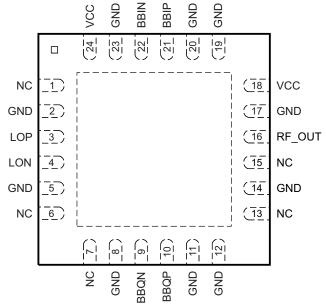
www.ti.com

0.35-GHz TO 4-GHz QUADRATURE MODULATORS

Check for Samples: TRF370315, TRF370333


FEATURES

- 75-dBc Single-Carrier WCDMA ACPR at -11-dBm Channel Power
- Low Noise Floor: -163 dBm/Hz
- OIP3 of 23 dBm
- P1dB of 9 dBm
- Unadjusted Carrier Feedthrough of -40 dBm
- Unadjusted Side-Band Suppression of -40 dBc
- Single Supply: 4.5 V-5.5 V Operation
- Silicon Germanium Technology
- TRF370333 With 3.3-V CM at I, Q Baseband Inputs
- TRF370315 With 1.5-V CM at I, Q Baseband Inputs

APPLICATIONS

- **Cellular Base Transceiver Station Transmit** Channel
- CDMA: IS95, UMTS, CDMA2000, TD-SCDMA
- TDMA: GSM, IS-136, EDGE/UWC-136
- **Wireless Local Loop**
- Wireless MAN Wideband Transceivers

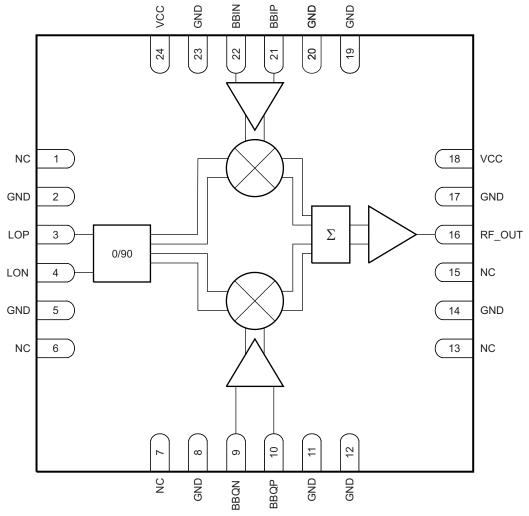
RGE PACKAGE (TOP VIEW)

P0024-04

DESCRIPTION

The TRF370315 and TRF370333 are low-noise direct quadrature modulators, capable of converting complex modulated signals from baseband or IF directly up to RF. The TRF370315 and TRF370333 are ideal for high-performance direct RF modulation from 350 MHz up to 4 GHz. These modulators are implemented as a double-balanced mixer. The RF output block consists of a differential to single-ended converter and an RF amplifier capable of driving a single-ended 50-Ω load without any need of external components. The TRF370333 and TRF370315 devices have different common-mode voltage ratings at the I/Q baseband inputs. The TRF370315 requires a 1.5-V common-mode voltage, and the TRF370333 requires a 3.3-V common-mode voltage.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

FUNCTIONAL BLOCK DIAGRAM

B0175-01

NOTE: NC = No connection

DEVICE INFORMATION

TERMINAL FUNCTIONS

TEI	RMINAL		
NAME	NO.	I	DESCRIPTION
BBIN	22	I	In-phase input
BBIP	21	I	In-phase input
BBQN	9	I	In-quadrature input
BBQP	10	I	In-quadrature input
GND	2, 5, 8,11, 12, 14, 17, 19, 20, 23	_	Ground
LON	4	I	Local oscillator input
LOP	3	I	Local oscillator input
NC	1, 6, 7, 13, 15	_	No connect
RF_OUT	16	0	RF output
VCC	18, 24	_	Power supply

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range (unless otherwise noted).

			VALUE ⁽²⁾	UNIT
	Supply voltage range		−0.3 V to 6	V
	Digital I/O voltage range		$-0.3 \text{ V to V}_{\text{I}} + 0.3$	V
TJ	Operating virtual junction temper	Operating virtual junction temperature range		°C
T _A	Operating ambient temperature	range	-40 to 85	°C
T _{stg}	Storage temperature range		-65 to 150	°C
CCD	Flootrootatic discharge rations	Human body model (HBM)	75	V
ESD	Electrostatic discharge ratings	Charged device model (CDM)	75	V

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (unless otherwise noted).

		MIN	NOM	MAX	UNIT
V_{CC}	Power-supply voltage	4.5	5	5.5	٧

THERMAL CHARACTERISTICS

PARAMETER		TEST CONDITIONS	VALUE	UNIT
R_{\thetaJA}	Thermal resistance, junction-to-ambient	High-K board, still air	29.4	°C/W
$R_{\theta JC}$	Thermal resistance, junction-to-case		18.6	°C/W

⁽²⁾ All voltage values are with respect to network ground terminal.

Over operating free-air temperature range (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Para	meters		*		"	
	Total supply current (1.5 V CM)	T _A = 25°C		195	205	A
I _{CC}	Total supply current (3.3 V CM)	T _A = 25°C		210	235	mA
LO Input	t (50-Ω, Single-Ended)					
	LO frequency range		0.35		4	GHz
f_{LO}	LO input power		-5	0	12	dBm
	LO port return loss			15		dB
Baseban	nd Inputs					
	Land Oissand de communitation	TRF370333		3.3		
V_{CM}	I and Q input dc common voltage	TRF370315		1.5		V
BW	1-dB input frequency bandwidth		350			MHz
	Input impedance, resistance	TDF270222		10		kΩ
Z _{I(single} ended)	Input impedance, parallel capacitance	- TRF370333		3		pF
	Input impedance, resistance	TDF070045		5		kΩ
	Input impedance, parallel capacitance	TRF370315		3		pF

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, power supply = 5 V, $T_A = 25$ °C, $f_{LO} = 350$ MHz at 0 dBm, TRF370333 (unless otherwise noted).

RF Outp	ut Parameters					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0	Voltage gain ⁽¹⁾	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-4.18		dB
G		TRF370333: Output RMS voltage over input I (or Q) RMS voltage		-4.0		dB
P1dB	Output compression point			9.4		dBm
IP3	Output IP3			24.5		dBm
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		73.8		dBm
	Carrier feedthrough	Unadjusted		35.6		dBm
	Sideband suppression	Unadjusted		33.8		dBc
		DC only to BB inputs, 13 MHz offset from f _{LO}		-158.0		
	Output noise floor	1.8-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-152.6		dBm/Hz
		6-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-157.4		

⁽¹⁾ Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS} .

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, power supply = 5 V, $T_A = 25$ °C, $f_{LO} = 400$ MHz at 0 dBm, TRF370315 (unless otherwise noted).

RF Outp	ut Parameters					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
G	Valtage gain (1)	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-2.409		dB
G	Voltage gain ⁽¹⁾	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		-1.905		dB
P1dB	Output compression point			9.4		dBm
IP3	Output IP3		20	23		dBm
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		62		dBm
	Carrier feedthrough	Unadjusted		-37		dBm
	Sideband suppression	Unadjusted		-39		dBc

⁽¹⁾ Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS} .

Over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $f_{LO} = 900$ MHz at 0 dBm, TRF370315 (unless otherwise noted).

RF Out	put Parameters					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Voltage gain ⁽¹⁾	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-3.552		dB
G	voltage gain\	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		-2.79		dB
P1dB	Output compression point			9		dBm
IP3	Output IP3		20	23		dBm
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		63		dBm
	Carrier feedthrough	Unadjusted		-37		dBm
	Sideband suppression	Unadjusted		-42		dBc
	Output return loss			9		dB
		DC only to BB inputs, 13 MHz offset from f _{LO}		-160.4		
	Output noise floor	1.8-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-156.6		dBm/Hz
		6-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-158.5		
		1 EDGE signal, P _{out} = –5 dBm		0.59%		
EVM	Error vector magnitude (rms)	1 EDGE signal, P _{out} = 0 dBm		0.63%		
_ v ivi	Error vector magnitude (mis)	1 EDGE signal, P _{out} = 0 dBm, 2nd harmonic of LO = -15 dBm, 3rd harmonic of LO = -33 dBm ⁽²⁾		1%		

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $f_{LO} = 1800$ MHz at 0 dBm, TRF370315 (unless otherwise noted).

RF Out	put Parameters					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0	Vallaga vaia (1)	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-3.345		dB
G	Voltage gain ⁽¹⁾	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		-2.367		dB
P1dB	Output compression point			9.5		dBm
IP3	Output IP3		20	23		dBm
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		55		dBm
	Carrier feedthrough	Unadjusted		-40		dBm
	Sideband suppression	Unadjusted		-47		dBc
	Output return loss			8		dB
		DC only to BB inputs, 13 MHz offset from f _{LO}		-162.6		
	Output noise floor	1.8-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-160		dBm/Hz
		6-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-159.4		
		1 EDGE signal, P _{out} = –5 dBm		0.66%		
EVM	Error vector magnitude (rms)	1 EDGE signal, P _{out} = 0 dBm		0.74%		
L V IVI	Error vector magnitude (rms)	1 EDGE signal, P _{out} = 0 dBm, 2nd harmonic of LO = -15.5 dBm, 3rd harmonic of LO = -30 dBm ⁽²⁾		1%		

Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS} . The second- and third-harmonic tests were made independently at each frequency.

 ⁽¹⁾ Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS}.
 (2) The second- and third-harmonic tests were made independently at each frequency.

Over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $f_{LO} = 1960$ MHz at 0 dBm, TRF370315 (unless otherwise noted).

RF Out	put Parameters					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C	Voltage gain ⁽¹⁾	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-3.449		dB
G	voltage gain	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		-2.479		dB
P1dB	Output compression point			9.5		dBm
IP3	Output IP3, TRF370315		20	23		dBm
IF3	Output IP3, TRF370333		18	20		UDIII
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		55		dBm
	Carrier feedthrough	Unadjusted		-40		dBm
	Sideband suppression	Unadjusted		-47		dBc
	Output return loss			8		dB
		DC only to BB inputs, 13 MHz offset from f _{LO}		-162.6		
	Output noise floor	1.8-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-160		dBm/Hz
		6-MHz offset from f _{LO} ; 1 CW tone; P _{out} = 0 dBm		-159.4		
		1 EDGE signal, P _{out} = -5 dBm		0.66%		
EVM	Error vector magnitude (rms)	1 EDGE signal, P _{out} = 0 dBm		0.74%		
L V IVI	Error vector magnitude (mis)	1 EDGE signal, P _{out} = 0 dBm, 2nd harmonic of LO = -15.5 dBm, 3rd harmonic of LO = -30 dBm ⁽²⁾		1%		

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, power supply = 5 V, $T_A = 25$ °C, $f_{LO} = 2140$ MHz at 0 dBm, TRF370315 (unless otherwise noted).

RF Outp	out Parameters					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
G	Voltage gain ⁽¹⁾	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-3.432		dB
9	voltage gam v	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		-2.791		dB
P1dB	Output compression point			9.5		dBm
IDO	Output IP3, TRF370315		20	23		alD.aa
IP3	Output IP3, TRF370333		18	21		dBm
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		58		dBm
	Carrier feedthrough	Unadjusted		-40		dBm
	Sideband suppression	Unadjusted		-47		dBc
	Output return loss			8.5		dB
		20-MHz offset from f _{LO} ; dc only to BB inputs		-163		
	Output noise floor	20-MHz offset from f _{LO} ; 1 WCDMA signal; P _{in} = -20.5 dBVrms (I and Q input)		-162		dBm/Hz
		1 WCDMA signal; P _{out} = -13 dBm		-75.8		
ACPR	Adjacent-channel power ratio	1 WCDMA signal; P _{out} = –9 dBm		-72		dBc
	Tallo	4 WCDMA signals; P _{out} = −23 dBm per carrier		-68		
		1 WCDMA signal; P _{out} = -13 dBm		-79		
	Alternate-channel power ratio	1 WCDMA signal; P _{out} = -9 dBm		-80.5		dBc
	14110	4 WCDMA signals; P _{out} = −23 dBm per carrier		-69		

Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS}. (1)

 ⁽¹⁾ Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS}.
 (2) The second- and third-harmonic tests were made independently at each frequency.

Over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $f_{LO} = 2500$ MHz at 0 dBm, TRF370315 (unless otherwise noted).

RF Out	put Parameters					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
G	Valta and main (1)	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-2.892		dB
G	Voltage gain ⁽¹⁾	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		-1.379		dB
P1dB	Output compression point			9.5		dBm
IP3	Output IP3		18	21		dBm
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		63		dBm
	Carrier feedthrough	Unadjusted		-38		dBm
	Sideband suppression	Unadjusted		-47		dBc

⁽¹⁾ Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS} .

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, power supply = 5 V, $T_A = 25$ °C, $f_{LO} =$ **3600 MHz** at 0 dBm, TRF370315 (unless otherwise noted).

RF Output Parameters											
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT					
0	Valtage gain (1)	TRF370315: Output RMS voltage over input I (or Q) RMS voltage		-1.265		dB					
G	Voltage gain ⁽¹⁾	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		1.529		dB					
P1dB	Output compression point			9.5		dBm					
IP3	Output IP3		20	23		dBm					
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		63		dBm					
	Carrier feedthrough	Unadjusted		-41		dBm					
	Sideband suppression	Unadjusted		-45		dBc					

⁽¹⁾ Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS} .

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $f_{LO} = 4000$ MHz at 0 dBm, TRF370315 (unless otherwise noted).

RF Output Parameters										
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
G	Valta and main (1)	TRF370315: Output RMS voltage over input I (or Q) RMS voltage	-2.242			dB				
	Voltage gain ⁽¹⁾	TRF370333: Output RMS voltage over input I (or Q) RMS voltage		0.543		dB				
P1dB	Output compression point			9		dBm				
IP3	Output IP3		19	22		dBm				
IP2	Output IP2	Measured at f _{LO} + 2 × f _{BB}		50		dBm				
	Carrier feedthrough	Unadjusted		-37		dBm				
	Sideband suppression	Unadjusted		-40		dBc				

⁽¹⁾ Single 4-MHz CW baseband input tone, differential-ended 196 V_{RMS} .

TYPICAL CHARACTERISTICS

OUTPUT POWER BASEBAND VOLTAGE 15 TRF3703-15 TRF3703-33 10 P_{OUT} - Output Power at 1.8 GHz - dBm 5 0 -5 -10 -15 -20 0.01 0.1 VBB - Baseband Voltage, Single-Ended, RMS - V

Figure 1.

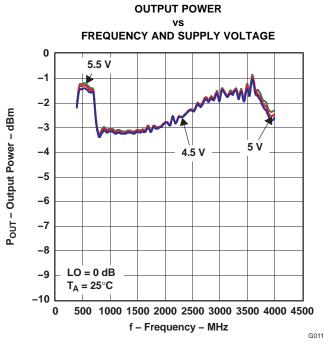


Figure 3.

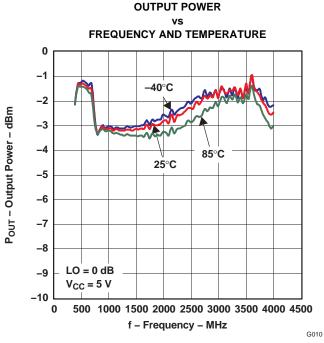


Figure 2.

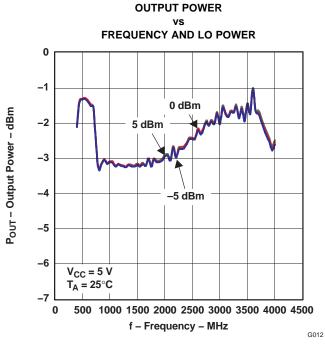


Figure 4.

P1dB - dBm

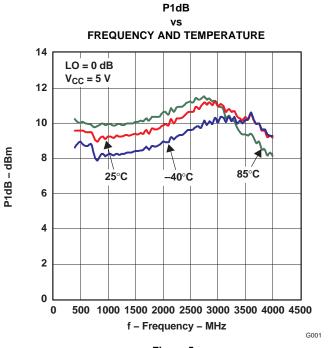


Figure 5.

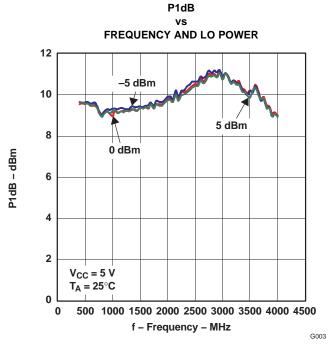


Figure 7.

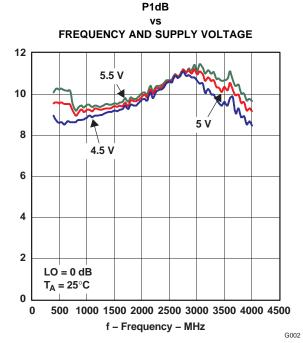


Figure 6.

TRF370315

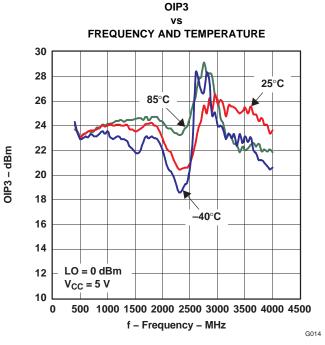


Figure 8.

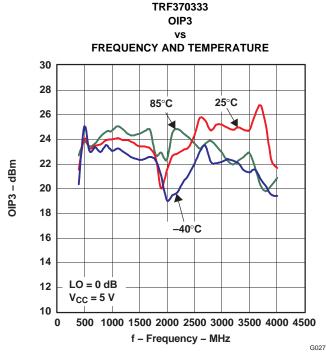


Figure 9.

TRF370333

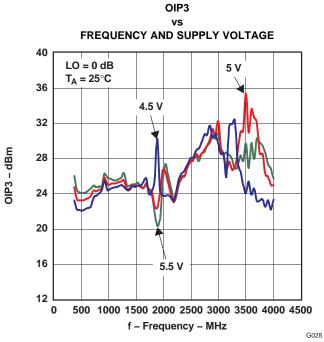
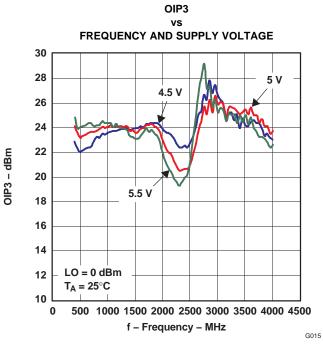



Figure 11.

TRF370315

Figure 10.

TRF370315

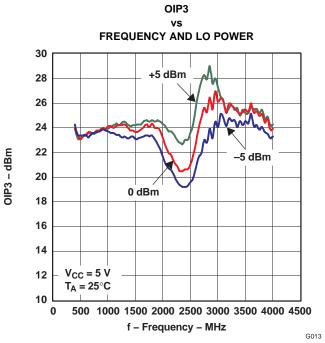
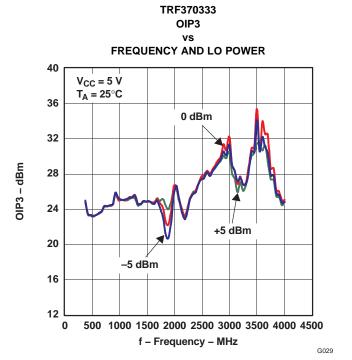



Figure 12.

Figure 13.

UNADJUSTED SIDEBAND SUPPRESSION vs FREQUENCY AND SUPPLY VOLTAGE

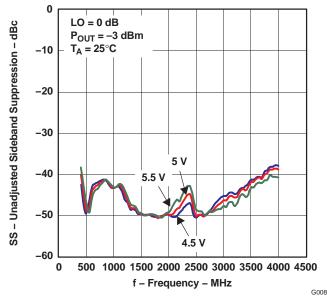


Figure 15.

UNADJUSTED SIDEBAND SUPPRESSION vs FREQUENCY AND TEMPERATURE

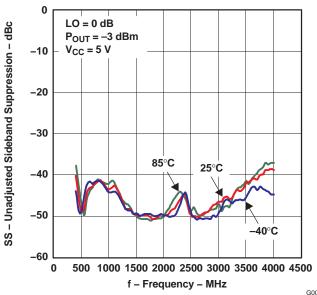


Figure 14.

UNADJUSTED SIDEBAND SUPPRESSION vs FREQUENCY AND LO POWER

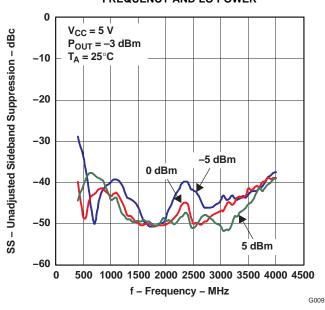


Figure 16.

ADJUSTED SIDEBAND SUPPRESSION

FREQUENCY AND TEMPERATURE

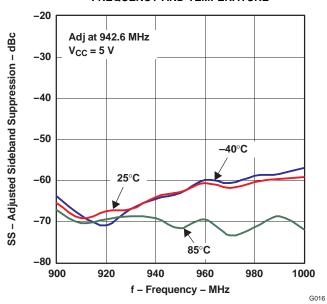


Figure 17.

ADJUSTED SIDEBAND SUPPRESSION

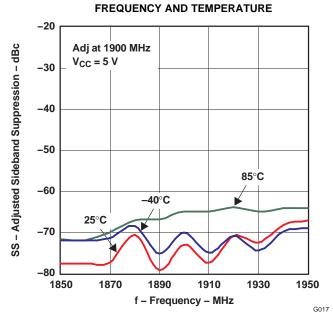


Figure 18.

ADJUSTED SIDEBAND SUPPRESSION

FREQUENCY AND TEMPERATURE

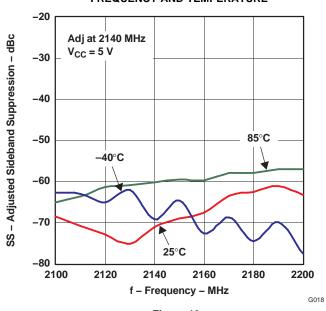


Figure 19.

NOISE AT 13-MHz OFFSET (dBm/Hz)

FREQUENCY AND SUPPLY VOLTAGE

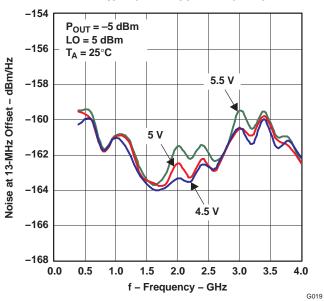


Figure 20.

NOISE AT 13-MHz OFFSET (dBm/Hz)

TYPICAL CHARACTERISTICS (continued)

G020

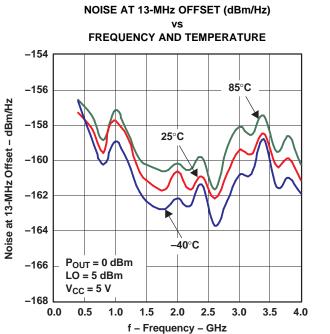


Figure 21.

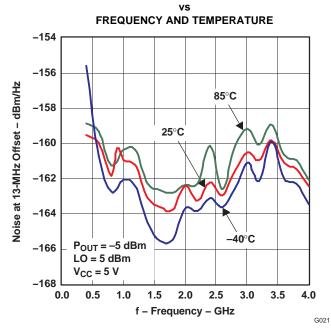


Figure 22.

NOISE AT 13-MHz OFFSET (dBm/Hz) vs FREQUENCY AND TEMPERATURE 54 Pout = -10 dBm

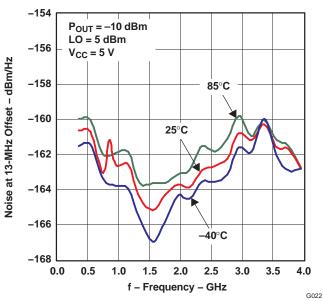


Figure 23.

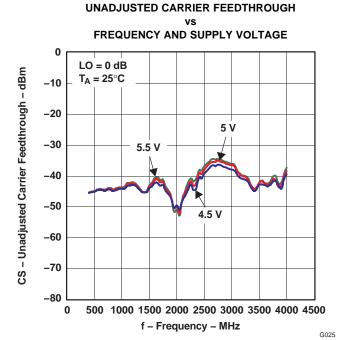
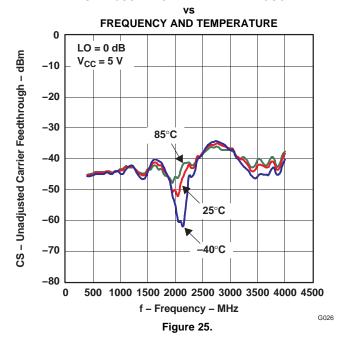
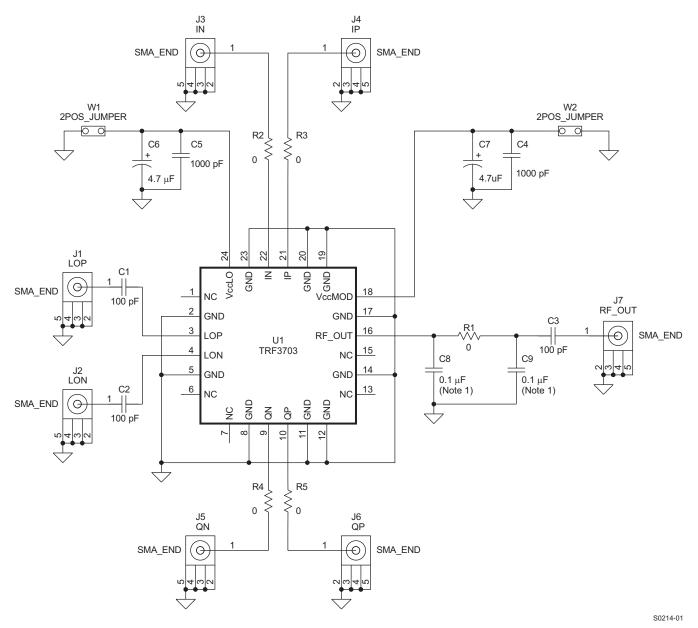



Figure 24.

UNADJUSTED CARRIER FEEDTHROUGH

APPLICATION INFORMATION AND EVALUATION BOARD

Basic Connections


- See Figure 26 for proper connection of the TRF3703315 and TRF370333 modulator.
- Connect a single power supply (4.5 V–5.5 V) to pins 18 and 24. These pins should be decoupled as shown on pins 4, 5, 6, and 7.
- Connect pins 2, 5, 8, 11, 12, 14, 17, 19, 20, and 23 to GND.
- Connect a single-ended LO source of desired frequency to LOP (amplitude between –5 dBm and 12 dBm).
 This should be ac-coupled through a 100-pF capacitor.
- Terminate the ac-coupled LON with 50 Ω to GND.
- Connect a baseband signal to pins 21 = I, $22 = \overline{I}$, 10 = Q, and $9 = \overline{Q}$.
- The differential baseband inputs should be set to the proper level, 3.3 V for the TRF370333 or 1.5 V for the TRF370315.
- RF_OUT, pin 16, can be fed to a spectrum analyzer set to the desired frequency, LO ± baseband signal. This pin should also be ac-coupled through a 100-pF capacitor.
- · All NC pins can be left floating.

ESD Sensitivity

RF devices may be extremely sensitive to electrostatic discharge (ESD). To prevent damage from ESD, devices should be stored and handled in a way that prevents the build-up of electrostatic voltages that exceed the rated level. Rated ESD levels should also not be exceeded while the device is installed on a printed circuit board (PCB). Follow these guidelines for optimal ESD protection:

- Low ESD performance is not uncommon in RF ICs; see the *Absolute Maximum Ratings* table. Therefore, customers' ESD precautions should be consistent with these ratings.
- The device should be robust once assembled onto the PCB unless external inputs (connectors, etc.) directly
 connect the device pins to off-board circuits.

(1) Do not install.

Figure 26. TRF3703 EVM Schematic

Figure 27 shows the top view of the TRF3703 EVM board.

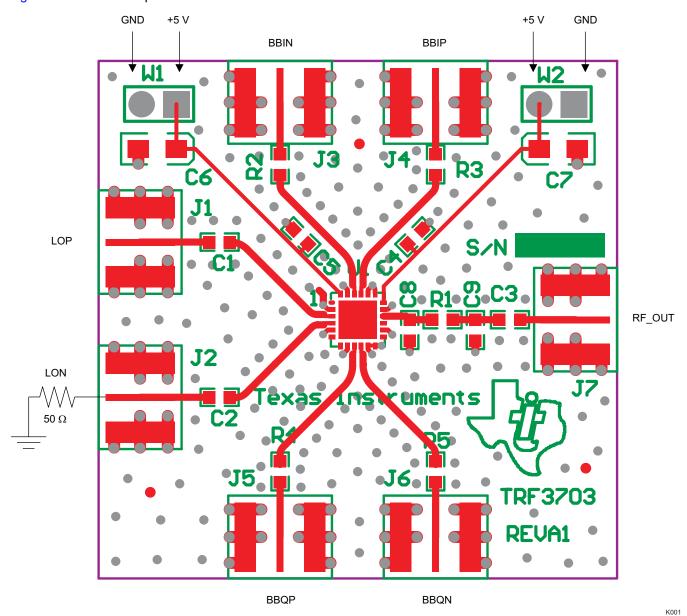


Figure 27. TRF3703 EVM Board Layout

Table 1. Bill of Materials for TRF3703 EVM

Value	lue Footprint QTY Part Number		Part Number	Vendor	Digi-Key Number	REF DES	Not Installed
Tantalum 4.7-µF, 10-V, 10% capacitor	3216	2	T491A475K010AS	KEMET	399-1561-1-ND	C6, C7	
1000-pF, 50-V, 5% capacitor	603	2	ECJ-1VC1H102J	Panasonic	PCC2151CT-ND	C4, C5	
100-pF, 50-V, 5% capacitor	603	3	ECJ-1VC1H101J	Panasonic	PCC101ACVCT-ND	C1, C2, C3	
Capacitor	603	0					C8, C9
0-Ω resistor, 1/10-W, 5%	603	5	ERJ-3GEY0R00V	Panasonic	P0.0GCT-ND	R1, R2, R3, R4, R5	

Value	Footprint	QTY	Part Number	Vendor	Digi-Key Number	REF DES	Not Installed
TRF3703	24-QFN-PP- 4X4MM	1		TI		U1	
SMA connectors	SMA_END_ SMALL	6	16F3627	Newark	142-0711-821	J1, J2, J3, J4, J5, J6, J7	
2POS_HEADER	2POS_JUMP	2	HTSW-150-07-L-S	SAMTEC	N/A	W1, W2	

GSM Applications

The TRF370315 and TRF370333 are suited for GSM applications because of the high linearity and low noise level over the entire recommended operating range. These devices also have excellent EVM performance, which makes them ideal for the stringent GSM/EDGE applications.

WCDMA Applications

The TRF370315 and TRF370333 are also optimized for WCDMA applications where both adjacent-channel power ratio (ACPR) and noise density are critically important. Using Texas instruments' DAC568X series of high-performance digital-to-analog converters as depicted in Figure 28, excellent ACPR levels were measured with one-, two-, and four-WCDMA carriers. See *Electrical Characteristics*, $f_{LO} = 2140$ MHz for exact ACPR values.

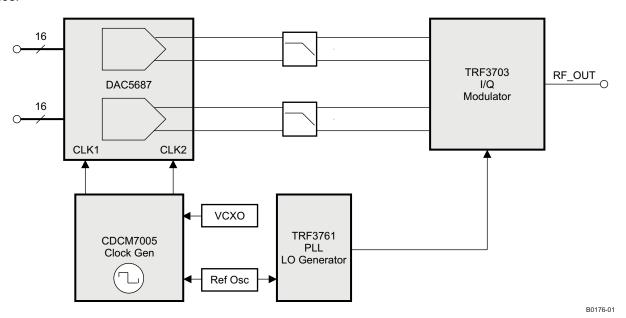


Figure 28. Typical Transmit Setup Block Diagram

DEFINITION OF SPECIFICATIONS

Unadjusted Carrier Feedthrough

This specification measures the amount by which the local oscillator component is attenuated in the output spectrum of the modulator relative to the carrier. This further assumes that the baseband inputs delivered to the pins of the TRF370315 and TRF370333 are perfectly matched to have the same dc offset (VCM). This includes all four baseband inputs: I, Ī, Q, and Q̄. This is measured in dBm.

Adjusted (Optimized) Carrier Feedthrough

This differs from the unadjusted suppression number in that the baseband input dc offsets are iteratively adjusted around their theoretical value of VCM to yield the maximum suppression of the LO component in the output spectrum. This is measured in dBm.

Unadjusted Sideband Suppression

This specification measures the amount by which the unwanted sideband of the input signal is attenuated in the output of the modulator, relative to the wanted sideband. This further assumes that the baseband inputs delivered to the modulator input pins are perfectly matched in amplitude and are exactly 90° out of phase. This is measured in dBc.

Adjusted (Optimized) Sideband Suppression

This differs from the unadjusted sideband suppression in that the baseband inputs are iteratively adjusted around their theoretical values to maximize the amount of sideband suppression. This is measured in dBc.

Suppressions Overtemperature

This specification assumes that the user has gone though the optimization process for the suppression in question, and set the optimal settings for the I, Q inputs. This specification then measures the suppression when temperature conditions change after the initial calibration is done.

Figure 29 shows a simulated output and illustrates the respective definitions of various terms used in this data sheet. The graph assumes a baseband input of 50 kHz.

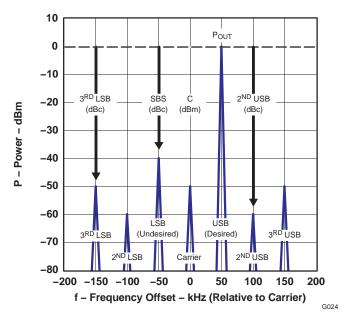


Figure 29. Graphical Illustration of Common Terms

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	ranges from Revision I (July, 2010) to Revision J	ige
	Changed <i>voltage gain</i> specifications for f _{LO} = 350-MHz performance data	. 4
•	Updated <i>voltage gain</i> specifications for f _{LO} = 400-MHz performance data	. 4
•	Revised <i>voltage gain</i> specifications for f _{LO} = 900-MHz performance data	. 5
•	Changed <i>voltage gain</i> specifications for f _{LO} = 1800-MHz performance data	. 5
•	Revised <i>voltage gain</i> specifications for f _{LO} = 1960-MHz performance data	. 6
•	Updated <i>voltage gain</i> specifications for f _{LO} = 2140-MHz performance data	
•	Revised <i>voltage gain</i> specifications for f _{LO} = 2500-MHz performance data	. 7
•	Changed <i>voltage gain</i> specifications for f _{LO} = 3600-MHz performance data	
•	Updated <i>voltage gain</i> specifications for f _{LO} = 4000-MHz performance data	
<u>.</u>	Replaced Figure 1	
Cł	nanges from Revision H (January, 2010) to Revision I	ıge
	Changed document title to reflect 0.35-GHz minimum operating level	. 1
•	Updated Description section to reflect 350-MHz minimum operation	. 1
•	Changed LO frequency range minimum specification from 0.4 GHz to 0.35 GHz	. 4
•	Added <i>Electrical Characteristics</i> table for f _{LO} = 350-MHz performance data	. 4

www.ti.com 14-Oct-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TRF370315IRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TRF37 0315	Samples
TRF370315IRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TRF37 0315	Samples
TRF370333IRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TRF37 0333	Samples
TRF370333IRGET	ACTIVE	VQFN	RGE	24	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TRF37 0333	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

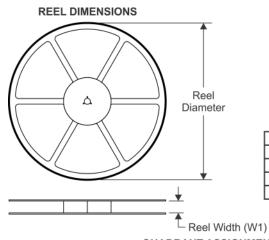
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

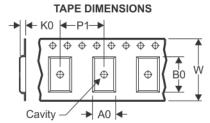
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

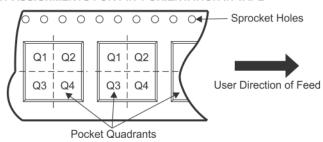
www.ti.com 14-Oct-2022


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

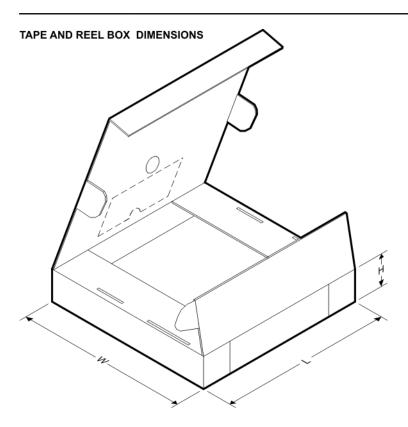

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

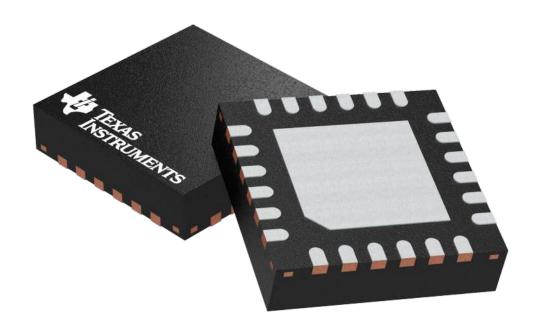
www.ti.com 22-Nov-2018


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

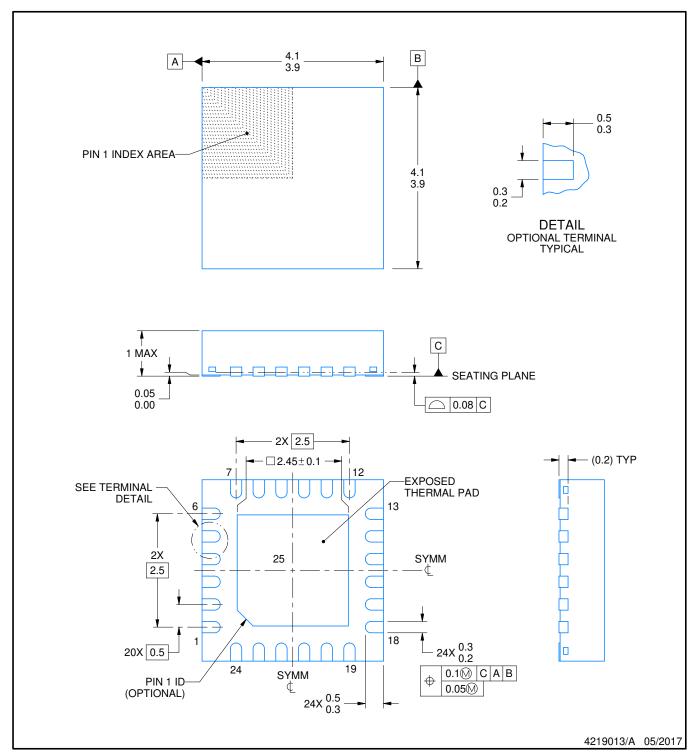
*All dimensions are nominal


All dimensions are nominal												
Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRF370315IRGER	VQFN	RGE	24	3000	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1
TRF370315IRGET	VQFN	RGE	24	250	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1
TRF370333IRGER	VQFN	RGE	24	3000	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1
TRF370333IRGET	VQFN	RGE	24	250	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1

www.ti.com 22-Nov-2018

*All dimensions are nominal

7 til dilliciololio are nominal							
Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRF370315IRGER	VQFN	RGE	24	3000	367.0	367.0	38.0
TRF370315IRGET	VQFN	RGE	24	250	367.0	367.0	38.0
TRF370333IRGER	VQFN	RGE	24	3000	367.0	367.0	38.0
TRF370333IRGET	VQFN	RGE	24	250	367.0	367.0	38.0

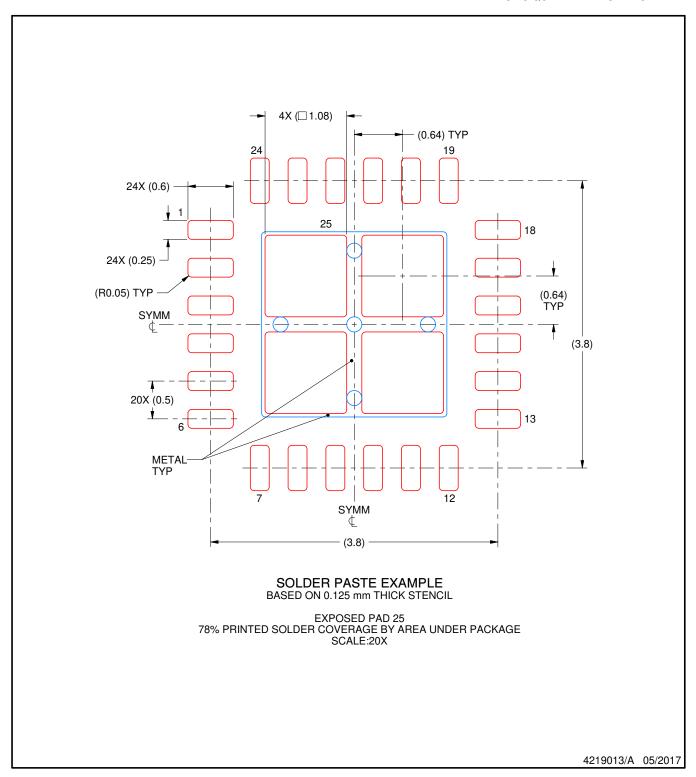


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4204104/H

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated