

# RENESAS 900MHz, Low Voltage, LVPECL Clock Synthesizer

# **Product Discontinuance Notice – Last Time Buy Expires on (12/7/2013)**

DATA SHEET

The MPC92439 is a 3.3 V compatible, PLL based clock synthesizer targeted for high performance clock generation in mid-range to high-performance telecom, networking and computing applications. With output frequencies from 3.125 MHz to 900 MHz and the support of differential LVPECL output signals the device meets the needs of the most demanding clock applications.

#### **Features**

- 3.125 MHz to 900 MHz synthesized clock output signal
- Differential LVPECL output
- LVCMOS compatible control inputs
- On-chip crystal oscillator for reference frequency generation
- Alternative LVCMOS compatible reference input
- 3.3V power supply
- Fully integrated PLL
- Minimal frequency overshoot
- Serial 3-wire programming interface
- Parallel programming interface for power-up
- 28-PLCC and 32-LQFP packaging
- 28-Lead and 32-lead Pb-free packages available
- SiGe Technology
- Ambient temperature range 0°C to + 70°C
- Pin and function compatible to the MC12439 and MPC9239

#### **Functional Description**

The internal crystal oscillator uses the external quartz crystal as the basis of its frequency reference. The frequency of the internal crystal oscillator or external reference clock signal is multiplied by the PLL. The VCO within the PLL operates over a range of 400 to 900 MHz. Its output is scaled by a divider that is configured by either the serial or parallel interfaces. The crystal oscillator frequency f<sub>XTAL</sub>, the PLL feedback-divider M and the PLL post-divider N determine the output frequency.

The feedback path of the PLL is internal. The PLL adjusts the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low) the PLL will not achieve phase lock. The PLL will be stable if the VCO frequency is within the specified VCO frequency range (400 to 900 MHz). The M-value must be programmed by the serial or parallel interface.

The PLL post-divider N is configured through either the serial or the parallel interfaces. and can provide one of four division ratios (1, 2, 4, or 8). This divider extends performance of the part while providing a 50% duty cycle. The output driver is driven differentially from the output divider, and is capable of driving a pair of transmission lines terminated  $50\Omega$  to V<sub>CC</sub> – 2.0V. The positive supply voltage for the internal PLL is separated from the power supply for the core logic and output drivers to minimize noise induced jitter.

The configuration logic has two sections: serial and parallel. The parallel interface uses the values at the M[6:0] and N[1:0] inputs to configure the internal counters. It is recommended on system reset to hold the P LOAD input LOW until power becomes valid. On the LOW-to-HIGH transition of P LOAD, the parallel inputs are captured. The parallel interface has priority over the serial interface. Internal pullup resistors are provided on the M[6:0] and N[1:0] inputs prevent the LVCMOS compatible control inputs from floating. The serial interface centers on a twelve bit shift register. The shift register shifts once per rising edge of the S\_CLOCK input. The serial input S\_DATA must meet setup and hold timing as specified in the AC Characteristics section of this document. The configuration latches will capture the

900MHZ LOW VOLTAGE **CLOCK SYNTHESIZER** 



FN SUFFIX(1) 28-LEAD PLCC PACKAGE CASE 776-02



EI SUFFIX(2) 28-LEAD PLCC PACKAGE CASE 776-02



FA SUFFIX<sup>(1)</sup> 32-LEAD LQFP PACKAGE CASE 873A-03



AC SUFFIX(2) 32-LEAD LQFP PACKAGE CASE 873A-03

K SUFFIX 32-LEAD VEOFN PACKAGE Pb-FREE PACKAGE

(1) FN, FA suffix: leaded terminations (2) EI, AC suffix: lead-free, RoHS-compliant, EPP

| ORDERING INFORMATION |                    |  |  |  |  |
|----------------------|--------------------|--|--|--|--|
| Device               | Package            |  |  |  |  |
| MPC92439EI           | PLCC-28 (Pb-Free)  |  |  |  |  |
| MPC92439FA           | LQFP-32            |  |  |  |  |
| MPC92439AC           | LQFP-32 (Pb-Free)  |  |  |  |  |
| MPC92439KLF          | VFQFN-32 (Pb-Free) |  |  |  |  |
| <del> </del>         | ) S ( )            |  |  |  |  |

value of the shift register on the HIGH-to-LOW edge of the S LOAD input. See PROGRAMMING INTERFACE for more information. The TEST output reflects various internal node values, and is controlled by the T[2:0] bits in the serial data stream. In order to minimize the PLL jitter, it is recommended to avoid active signal on the TEST output. The PWR DOWN pin, when asserted, will synchronously divide the FOUT by 16. The power down sequence is clocked by the PLL reference clock, thereby causing the frequency reduction to happen relatively slowly. Upon de-assertion of the PWR DOWN pin, the FOUT input will step back up to its programmed frequency in four discrete increments.



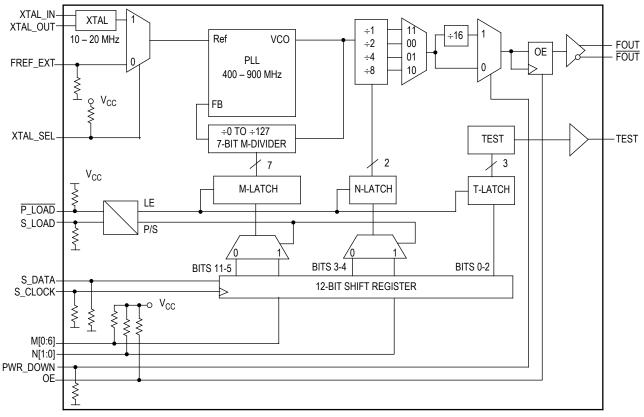



Figure 1. MPC92439 Logic Diagram

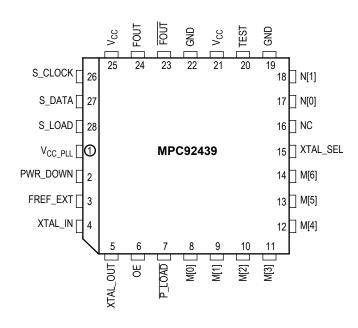



Figure 2. MPC92439 28-Lead PLCC Pinout (Top View)

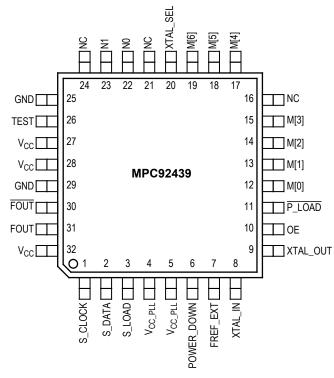



Figure 3. MPC92439 32-Lead Package Pinout (Top View)



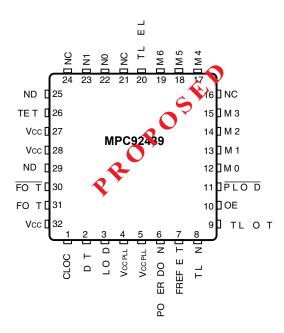



Figure 4. 32-Lead VFQFN Package Pinout (Top View)



Table 1. Pin Configurations

| Pin                 | I/O      | Default | Туре            | Function                                                                                                                                                                                                                                                                                                                 |
|---------------------|----------|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XTAL_IN, XTAL_OUT   |          | 6       | Analog          | Crystal oscillator interface                                                                                                                                                                                                                                                                                             |
| FREF_EXT            | Input    | 0       | LVCMOS          | Alternative PLL reference input                                                                                                                                                                                                                                                                                          |
| FOUT, FOUT          | Output   |         | LVPECL          | Differential clock output                                                                                                                                                                                                                                                                                                |
| TEST                | Output   |         | LVCMOS          | Test and device diagnosis output                                                                                                                                                                                                                                                                                         |
| XTAL_SEL            | Input    | 1       | LVCMOS          | PLL reference select input                                                                                                                                                                                                                                                                                               |
| PWR_DOWN            | Input    | 0       | LVCMOS          | Configuration input for power down mode. Assertion (deassertion) of power down will decrease (increase) the output frequency by a ratio of 16 in 4 discrete steps. PWR_DOWN assertion (deassertion) is synchronous to the input reference clock.                                                                         |
| S_LOAD              | Input    | 0       | LVCMOS          | Serial configuration control input. This inputs controls the loading of the configuration latches with the contents of the shift register. The latches will be transparent when this signal is high, thus the data must be stable on the high-to-low transition.                                                         |
| P_LOAD              | Input    | 1       | LVCMOS          | Parallel configuration control input. this input controls the loading of the configuration latches with the content of the parallel inputs (M and N). The latches will be transparent when this signal is low, thus the parallel data must be stable on the low-to-high transition of P_LOAD. P_LOAD is state sensitive. |
| S_DATA              | Input    | 0       | LVCMOS          | Serial configuration data input.                                                                                                                                                                                                                                                                                         |
| S_CLOCK             | Input    | 0       | LVCMOS          | Serial configuration clock input.                                                                                                                                                                                                                                                                                        |
| M[0:6]              | Input    | 1       | LVCMOS          | Parallel configuration for PLL feedback divider (M).  M is sampled on the low-to-high transition of PLOAD.                                                                                                                                                                                                               |
| N[1:0]              | Input    | 1       | LVCMOS          | Parallel configuration for Post-PLL divider (N).  N is sampled on the low-to-high transition of P_LOAD.                                                                                                                                                                                                                  |
| OE                  | Input    | 1       | LVCMOS          | Output enable (active high) The output enable is synchronous to the output clock to eliminate the possibility of runt pulses on the FOUT output. OE = L low stops FOUT in the logic low state (FOUT = L, FOUT = H).                                                                                                      |
| GND                 | Supply   |         | Ground          | Negative power supply (GND).                                                                                                                                                                                                                                                                                             |
| V <sub>CC</sub>     | Supply   |         | V <sub>CC</sub> | Positive power supply for I/O and core. All $V_{CC}$ pins must be connected to the positive power supply for correct operation.                                                                                                                                                                                          |
| V <sub>CC_PLL</sub> | Supply   |         | V <sub>CC</sub> | PLL positive power supply (analog power supply).                                                                                                                                                                                                                                                                         |
| NC                  |          |         |                 | Do not connect                                                                                                                                                                                                                                                                                                           |
|                     | <u> </u> | l       |                 |                                                                                                                                                                                                                                                                                                                          |

Table 2. Output Frequency Range and PLL Post-Divider N

| <u> </u> |   |   |                               |                      |
|----------|---|---|-------------------------------|----------------------|
| DWD DOWN | ı | N | VCO Output Francisco Division | FOUT Fraguency Bongs |
| PWR_DOWN | 1 | 0 | VCO Output Frequency Division | FOUT Frequency Range |
| 0        | 0 | 0 | 2                             | 200 - 450 MHz        |
| 0        | 0 | 1 | 4                             | 100 -225 MHz         |
| 0        | 1 | 0 | 8                             | 50-112.5 MHz         |
| 0        | 1 | 1 | 1                             | 400-900 MHz          |
| 1        | 0 | 0 | 32                            | 12.5-28.125 MHz      |
| 1        | 0 | 1 | 64                            | 6.25-14.0625 MHz     |
| 1        | 1 | 0 | 128                           | 3.125-7.03125 MHz    |
| 1        | 1 | 1 | 16                            | 25-56.25 MHz         |



**Table 3. Function Table** 

| Input    | 0                                                                                          | 1                   |
|----------|--------------------------------------------------------------------------------------------|---------------------|
| XTAL_SEL | FREF_EXT                                                                                   | XTAL interface      |
| OE       | Outputs disabled, FOUT is stopped in the logic low state $(FOUT = L, \overline{FOUT} = H)$ | Outputs enabled     |
| PWR_DOWN | Output divider ÷ 1                                                                         | Output divider ÷ 16 |

# **Table 4. General Specifications**

| Symbol            | Characteristics                                 | Min  | Тур                 | Max       | Unit  | Condition          |
|-------------------|-------------------------------------------------|------|---------------------|-----------|-------|--------------------|
| V <sub>TT</sub>   | Output Termination Voltage                      |      | V <sub>CC</sub> – 2 |           | V     |                    |
| MM                | ESD Protection (Machine Model)                  | 200  |                     |           | V     |                    |
| HBM               | ESD Protection (Human Body Model)               | 2000 |                     |           | V     |                    |
| LU                | Latch-Up Immunity                               | 200  |                     |           | mA    |                    |
| C <sub>IN</sub>   | Input Capacitance                               |      | 4.0                 |           | pF    | Inputs             |
| $\theta_{JA}$     | LQFP 32 Thermal Resistance Junction to Ambient  |      |                     |           |       |                    |
|                   | JESD 51-3, single layer test board              |      | 83.1                | 86.0      | °C/W  | Natural convection |
|                   |                                                 |      | 73.3                | 75.4      | °C/W  | 100 ft/min         |
|                   |                                                 |      | 68.9                | 70.9      | °C/W  | 200 ft/min         |
|                   |                                                 |      | 63.8                | 65.3      | °C/W  | 400 ft/min         |
|                   |                                                 |      | 57.4                | 59.6      | °C/W  | 800 ft/min         |
|                   | JESD 51-6, 2S2P multi-layer test board          |      | 59.0                | 60.6      | °C/W  | Natural convection |
|                   | ,                                               |      | 54.4                | 55.7      | °C/W  | 100 ft/min         |
|                   |                                                 |      | 52.5                | 53.8      | °C/W  | 200 ft/min         |
|                   |                                                 |      | 50.4                | 51.5      | °C/W  | 400 ft/min         |
|                   |                                                 |      | 47.8                | 48.8      | °C/W  | 800 ft/min         |
|                   | Thermar Resistance Junction to Ambient 32 VFQFN | 2.5  |                     | 0         |       |                    |
|                   | i nermarkesistance junction to Ambient 32 VFQFN | 2.5  | 37.6                | 0<br>33.7 | °C/W  | meters per second  |
|                   |                                                 | 43.0 | 37.0                | 33.1      | -0/00 |                    |
| $\theta_{\sf JC}$ | LQFP 32 Thermal Resistance Junction to Case     |      | 23.0                | 26.3      | °C/W  | MIL-SPEC 883E      |
|                   |                                                 |      |                     |           |       | Method 1012.1      |

# Table 5. Absolute Maximum Ratings<sup>(1)</sup>

| Symbol           | Characteristics     | Min             | Max                   | Unit | Condition |
|------------------|---------------------|-----------------|-----------------------|------|-----------|
| V <sub>CC</sub>  | Supply Voltage      | -0.3            | 4.6                   | V    |           |
| V <sub>IN</sub>  | DC Input Voltage    | -0.3            | V <sub>CC</sub> + 0.3 | V    |           |
| V <sub>OUT</sub> | DC Output Voltage   | -0.3            | V <sub>CC</sub> + 0.3 | V    |           |
| I <sub>IN</sub>  | DC Input Current    |                 | ±20                   | mA   |           |
| I <sub>OUT</sub> | DC Output Current   |                 | ±50                   | mA   |           |
| T <sub>S</sub>   | Storage Temperature | <del>-</del> 65 | 125                   | °C   |           |

<sup>1.</sup> Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.



Table 6. DC Characteristics ( $V_{CC} = 3.3V \pm 5\%$ ,  $T_A = 0$ °C to +70°C)

| Symbol              | Characteristics                                                                                             | Min                   | Тур | Max                   | Unit | Condition                 |  |
|---------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|-----|-----------------------|------|---------------------------|--|
| LVCMOS C            | LVCMOS Control Inputs (FREF_EXT, POWER_DOWN, XTAL_SEL, P_LOAD, S_LOAD, S_DATA, S_CLOCK, M[0:8], N[0:1]. OE) |                       |     |                       |      |                           |  |
| V <sub>IH</sub>     | Input High Voltage                                                                                          | 2.0                   |     | V <sub>CC</sub> + 0.3 | V    | LVCMOS                    |  |
| V <sub>IL</sub>     | Input Low Voltage                                                                                           |                       |     | 0.8                   | V    | LVCMOS                    |  |
| I <sub>IN</sub>     | Input Current <sup>(1)</sup>                                                                                |                       |     | ±200                  | μА   | $V_{IN} = V_{CC}$ or GND  |  |
| Differential        | Differential Clock Output F <sub>OUT</sub> <sup>(2)</sup>                                                   |                       |     |                       |      |                           |  |
| V <sub>OH</sub>     | Output High Voltage                                                                                         | V <sub>CC</sub> -1.11 |     | V <sub>CC</sub> -0.74 | V    | LVPECL                    |  |
| V <sub>OL</sub>     | Output Low Voltage                                                                                          | V <sub>CC</sub> -1.95 |     | V <sub>CC</sub> -1.60 | V    | LVPECL                    |  |
| Test and Di         | agnosis Output TEST                                                                                         |                       |     |                       |      |                           |  |
| V <sub>OH</sub>     | Output High Voltage                                                                                         | 2.0                   |     |                       | V    | I <sub>OH</sub> = -0.8 mA |  |
| $V_{OL}$            | Output Low Voltage                                                                                          |                       |     | 0.55                  | V    | I <sub>OL</sub> = 0.8 mA  |  |
| Supply Current      |                                                                                                             |                       |     |                       |      |                           |  |
| I <sub>CC_PLL</sub> | Maximum PLL Supply Current                                                                                  |                       |     | 20                    | mA   | V <sub>CC_PLL</sub> Pins  |  |
| I <sub>CC</sub>     | Maximum Supply Current                                                                                      |                       | 62  | 110                   | mA   | All V <sub>CC</sub> Pins  |  |

<sup>1.</sup> Inputs have pull-down resistors affecting the input current.

Table 7. AC Characteristics ( $V_{CC}$  = 3.3 V ± 5%,  $T_A$  = 0°C to +70°C)<sup>(1)</sup>

| Symbol                          | Characteristics                               |                                                          |                         | Тур | Max                        | Unit                     | Condition    |
|---------------------------------|-----------------------------------------------|----------------------------------------------------------|-------------------------|-----|----------------------------|--------------------------|--------------|
| f <sub>XTAL</sub>               | Crystal interface frequency range             |                                                          | 10                      |     | 20                         | MHz                      |              |
| f <sub>VCO</sub>                | VCO frequency range <sup>(2)</sup>            |                                                          | 400                     |     | 900                        | MHz                      |              |
| f <sub>MAX</sub>                | Output Frequency                              | N = 11 (÷1)<br>N = 00 (÷2)<br>N = 01 (÷4)<br>N = 10 (÷8) | 400<br>200<br>100<br>50 |     | 900<br>450<br>225<br>112.5 | MHz<br>MHz<br>MHz<br>MHz | PWR_DOWN = 0 |
| f <sub>S_CLOCK</sub>            | Serial Interface Programming Clo              | ock Frequency <sup>(3)</sup>                             | 0                       |     | 10                         | MHz                      |              |
| t <sub>P,MIN</sub>              | Minimum Pulse Width                           | (S-LOAD, P_LOAD)                                         | 50                      |     |                            | ns                       |              |
| DC                              | Output Duty Cycle                             |                                                          | 45                      | 50  | 55                         | %                        |              |
| t <sub>r</sub> , t <sub>f</sub> | Output Rise/Fall Time                         |                                                          | 0.05                    |     | 0.3                        | ns                       | 20% to 80%   |
| t <sub>S</sub>                  | Setup Time                                    | S_DATA to S_CLOCK<br>S_CLOCK to S_LOAD<br>M, N to P_LOAD | 20<br>20<br>20          |     |                            | ns<br>ns<br>ns           |              |
| t <sub>S</sub>                  | Hold Time                                     | S_DATA to S_CLOCK<br>M, N to P_LOAD                      | 20<br>20                |     |                            | ns<br>ns                 |              |
| t <sub>JIT(CC)</sub>            | Cycle-to-cycle jitter (RMS 1σ) <sup>(4)</sup> | N=11 (÷1)<br>N=00 (÷2)<br>N=01 (÷4)<br>N=10 (÷8)         |                         |     | 12<br>25<br>55<br>65       | ps                       |              |
| t <sub>JIT(CC)</sub>            | Period jitter (RMS 1σ) <sup>(5)</sup>         | N=11 (÷1)<br>N=00 (÷2)<br>N=01 (÷4)<br>N=10 (÷8)         |                         |     | 13<br>23<br>36<br>40       |                          |              |
| t <sub>LOCK</sub>               | Maximum PLL Lock Time                         |                                                          |                         |     | 10                         | ms                       |              |

<sup>1.</sup> AC characteristics apply for parallel output termination of  $50\Omega$  to  $V_{TT}.\,$ 

<sup>2.</sup> Outputs terminated  $50\Omega$  to  $V_{TT} = V_{CC} - 2V$ .

<sup>2.</sup> The input frequency  $f_{XTAL}$  and the PLL feedback divider M must match the VCO frequency range:  $f_{VCO} = f_{XTAL} \cdot M$ 

<sup>3.</sup> The frequency of S\_CLOCK is limited to 10 MHz in serial programming mode. S\_CLOCK can be switched at higher frequencies when used as test clock in test mode 6. See APPLICATIONS INFORMATION for more details.

<sup>4.</sup> Maximum cycle jitter measured at the lowest VCO frequency. Figure 5 shows the cycle jitter vs. frequency characteristics

<sup>5.</sup> Maximum period jitter measured at the lowest VCO frequency. Figure 6 shows the period jitter vs. frequency characteristics



Table 8. MPC92439 Frequency Operating Range (in MHz)

| M         M[6:0]         10         12         14         16         18         20           20         0010100         400         400         400         400         400           21         0010101         440         420         420         420         440           22         0010100         432         480         500         500         432         480           25         0011001         416         468         520         500         432         486         540         560         600         500         464         486         520         500         560         600         560         600         500         488         504         560         560         600         29         0011101         406         464         522         580         30         0011110         420         480         540         600         31         0011111         434         496         558         620         32         0100000         448         512         576         640         33         0100010         408         476         544         612         680         33         0100011         420         490         560                                         |    | VCO frequency for an crystal interface frequency of |     |     |     |     | ency of |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------|-----|-----|-----|-----|---------|-----|
| 21         0010101         420           22         0010110         440           23         0010111         414         460           24         0011000         432         480           25         0011001         416         468         520           26         0011010         416         468         520           27         0011011         432         486         540           28         0011100         446         464         522         580           30         0011110         406         464         522         580           30         0011111         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100011         402         480         560         630         700           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36                                                                                                                                    | М  | M[6:0]                                              | 10  | 12  | 14  | 16  | 18      | 20  |
| 22         0010110         440           23         0010111         414         460           24         0011000         432         480           25         0011001         400         450         500           26         0011010         416         468         520           27         0011011         432         486         540           28         0011100         448         504         560           29         0011101         406         464         522         580           30         0011110         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100001         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648                                                                                                                         | 20 | 0010100                                             |     |     |     |     |         | 400 |
| 23         0010111         414         460           24         0011000         432         480           25         0011001         400         450         500           26         0011010         416         468         520           27         0011011         432         486         540           28         0011100         448         504         560           29         0011110         406         464         522         580           30         0011110         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100001         408         476         558         620           34         0100010         408         476         554         660           34         0100010         408         476         554         661           35         0100101         444         518         592         666         740           38         0100101         444         518         592                                                                                                                         | 21 | 0010101                                             |     |     |     |     |         | 420 |
| 24         0011000         400         450         500           25         0011001         400         450         500           26         0011010         416         468         520           27         0011011         432         486         540           28         0011100         446         464         522         580           30         0011111         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100001         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100111         468         546                                                                                                                  | 22 | 0010110                                             |     |     |     |     |         | 440 |
| 25         0011001         400         450         500           26         0011010         416         468         520           27         0011011         432         486         540           28         0011100         448         504         560           29         0011101         406         464         522         580           30         0011111         434         496         558         620           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100010         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100011         420         480         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100111         468         546                                                                                                                  | 23 | 0010111                                             |     |     |     |     | 414     | 460 |
| 26         0011010         416         468         520           27         0011011         432         486         540           28         0011100         448         504         560           29         0011101         406         464         522         580           30         0011110         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100010         408         476         544         612         680           34         0100010         408         476         544         612         680           35         010010         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000                                                                                                                   | 24 | 0011000                                             |     |     |     |     | 432     | 480 |
| 27         0011011         432         486         540           28         0011100         448         504         560           29         0011101         406         464         522         580           30         0011110         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100001         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100101         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780                                                                                                                       | 25 | 0011001                                             |     |     |     | 400 | 450     | 500 |
| 28         0011100         448         504         560           29         0011101         406         464         522         580           30         0011110         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100001         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         722           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640                                                                                                           | 26 | 0011010                                             |     |     |     | 416 | 468     | 520 |
| 29         0011101         406         464         522         580           30         0011110         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100010         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         780           41         010100         420         504         588         672         756         840           43         0101010                                                                                                            | 27 | 0011011                                             |     |     |     | 432 | 486     | 540 |
| 30         0011110         420         480         540         600           31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100001         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42                                                                                                               | 28 | 0011100                                             |     |     |     | 448 | 504     | 560 |
| 31         0011111         434         496         558         620           32         0100000         448         512         576         640           33         0100001         462         528         594         660           34         0100010         408         476         544         612         680           35         010010         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         010101         420         504         588         672         756         840           43         0101101         430         516         602         688         774         860 <td>29</td> <td>0011101</td> <td></td> <td></td> <td>406</td> <td>464</td> <td>522</td> <td>580</td> | 29 | 0011101                                             |     |     | 406 | 464 | 522     | 580 |
| 32         0100000         448         512         576         640           33         0100001         462         528         594         660           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         010101         420         504         588         672         756         840           43         010110         450         540         630         720         810                                                                                                      | 30 | 0011110                                             |     |     | 420 | 480 | 540     | 600 |
| 33         0100001         408         476         544         612         680           34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101101         430         516         602         688         774         860           44         0101101         450         540                                                                                                    | 31 | 0011111                                             |     |     | 434 | 496 | 558     | 620 |
| 34         0100010         408         476         544         612         680           35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         010101         430         516         602         688         774         860           44         0101101         450         540         630         720         810         900           46         0101111         470                                                                                                     | 32 | 0100000                                             |     |     | 448 | 512 | 576     | 640 |
| 35         0100011         420         490         560         630         700           36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101010         440         528         616         704         792         880           44         0101101         450         540         630         720         810         900           45         0101101         450         540         630         720         810         900           46         0101110                                                                                                    | 33 | 0100001                                             |     |     | 462 | 528 | 594     | 660 |
| 36         0100100         432         504         576         648         720           37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101011         430         516         602         688         774         860           44         0101101         450         540         630         720         810         900           45         0101101         450         540         630         720         810         900           46         010111         470         564         658         752         846           47         0101111                                                                                                     | 34 | 0100010                                             |     | 408 | 476 | 544 | 612     | 680 |
| 37         0100101         444         518         592         666         740           38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101011         430         516         602         688         774         860           44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110010                                                                                                    | 35 | 0100011                                             |     | 420 | 490 | 560 | 630     | 700 |
| 38         0100110         456         532         608         684         760           39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101011         430         516         602         688         774         860           44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101111         470         564         658         752         846           47         0101111         470         564         658         752         846           48         0110001         590         680         700         800         900           51         0110010                                                                                                    | 36 | 0100100                                             |     | 432 | 504 | 576 | 648     | 720 |
| 39         0100111         468         546         624         702         780           40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101011         430         516         602         688         774         860           44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101110         460         552         644         736         828           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110010         500         600         700         800         900           51         0110010                                                                                                    | 37 | 0100101                                             |     | 444 | 518 | 592 | 666     | 740 |
| 40         0101000         400         480         560         640         720         800           41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101011         430         516         602         688         774         860           44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101111         470         564         658         752         846           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110010         500         600         700         800         900           51         0110101         510         612         714         816           52         0110100         520                                                                                                    | 38 | 0100110                                             |     | 456 | 532 | 608 | 684     | 760 |
| 41         0101001         410         492         574         656         738         820           42         0101010         420         504         588         672         756         840           43         0101011         430         516         602         688         774         860           44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101110         460         552         644         736         828           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110001         500         600         700         800         900           51         0110010         500         600         700         800         900           51         0110100         520         624         728         832           53         011011         530         636                                                                                                     | 39 | 0100111                                             |     | 468 | 546 | 624 | 702     | 780 |
| 42         0101010         420         504         588         672         756         840           43         0101011         430         516         602         688         774         860           44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101110         460         552         644         736         828           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110110         540         648         756         864           54         011010         540         648         756         864                                                                                                                 | 40 | 0101000                                             | 400 | 480 | 560 | 640 | 720     | 800 |
| 43         0101011         430         516         602         688         774         860           44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101110         460         552         644         736         828           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110001         500         600         700         800         900           51         0110010         500         600         700         800         900           51         0110101         510         612         714         816         82           52         0110100         520         624         728         832         832           53         0110111         550         660         770         880         864           55         0110111         550         660         770                                                                                                     | 41 | 0101001                                             | 410 | 492 | 574 | 656 | 738     | 820 |
| 44         0101100         440         528         616         704         792         880           45         0101101         450         540         630         720         810         900           46         0101110         460         552         644         736         828           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110001         490         588         684         784         882           50         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110111         530         636         742         848           54         0110110         540         648         756         864           55         011011         550         660         770         880           57         0111001         580                                                                                                            | 42 | 0101010                                             | 420 | 504 | 588 | 672 | 756     | 840 |
| 45         0101101         450         540         630         720         810         900           46         0101110         460         552         644         736         828           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110001         490         588         684         784         882           50         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         580         696         812                                                                                                           | 43 | 0101011                                             | 430 | 516 | 602 | 688 | 774     | 860 |
| 46         0101110         460         552         644         736         828           47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110001         490         588         684         784         882           50         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         580         696         812           59         0111011         590         708         826           60         0111100                                                                                                                  | 44 | 0101100                                             | 440 | 528 | 616 | 704 | 792     | 880 |
| 47         0101111         470         564         658         752         846           48         0110000         480         576         672         768         864           49         0110001         490         588         684         784         882           50         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111011         590         708         826           60         0111100         600         720         840           61         0111110         610         732                                                                                                                  | 45 | 0101101                                             | 450 | 540 | 630 | 720 | 810     | 900 |
| 48         0110000         480         576         672         768         864           49         0110001         490         588         684         784         882           50         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111011         590         708         826           60         0111100         600         720         840           61         0111110         610         732         854           62         0111111         630         756         882                                                                                                                              | 46 | 0101110                                             | 460 | 552 | 644 | 736 | 828     |     |
| 49         0110001         490         588         684         784         882           50         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111110         610         732         854           62         0111111         630         756         882           64         1000000                                                                                                                         | 47 | 0101111                                             | 470 | 564 | 658 | 752 | 846     |     |
| 50         0110010         500         600         700         800         900           51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111110         610         732         854           62         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                              | 48 | 0110000                                             | 480 | 576 | 672 | 768 | 864     |     |
| 51         0110011         510         612         714         816           52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111110         610         732         854           62         0111110         620         744         868           63         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                                                      | 49 | 0110001                                             | 490 | 588 | 684 | 784 | 882     |     |
| 52         0110100         520         624         728         832           53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111101         610         732         854           62         0111110         620         744         868           63         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                                                                                                                                   | 50 | 0110010                                             | 500 | 600 | 700 | 800 | 900     |     |
| 53         0110101         530         636         742         848           54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111101         610         732         854           62         0111110         620         744         868           63         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                                                                                                                                                                                                                | 51 | 0110011                                             | 510 | 612 | 714 | 816 |         |     |
| 54         0110110         540         648         756         864           55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111101         610         732         854           62         0111110         620         744         868           63         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52 | 0110100                                             | 520 | 624 | 728 | 832 |         |     |
| 55         0110111         550         660         770         880           56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111101         610         732         854           62         0111110         620         744         868           63         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53 | 0110101                                             | 530 | 636 | 742 | 848 |         |     |
| 56         0111000         560         672         784         896           57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111101         610         732         854           62         0111110         620         744         868           63         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54 | 0110110                                             | 540 | 648 | 756 | 864 |         |     |
| 57         0111001         570         684         798           58         0111010         580         696         812           59         0111011         590         708         826           60         0111100         600         720         840           61         0111101         610         732         854           62         0111110         620         744         868           63         0111111         630         756         882           64         1000000         640         768         896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55 | 0110111                                             | 550 | 660 | 770 | 880 |         |     |
| 58     0111010     580     696     812       59     0111011     590     708     826       60     0111100     600     720     840       61     0111101     610     732     854       62     0111110     620     744     868       63     0111111     630     756     882       64     1000000     640     768     896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56 | 0111000                                             | 560 | 672 | 784 | 896 |         |     |
| 59     0111011     590     708     826       60     0111100     600     720     840       61     0111101     610     732     854       62     0111110     620     744     868       63     0111111     630     756     882       64     1000000     640     768     896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57 | 0111001                                             | 570 | 684 | 798 |     |         |     |
| 60     0111100     600     720     840       61     0111101     610     732     854       62     0111110     620     744     868       63     0111111     630     756     882       64     1000000     640     768     896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58 | 0111010                                             | 580 | 696 | 812 |     |         |     |
| 61     0111101     610     732     854       62     0111110     620     744     868       63     0111111     630     756     882       64     1000000     640     768     896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59 | 0111011                                             | 590 | 708 | 826 |     |         |     |
| 62     0111110     620     744     868       63     0111111     630     756     882       64     1000000     640     768     896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60 | 0111100                                             | 600 | 720 | 840 |     |         |     |
| 63     0111111     630     756     882       64     1000000     640     768     896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61 | 0111101                                             | 610 | 732 | 854 |     |         |     |
| 64 1000000 640 768 896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62 | 0111110                                             | 620 | 744 | 868 |     |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63 | 0111111                                             | 630 | 756 | 882 |     |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64 | 1000000                                             | 640 | 768 | 896 |     |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                     |     |     |     |     |         |     |

| Output freq | uency for f <sub>X</sub> | <sub>TAL</sub> =16 MHz | and for N = |
|-------------|--------------------------|------------------------|-------------|
| 1           | 2                        | 4                      | 8           |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
| 400         | 200                      | 100                    | 50          |
| 416         | 208                      | 104                    | 52          |
| 432         | 216                      | 108                    | 54          |
| 448         | 224                      | 112                    | 56          |
| 464         | 232                      | 116                    | 58          |
| 480         | 240                      | 120                    | 60          |
| 496         | 248                      | 124                    | 62          |
| 512         | 256                      | 128                    | 64          |
| 528         | 264                      | 132                    | 66          |
| 544         | 272                      | 136                    | 68          |
| 560         | 280                      | 140                    | 70          |
| 576         | 288                      | 144                    | 72          |
| 592         | 296                      | 148                    | 74          |
| 608         | 304                      | 152                    | 76          |
| 624         | 312                      | 156                    | 78          |
| 640         | 320                      | 160                    | 80          |
| 656         | 328                      | 164                    | 82          |
| 672         | 336                      | 168                    | 84          |
| 688         | 344                      | 172                    | 86          |
| 704         | 352                      | 176                    | 88          |
| 720         | 360                      | 180                    | 90          |
| 736         | 368                      | 184                    | 92          |
| 752         | 376                      | 188                    | 94          |
| 768         | 384                      | 192                    | 96          |
| 784         | 392                      | 196                    | 98          |
| 800         | 400                      | 200                    | 100         |
| 816         | 408                      | 204                    | 102         |
| 832         | 416                      | 208                    | 104         |
| 848         | 424                      | 212                    | 106         |
| 864         | 432                      | 216                    | 108         |
| 880         | 440                      | 220                    | 110         |
| 896         | 448                      | 224                    | 112         |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |
|             |                          |                        |             |



#### PROGRAMMING INTERFACE

#### **Programming the MPC92439**

Programming the MPC92439 amounts to properly configuring the internal PLL dividers to produce the desired synthesized frequency at the output. The output frequency can be represented by this formula:

$$f_{OUT} = f_{XTAL} \cdot M \div N \tag{1}$$

where  $f_{XTAL}$  is the crystal frequency, M is the PLL feedback-divider and N is the PLL post-divider. The input frequency and the selection of the feedback divider M is limited by the VCO-frequency range.  $f_{XTAL}$  and M must be configured to match the VCO frequency range of 400 to 900 MHz in order to achieve stable PLL operation:

$$M_{MIN} = f_{VCO,MIN} \div (f_{XTAL}) \text{ and}$$
 (2)

$$M_{MAX} = f_{VCO,MAX} \div (f_{XTAL})$$
 (3)

For instance, the use of a 16 MHz input frequency requires the configuration of the PLL feedback divider between M = 25 and M = 56. Table 8 shows the usable VCO frequency and M divider range for other example input frequencies. Assuming that a 16 MHz input frequency is used, equation (1) reduces to:

$$f_{OUT} = 16 \text{ M} \div \text{N} \tag{4}$$

Substituting N for the four available values for N (1, 2, 4, 8) yields:

Table 9. Output Frequency Range for f<sub>XTAL</sub> = 16 MHz

|   |   | N     | E                | F <sub>OUT</sub> Range | E. Ston               |
|---|---|-------|------------------|------------------------|-----------------------|
| 1 | 0 | Value | F <sub>OUT</sub> | FOUT Kange             | F <sub>OUT</sub> Step |
| 0 | 0 | 2     | 8·M              | 200-450 MHz            | 8 MHz                 |
| 0 | 1 | 4     | 4·M              | 100-225 MHz            | 4 MHz                 |
| 1 | 0 | 8     | 2·M              | 50-112.5 MHz           | 2 MHz                 |
| 1 | 1 | 1     | 16·M             | 400-900 MHz            | 16 MHz                |

#### **Example Calculation for an 16 MHz Input Frequency**

For example, if an output frequency of 384 MHz was desired, the following steps would be taken to identify the appropriate M and N values. 384 MHz falls within the frequency range set by an N value of 2, so N[1:0]=00. For N = 2, FOUT = 8·M and M = FOUT÷8. Therefore, M = 384 ÷ 8 = 48, so M[6:0] = 0110000. Following this procedure a user can generate any whole frequency between 50 MHz and 900 MHz. The size of the programmable frequency steps will be equal to:

$$f_{STEP} = f_{XTAL} \div N \tag{5}$$

#### APPLICATIONS INFORMATION

#### **Jitter Performance of the MPC92439**

Figure 5 and Figure 6 illustrate the RMS jitter performance of the MPC92439 across its specified VCO frequency range. The cycle-to-cycle and period jitter is a function of the VCO frequency and the output divider N. The general trend is that as the output frequency increases (higher VCO frequency and lower N-divider) the MPC92439 output jitter decreases. Optimum jitter performance can be achieved at higher VCO and output frequencies. The maximum cycle-to-cycle and period jitter published in Table 7 correspond to the jitter performance at the lowest VCO frequency limit).

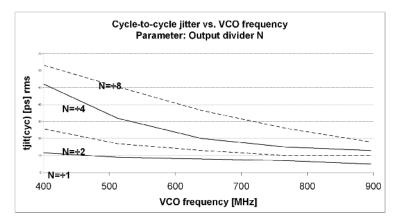



Figure 5. MPC92439 Cycle-to-cycle Jitter

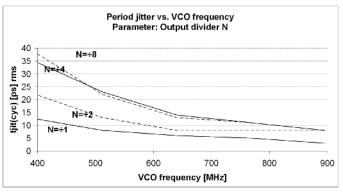



Figure 6. MPC92439 Period Jitter

#### Using the Parallel and Serial Interface

The M and N counters can be loaded either through a parallel or serial interface. The parallel interface is controlled via the  $P\_LOAD$  signal such that a LOW to HIGH transition will latch the information present on the M[6:0] and N[1:0] inputs into the M and N counters. When the  $P\_LOAD$  signal is LOW the input latches will be transparent and any changes on the M[6:0] and N[1:0] inputs will affect the FOUT output pair. To use the serial port the  $S\_CLOCK$  signal samples the information on the  $S\_DATA$  line and loads it into a 12 bit shift register. Note that the  $P\_LOAD$  signal must be HIGH for the serial load operation to function. The Test register is loaded with the first three bits, the N register with the next two, and the M register with the final eight bits of the data stream on the  $S\_DATA$  input. For each register the most significant bit is loaded first (T2, N1 and M6). A pulse on the  $S\_LOAD$  pin after the shift register is fully loaded will transfer the divide values into the counters. The HIGH to LOW



transition on the S\_LOAD input will latch the new divide values into the counters. Figure 7 illustrates the timing diagram for both a parallel and a serial load of the MPC92439 synthesizer.

M[6:0] and N[1:0] are normally specified once at power-up through the parallel interface, and then possibly again through the serial interface. This approach allows the application to come up at one frequency and then change or fine-tune the clock as the ability to control the serial interface becomes available.

#### Using the Test and Diagnosis Output TEST

The TEST output provides visibility for one of the several internal nodes as determined by the T[2:0] bits in the serial configuration stream. It is not configurable through the parallel interface. Although it is possible to select the node that represents FOUT, the LVCMOS output is not able to toggle fast enough for higher output frequencies and should only be used for test and diagnosis.

The T2, T1 and T0 control bits are preset to '000' when  $\overline{P\_LOAD}$  is LOW so that the PECL FOUT outputs are as jitter-free as possible. Any active signal on the TEST output pin will have detrimental affects on the jitter of the PECL output pair. In normal operations, jitter specifications are only guaranteed if the TEST output is static. The serial configuration port can be used to select one of the alternate functions for this pin.

Most of the signals available on the TEST output pin are useful only for performance verification of the MPC92439 itself. However, the PLL bypass mode may be of interest at the board level for functional debug. When T[2:0] is set to 110 the MPC92439 is placed in PLL bypass mode. In this mode the S\_CLOCK input is fed directly into the M and N dividers. The N divider drives the FOUT differential pair and the M counter drives the TEST output pin. In this mode the S\_CLOCK input could be used for low speed board level functional test or debug. Bypassing the PLL and driving FOUT directly gives

the user more control on the test clocks sent through the clocktree shows the functional setup of the PLL bypass mode. Because the S\_CLOCK is a CMOS level the input frequency is limited to 200 MHz. This means the fastest the FOUT pin can be toggled via the S\_CLOCK is 100 MHz as the divide ratio of the Post-PLL divider is 2 (if N = 1). Note that the M counter output on the TEST output will not be a 50% duty cycle.

Table 10. Test and Debug Configuration for TEST

|    | T[2:0] |    | TEST Output                              |  |  |
|----|--------|----|------------------------------------------|--|--|
| T2 | T1     | T0 | TEST Output                              |  |  |
| 0  | 0      | 0  | 12-bit shift register out <sup>(1)</sup> |  |  |
| 0  | 0      | 1  | Logic 1                                  |  |  |
| 0  | 1      | 0  | f <sub>XTAL</sub> ÷ 2                    |  |  |
| 0  | 1      | 1  | M-Counter out                            |  |  |
| 1  | 0      | 0  | FOUT                                     |  |  |
| 1  | 0      | 1  | Logic 0                                  |  |  |
| 1  | 1      | 0  | M-Counter out in PLL-bypass mode         |  |  |
| 1  | 1      | 1  | FOUT ÷ 4                                 |  |  |

1. Clocked out at the rate of S CLOCK\

Table 11. Debug Configuration for PLL Bypass<sup>(1)</sup>

| Output | Configuration                |
|--------|------------------------------|
| FOUT   | S_CLOCK ÷ N                  |
| TEST   | M-Counter out <sup>(2)</sup> |

- 1. T[2:0] = 110. AC specifications do not apply in PLL bypass mode
- 2. Clocked out at the rate of S\_CLOCK ÷ (2·N)

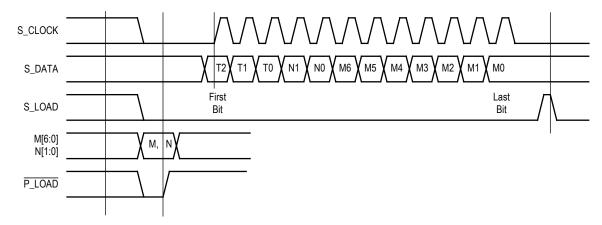



Figure 7. Serial Interface Timing Diagram

#### **Power Supply Filtering**

The MPC92439 is a mixed analog/digital product. Its analog circuitry is naturally susceptible to random noise, especially if this noise is seen on the power supply pins. Random noise on the  $V_{CC\_PLL}$  pin impacts the device characteristics. The MPC92439 provides separate power supplies for the digital circuitry ( $V_{CC}$ ) and the internal PLL ( $V_{CC\_PLL}$ ) of the device. The purpose of this design technique is to try and isolate the high switching noise digital outputs from the relatively sensitive internal analog phase-locked loop. In a controlled environment such as an evaluation board, this level of

isolation is sufficient. However, in a digital system environment where it is more difficult to minimize noise on the power supplies a second level of isolation may be required. The simplest form of isolation is a power supply filter on the  $V_{CC\_PLL}$  pin for the MPC92439. Figure 8 illustrates a typical power supply filter scheme. The MPC92439 is most susceptible to noise with spectral content in the 1 kHz to 1 MHz range. Therefore, the filter should be designed to target this range. The key parameter that needs to be met in the final filter design is the DC voltage drop that will be seen between



the V<sub>CC</sub> supply and the MPC92439 pin of the MPC92439. From the data sheet, the  $V_{CC\ PLL}$  current (the current sourced through the V<sub>CC PLL</sub> pin) is maximum 20 mA, assuming that a minimum of  $2.83\bar{5}$  V must be maintained on the  $V_{CC\ PLL}$  pin. The resistor shown in Figure 8 must have a resistance of 10–15  $\Omega$  to meet the voltage drop criteria. The RC filter pictured will provide a broadband filter with approximately 100:1 attenuation for noise whose spectral content is above 20 kHz. As the noise frequency crosses the series resonant point of an individual capacitor its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the bandwidth of the PLL. Generally, the resistor/capacitor filter will be cheaper, easier to implement and provide an adequate level of supply filtering. A higher level of attenuation can be achieved by replacing the resistor with an appropriate valued inductor. A 1000 µH choke will show a significant impedance at 10 kHz frequencies and above. Because of the current draw and the voltage that must be maintained on the V<sub>CC PLL</sub> pin, a low DC resistance inductor is required (less than 15  $\Omega$ ).

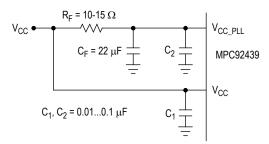



Figure 8. V<sub>CC PLL</sub> Power Supply Filter

#### **Layout Recommendations**

The MPC92439 provides sub-nanosecond output edge rates and thus a good power supply bypassing scheme is a must. Figure 9 shows a representative board layout for the MPC92439. There exists many different potential board layouts and the one pictured is but one. The important aspect of the layout in Figure 9 is the low impedance connections between VCC and GND for the bypass capacitors. Combining good quality general purpose chip capacitors with good PCB layout techniques will produce effective capacitor resonances at frequencies adequate to supply the instantaneous switching current for the MPC92439 outputs. It is imperative that low inductance chip capacitors are used; it is equally important that the board layout does not introduce back all of the inductance saved by using the leadless capacitors. Thin interconnect traces between the capacitor and the power plane should be avoided and multiple large vias should be used to tie the capacitors to the buried power planes. Fat interconnect and large vias will help to minimize layout induced inductance and thus maximize the series resonant point of the bypass capacitors. Note the dotted lines circling the crystal oscillator connection to the device. The oscillator is a series resonant circuit and the voltage amplitude across the crystal is relatively small. It is imperative that no actively switching signals cross under the crystal as crosstalk energy coupled to these lines could significantly impact the jitter of the device. Special attention should be paid to the layout of the crystal to ensure a stable, jitter free interface between the crystal and the on-board oscillator. Although the MPC92439 has several design features to minimize the susceptibility to power supply noise (isolated power and grounds and fully differential PLL), there still may be applications in which overall performance is being

degraded due to system power supply noise. The power supply filter and bypass schemes discussed in this section should be adequate to eliminate power supply noise related problems in most designs.

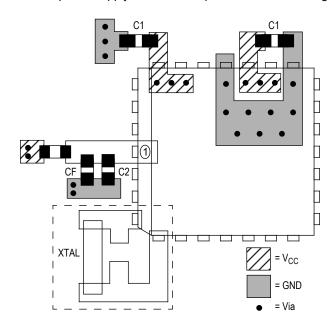



Figure 9. PCB Board Layout Recommendation for the PLCC28 Package

#### The On-Chip Crystal Oscillator

The MPC92439 features an integrated on-chip crystal oscillator to minimize system implementation cost. The integrated oscillator is a Pierce-type that uses the crystal in its parallel resonance mode. It is recommended to use a 10 to 20 MHz crystal with a load specification of  $C_L = 10$  pF. Crystals with a load specification of  $C_L = 20$  pF may be used at the expense of an slightly higher frequency than specified for the crystal. Externally connected capacitors on both the XTAL\_IN and XTAL\_OUT pins are not required but can be used to fine-tune the crystal frequency as desired.

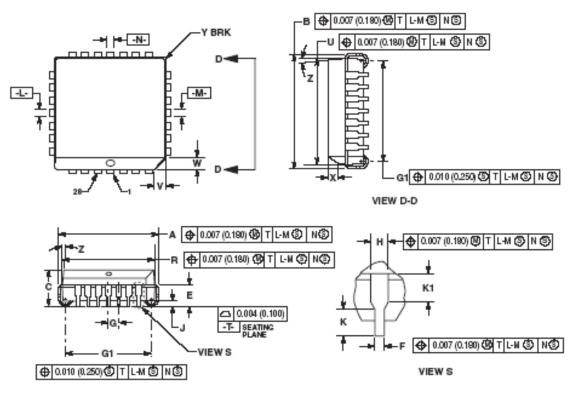
The crystal, the trace and optional capacitors should be placed on the board as close as possible to the MPC92439 XTAL\_IN and XTAL\_OUT pins to reduce crosstalk of active signals into the oscillator. Short and wide traces further reduce parasitic inductance and resistance. It is further recommended to guard the crystal circuit by placing a ground ring around the traces and oscillator components. See Table 12 for recommended crystal specifications.

**Table 12. Recommended Crystal Specifications** 

| Parameter                        | Value              |
|----------------------------------|--------------------|
| Crystal Cut                      | Fundamental AT Cut |
| Resonance Mode                   | Parallel           |
| Crystal Frequency                | 10 - 20 MHz        |
| Shunt Capacitance C <sub>0</sub> | 5 - 7 pF           |
| Load Capacitance C <sub>L</sub>  | 10 pF              |
| Equivalent Series Resistance ESR | 20–60 Ω            |



As an alternative to parallel resonance mode crystals, the oscillator also works with crystals specified in the series resonance mode. With series resonance crystals, the oscillator frequency and the synthesized output frequency of the MPC92439 will be a approximately 350-400 ppm higher than using crystals specified for parallel frequency mode. This is applicable to applications using the MPC92439 in sockets designed for the pin and function compatible MC12439 synthesizer, which has an oscillator using the crystal in its series resonance mode. Table 13 shows the recommended specifications for series resonance mode crystals


**Table 13. Alternative Crystal Specifications** 

| Parameter                        | Value              |
|----------------------------------|--------------------|
| Crystal Cut                      | Fundamental AT Cut |
| Resonance Mode                   | Series             |
| Crystal Frequency                | 10 - 20 MHz        |
| Shunt Capacitance C <sub>0</sub> | 5 - 7 pF           |
| Equivalent Series Resistance ESR | 50–80 Ω            |



# **Package Outline and Package Dimensions**

### **PACKAGE DIMENSIONS**



NOTES:

- DATUMS -L., -M., AND -H- DETERMINED
  WHERE TOP OF LEAD SHOULDER EXISTS
  PLASTIC BODY AT MOLD PARTING LINE.
- DIMENSION BY THE POSITION TO BE MEASURED AT DATUM-T-, SEATING PLANE.
   DIMENSIONS AND U.D. DO NOTINGLIDE MOUT PLANE.
   DIMENSIONS AND U.D. DO NOTINGLIDE MOUT PLANE ALLOWABLE MOUT PLANE IS 0.010 (0.250) PER SIDE.
- DI MENISIONING AND TOLEPAN CING PER ANSI Y14.5M, 1982.
- ANSI Y143M, 1082.

  5. CONTROLLING DEBINSION-INCH.

  6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.000). OWNERSIONS R AND U ARE DETERNINED AT THE OUTER MIGST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MIGLID FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT MICLIANDER ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE
- PLASTO BODY

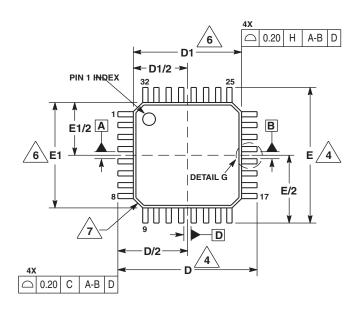
  T. DIMENSION H DOES NOT INCLUDE DAMBAR

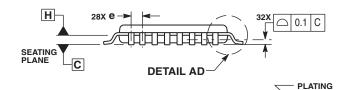
  TO DIMENSION OF INTUSION. THE DAMBAR

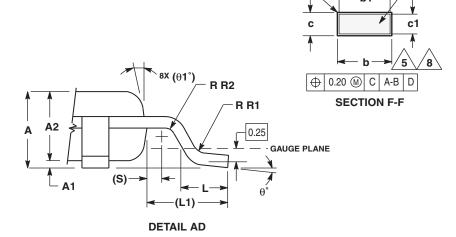
  PROTRUSION (5) SHALL NOT CAUSE THE H

  DIMENSION TO BE GREATER THAN 0.087
  (0.040). THE CAMBAR INTRUSION(5) SHALL

  NOT CAUSE THE H DIMENSION TO BE

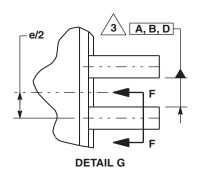

  SMALLER THAN 0.025 (0.088).


|     | INCH      | HE8                 | MILLIN    | ETER8 |
|-----|-----------|---------------------|-----------|-------|
| DIM | MIH       | MAX                 |           | MAX   |
| Α   | 0.485     | 0.495               | 12.32     | 12.57 |
| В   | 0.485     | 0.495               | 12.32     | 12.57 |
| С   | 0.165     | 0.180               | 4.20      | 4.57  |
| Е   | 0.060     | 0.110               | 2.29      | 2.79  |
| F   | 0.013     | 0.019               | 0.35 0.48 |       |
| G   | 0.050 BSC |                     | 1.27      | BSC   |
| Н   | 0.038     | 0.032               | 33.0      | 0.81  |
| J   | 0.020     |                     | 0.51      |       |
| K   | 0.025     |                     | 0.64      |       |
| R   | 0.450     | 0.456               | 11.43     | 11.58 |
| U   | 0.450     | 0.456               | 11.43     | 11.58 |
| V   | 0.042     | 0.048               | 1.07      | 1.21  |
| W   | 0.042     | 0.048               | 1.07      | 1.21  |
| Х   | 0.042     | 0.066               | 1.07      | 1.42  |
| Υ   |           | 0.020               |           | 0.50  |
| Z   | 2         | 10"                 | 2"        | 10"   |
| G1  | 0.410     | 0.410 0.430 10.42 1 |           | 10.92 |
| K1  | 0.040     |                     | 1.02      |       |


CASE 776-02 ISSUE D PLCC PLASTIC PACKAGE



### **PACKAGE DIMENSIONS**



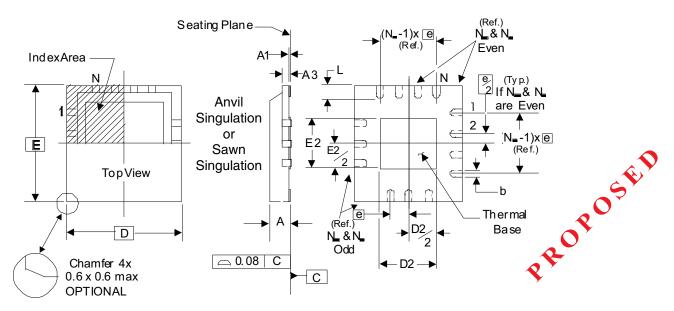


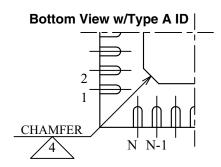


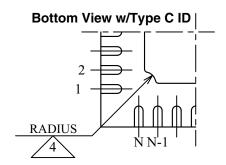

**CASE 873A-03 ISSUE B** LQFP PLASTIC PACKAGE

BASE METAL




- NOTES:


  1. DIMENSIONS ARE IN MILLIMETERS.
  2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
  3. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.
  4. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE C.
  5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION OF THE MAXIMUM B DIMENSION BY MORE THAN 0.08-mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION. 10.07-mm.
  6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. 10.07-mm.
  7. DAMBAR CLOWABLE PROTRUSION IN OLD MINIMATCH.
  8. TACT SHAPE OF EACH CORNER IS OPTIONAL.
  8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1-mm AND 0.25-mm FROM THE LEAD TIP.


|     | MILLIMETERS                                              |      |  |
|-----|----------------------------------------------------------|------|--|
| DIM | MIN                                                      | MAX  |  |
| Α   | 1.40                                                     | 1.60 |  |
| A1  | 0.05                                                     | 0.15 |  |
| A2  | 1.35                                                     | 1.45 |  |
| b   | 0.30                                                     | 0.45 |  |
| b1  | 0.30                                                     | 0.40 |  |
| С   | 0.09                                                     | 0.20 |  |
| c1  | 0.09                                                     | 0.16 |  |
| D   | 9.00 BSC<br>7.00 BSC<br>0.80 BSC<br>9.00 BSC<br>7.00 BSC |      |  |
| D1  |                                                          |      |  |
| е   |                                                          |      |  |
| E   |                                                          |      |  |
| E1  |                                                          |      |  |
| L   | 0.50                                                     | 0.70 |  |
| L1  | 1.00 REF 0° 7° 12 REF 0.08 0.20 0.08 0.20 REF            |      |  |
| q   |                                                          |      |  |
| q1  |                                                          |      |  |
| R1  |                                                          |      |  |
| R2  |                                                          |      |  |
| S   |                                                          |      |  |



# Package Outline - K Suffix for 32 Lead VFQFN







There are 2 methods of indicating pin 1 corner at the back of the VFQFN package:

- 1. Type A: Chamfer on the paddle (near pin 1)
- 2. Type C: Mouse bite on the paddle (near pin 1)

**Table 14. Package Dimensions** 

| JEDEC Variation: VHHD-2/-4 All Dimensions in Millimeters |                |         |         |  |
|----------------------------------------------------------|----------------|---------|---------|--|
| Symbol                                                   | Minimum        | Nominal | Maximum |  |
| N                                                        |                | 32      |         |  |
| Α                                                        | 0.80           |         | 1.00    |  |
| A1                                                       | 0              | *       | 0.05    |  |
| А3                                                       | 0.25 Ref.      |         |         |  |
| b                                                        | 0.18           | 0.25    | 0.30    |  |
| N <sub>D</sub> & N <sub>E</sub>                          |                |         | 8       |  |
| D&E                                                      | 5.00 Basic     |         |         |  |
| D2 & E2                                                  | 3.0 3.3        |         | 3.3     |  |
| е                                                        | 0.50 Basic     |         |         |  |
| L                                                        | 0.30 0.40 0.50 |         |         |  |

Reference Document: JEDEC Publication 95, MO-220

NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 14.



# **Revision History Sheet**

| Rev | Table | Page | Description of Change                                                            | Date       |
|-----|-------|------|----------------------------------------------------------------------------------|------------|
| 5   | 6     | 6    | Per PCN N0611-01, changed Minimum $V_{OH} = V_{CC}$ - 1.02V to $V_{CC}$ - 1.11V. | 10/19/2012 |
| 5   |       | 1    | Product Discontinuance Notice – Last Time Buy Expires on (12/7/2013)             | 2/6/2013   |



#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

## **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

# **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/