDUCTOR®

FDS6670AS 30V N-Channel PowerTrench[®] SyncFET[™]

General Description

The FDS6670AS is designed to replace a single SO-8 MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDS6670AS includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology.

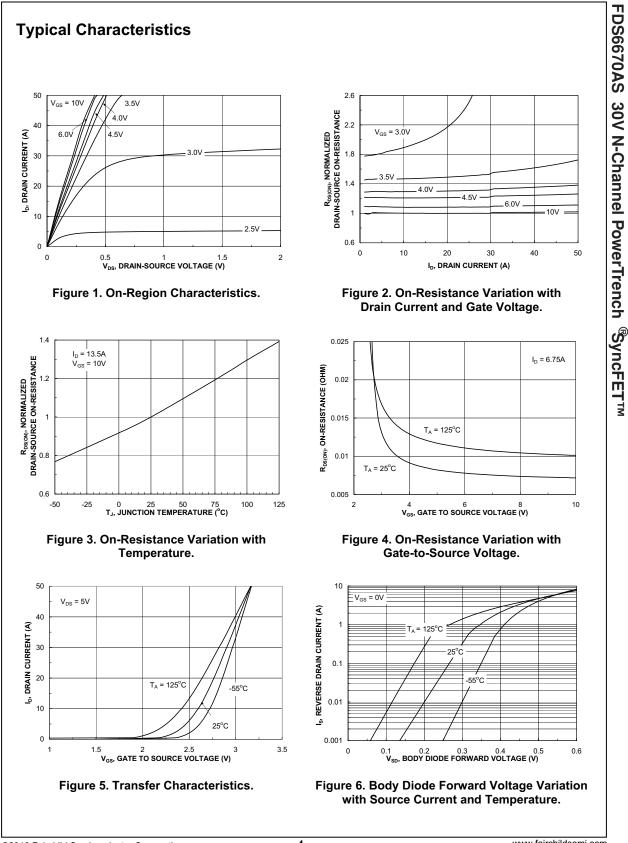

Applications

- DC/DC converter
- Low side notebook

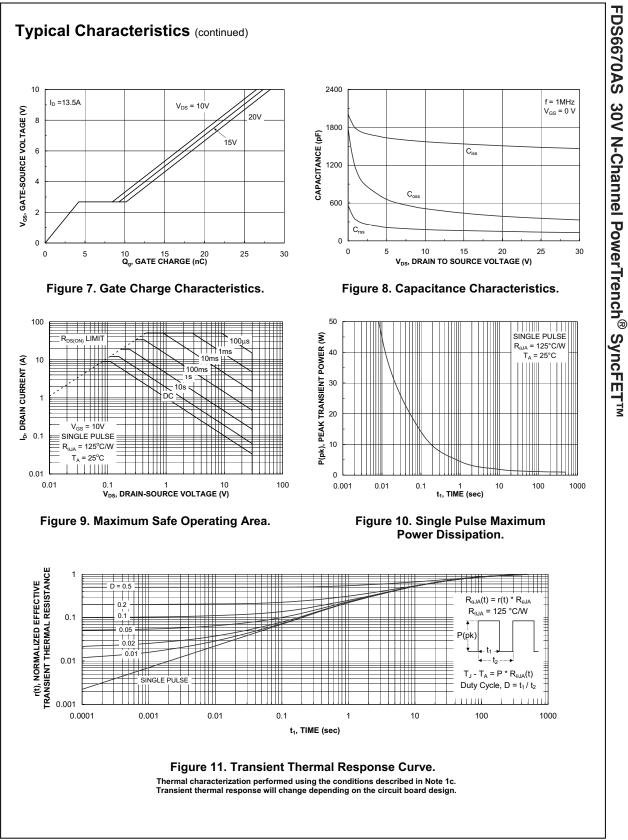
Features

- 13.5 A, 30 V. $R_{DS(ON)}$ max= 9.0 m Ω @ V_{GS} = 10 V $R_{DS(ON)}$ max= 11.5 m Ω @ V_{GS} = 4.5 V
- Includes SyncFET Schottky body diode
- Low gate charge (27nC typical)
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$ and fast switching
- High power and current handling capability
- RoHS Compliant

Symbol		Parameter		Ratings	Units	
V _{DSS}	Drain-So	urce Voltage		30	V	
V _{GSS}	Gate-Sou	irce Voltage		±20	V	
I _D	Drain Cu	rrent – Continuous	(Note 1a)) 13.5		
		– Pulsed		50		
P _D	Power Di	ssipation for Single Operation	n (Note 1a)	2.5	W	
			(Note 1b)	1.2		
			(Note 1c)	1		
T _J , T _{stg}	Operating and Storage Junction Temperature Range			-55 to +150	°C	
R _{0JA}	Thermal I	cteristics Resistance, Junction-to-Amb	, ,	50	°C/W	
R _{ejc}		Resistance, Junction-to-Case	、 <i>、</i> ,	25	°C/W	
<u> </u>	1	ng and Ordering I		Tau aiddh	Quantita	
Device M	arking	Device	Reel Size	Tape width	Quantity	
FDS6670AS		FDS6670AS	13"	12mm	2500 units	


©2010 Fairchild Semiconductor Corporation FDS6670AS Rev.C1

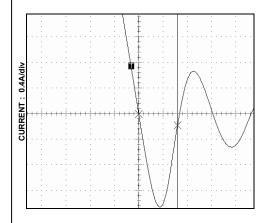
www.fairchildsemi.com


July 2010

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 1 mA$	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 10 mA, Referenced to 25°C		27		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$			500	μA
I _{GSS}	Gate–Body Leakage	$V_{\text{GS}} = \pm 20 \text{ V}, \qquad V_{\text{DS}} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	1	1.7	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 10 mA, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			7.5 9 10	9 11.5 12.5	mΩ
I _{D(on)}	On–State Drain Current	V_{GS} = 10 V, V_{DS} = 5 V	50			А
g _{FS}	Forward Transconductance	$V_{DS} = 10 V$, $I_{D} = 13.5 A$		66		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		1540		pF
Coss	Output Capacitance	f = 1.0 MHz		440		pF
C _{rss}	Reverse Transfer Capacitance			160		pF
R _g	Gate Resistance			2.1	4.2	Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time			10	20	ns
t _r	Turn–On Rise Time	$V_{DS} = 15 V$, $I_D = 1 A$,		5	10	ns
t _d (_{off})	Turn–Off Delay Time	$V_{GS} = 10 V$, $R_{GEN} = 6 \Omega$		27	44	ns
t _f	Turn–Off Fall Time			18	32	ns
t _{d(on)}	Turn–On Delay Time			13	23	ns
t _r	Turn–On Rise Time	$V_{DS} = 15 V$, $I_D = 1 A$,		15	27	ns
t _d (_{off})	Turn–Off Delay Time	$V_{GS} = 4.5 V$, $R_{GEN} = 6 \Omega$		24	38	ns
t _f	Turn–Off Fall Time			13	23	ns
$\mathbf{Q}_{g(TOT)}$	Total Gate Charge at Vgs=10V			27	38	nC
Qg	Total Gate Charge at Vgs=5V	$V_{DD} = 15 V$, $I_D = 13.5 A$,		16	22	nC
Q_{gs}	Gate–Source Charge			4.2		nC
\mathbf{Q}_{gd}	Gate-Drain Charge			5.1		nC

Symbol	Parameter	Test Condition	ns	Min	Тур	Max	Units
Drain-Sc	ource Diode Characteristics	and Maximum Ratin	as				•
/ _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 3.5 A$ $V_{GS} = 0 V, I_S = 7 A$	(Note 2) (Note 2)		0.5 0.6	0.7	V
r	Diode Reverse Recovery Time	I _F = 13.5A,	· · · /		20		nS
۵ _۳	Diode Reverse Recovery Charge	d _{iF} /d _t = 300 A/µs	(Note 3)		15		nC
cale 1 : 1 on le . Pulse Test: F	mounted on a 1 in ² pad of 2 oz copper	while $R_{\theta CA}$ is determined by the use	er's board de: હ્	hal reference sign.	c) 125°C		lder nounted on a

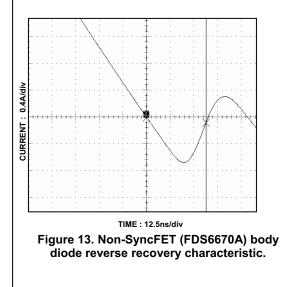
©2010 Fairchild Semiconductor Corporation FDS6670AS Rev.C1


©2010 Fairchild Semiconductor Corporation FDS6670AS Rev.C1

www.fairchildsemi.com

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics


Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDS6670AS.

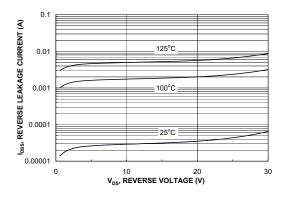
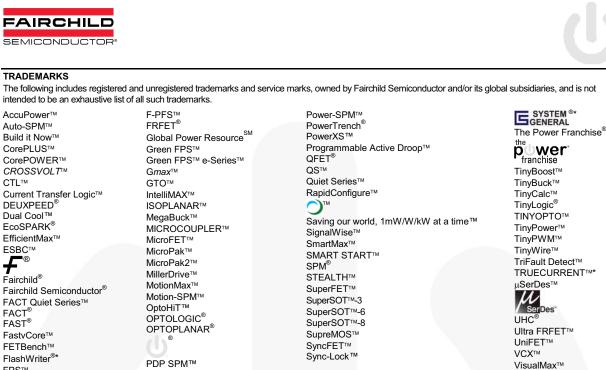

TIME : 12.5ns/div

Figure 12. FDS6670AS SyncFET body diode reverse recovery characteristic.

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDS6670A).

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.



FDS6670AS 30V N-Channel PowerTrench[®] SyncFET™

Figure 14. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

www.fairchildsemi.com

FPSTM

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

XS™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FDS6670AS 30V N-Channel PowerTrench[®] SyncFET™