

AN3244 Application note

EVAL6230QR demonstration board

Introduction

This application note describes the demonstration board of the DMOS driver for the three-phase brushless DC motor driver L6230Q. The board implements a typical application which can be used as a reference design to drive three-phase brushless DC motors with currents up to 1 A DC.

Thanks to the small footprint of the L6230Q (QFN 5x5 mm) the PCB is very compact (32x31 mm).

Figure 1. EVAL6230QR demonstration board

AM02583v1

1 Demonstration board description

Table 1. EVAL6230QR: pin connections

Name	Туре	Function
VS	Power supply	Power supply voltage.
PGND	Ground	Power ground terminal.
VS_FB	Analog output	Supply voltage feedback (1/115 divider ratio)
EN	Logic input	Chip enable (active 'H'). When 'L' switches OFF all power DMOS.
IN1	Logic input	Logic input half bridge 1.
EN1	Logic input	Enable input half bridge 1.
IN2	Logic input	Logic input half bridge 2.
EN2	Logic input	Enable input half bridge 2.
IN3	Logic input	Logic input half bridge 3.
EN3	Logic input	Enable input half bridge 3.
DIAG	Open-drain output	Diagnostic pin. When 'L' signals an overcurrent or overtemperature event.
CPOUT	Open-drain output	Open-drain output of internal comparator.
CP-	Analog input	Inverting input of internal comparator.
CP+	Analog input	Non-inverting input of internal comparator.
SENSE1	Analog output	Half bridge 1 source pin.
SENSE2	Analog output	Half bridge 2 source pin.
SENSE3	Analog output	Half bridge 3 source pin.
OUT1	Power output	Output half bridge 1.
OUT2	Power output	Output half bridge 2.
OUT3	Power output	Output half bridge 3.

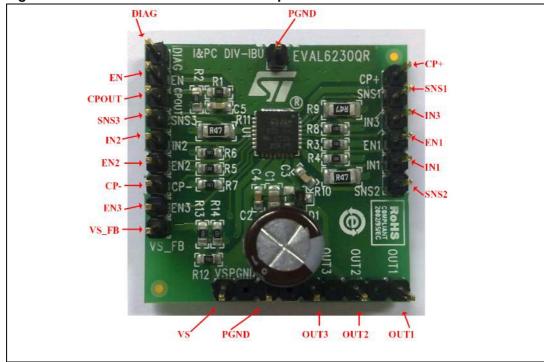


Figure 2. EVAL6230QR connector description

The EN pin is chip enable (active high). The ENx pins enable the corresponding half-bridge. When low logic level is applied, the half bridge output is in high-impedance status (both high and low side MOS turned off).

The INx input pins drive the corresponding half bridge. When low logic level is applied, the low side MOS is switched on, whereas a high logic level turns on the high side MOS.

A general purpose comparator is integrated in the IC, its inputs and open-drain output are available on CP-, CP+, and CPOUT. It can be used for the current control or BEMF zero crossing detection (refer to the L6230; *DMOS driver for three-phase brushless DC motor*, datasheet for more details).

The power supply feedback and sensing signals are available for external conditioning, for example, to perform a field oriented control driving method.

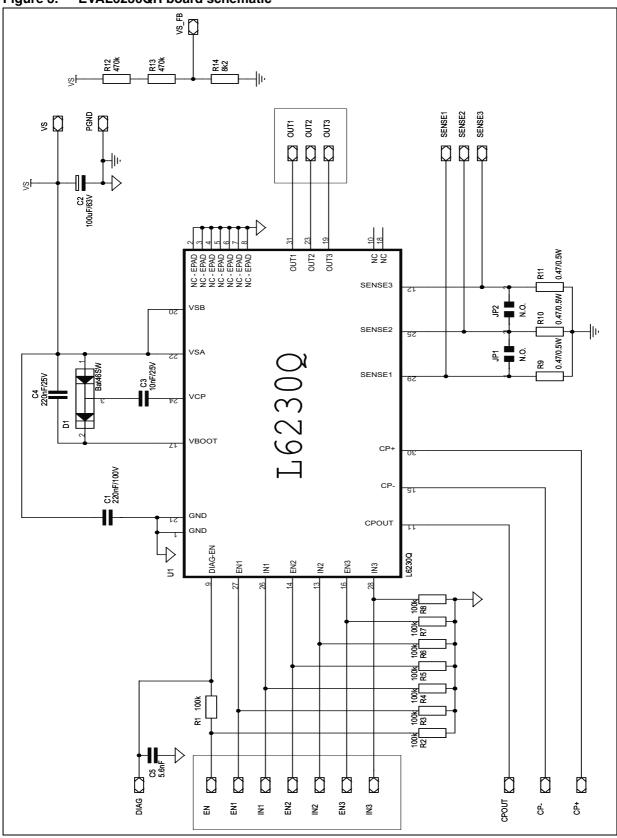

Table 2 summarizes the electrical specification of the application, *Figure 3* shows the electrical schematic and *Table 3* contains the parts list.

Table 2. EVAL6230QR: electrical specification (recommended values)

Parameter Value

Parameter	Value
Supply voltage range (VS)	8 to 52 Vdc
RMS output current rating (OUTx)	up to 1.4 A
Switching frequency	up to 100 kHz
Input and enable voltage range	0 to +5 V
Comparator input voltage range	0 to +5 V
Operating temperature range	-25 °C to +125 °C
L6230Q thermal resistance junction to ambient	42 °C/W

Figure 3. EVAL6230QR board schematic

Part reference Part value Part description C1 220 nF/100 V Capacitor C2 100 μF/63 V Capacitor C3 10 nF/25 V Capacitor C4 220 nF/25 V Capacitor C5 5.6 nF Capacitor D1 BAT46SW Diodes R1 ÷ R8 $100 \text{ k}\Omega 5\% 0.25 \text{ W}$ Resistor R9, R10, R11 $0.47 \Omega - 0.5 W$ Resistor R12, R13 470 k Ω 5 % 0.25 W Resistor R14 $8.2 \text{ k}\Omega 5\% 0.25 \text{ W}$ Resistor Three-phase BLDC motor driver in

Table 3. **EVAL6230QR** parts list

U1

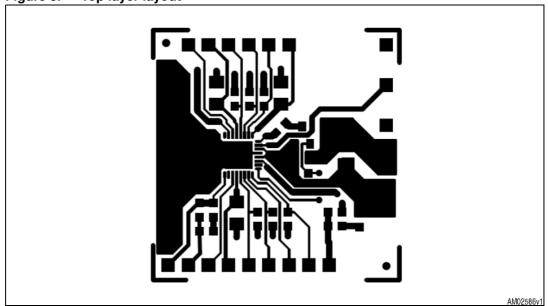
D1, C3, and C4 realize a charge pump circuit, which generates the supply voltage for the high side integrated MOSFETs. Due to voltage and current switching at relatively high frequency, these components are connected together through short paths in order to minimize induced noise on other circuitries.

VFQFPN5x5

L6230Q

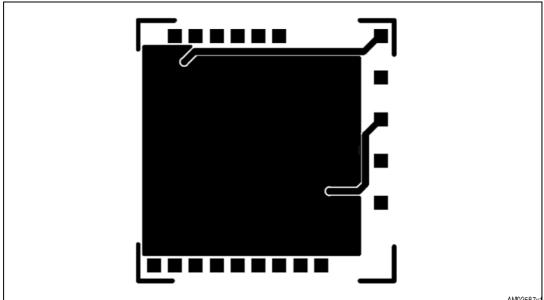
R2 and C5 are used by the overcurrent protection integrated circuitry to set the protection timings (disable time, $t_{DISABLE}$, is about 200 μ s and delay time, t_{DELAY} , is about 1 μ s with the values in Table 3).

Figure 4, Figure 5, and Figure 6 show the component placement and the two layer layout of the EVAL6230QR demonstration board. A GND area has been used for the IC power dissipation.


AM02585v1

31 mm

NT CLOAL S


Figure 4. EVAL6230QR component placement

6/9 Doc ID 17742 Rev 1

Figure 6. Bottom layer layout

Revision history AN3244

2 Revision history

Table 4. Document revision history

Date	Revision	Changes
26-Nov-2010	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

