

Raspberry Pi Relay Board v1.0

The Relay Shield utilizes four high quality relays and provides NO/NC interfaces that control the load of high current. Which means it could
be a nice solution for controlling devices that couldn’t be directly controlled by IIC bus. Standardized shield form factor enables smoothly
connection with the Raspberry Pi. The shield also has four dynamic indicators show the on/off state of each relay.

Features

 Raspberry Pi compatible

 Interface: IIC, Three hardware SW1 (1, 2, 3) select the fixed I2C-bus address

 Relay screw terminals

 Standardized shield shape and design

 LED working status indicators for each relay

 COM, NO (Normally Open), and NC (Normally Closed) relay pins for each relay

 High quality relays

 Working status indicators for each relay

Specifications

Item Min Typical Max Unit

Supply Voltage 4.75 5 5.5 VDC

Working Current 10 / 360 mA

Switching Voltage / / 30/250 VDC/VAC

Switching Current / / 15 A

Frequency / 1 / HZ

Switching Power / / 2770VA/240 W

Relay Life 100,000 / / Cycle

Dimensions 91.20 * 56.15 * 32 mm

Caution
Place 2 layers of electrical tape on the top of the Arduino's usb connector. This will prevent the relay shield from making contact. Do not

operate voltage more than 35V DC.

Hardware Overview

Usage

This section was written by John M. Wargo, here we would like to express our gratitude to John's contribution. We have amended the original
text a little to fit it in the whole Seeed's document. Please click here to visit the original document on his website.

The steps for installing the board and verifying that it works includes the following steps:

 Step1. Mount the Relay board on the Raspberry Pi

 Step2. Enable the Raspbian I2C software interface

 Step3. Validate that the Raspberry Pi recognizes the board

 Step4. Run some Python code to exercise the board

Step1. Mounting the Relay Board

Mounting the board is easy, it comes with the appropriate female headers you need to mount it on any Raspberry Pi board with male
headers. Note: You’ll have to add male headers to the Raspberry Pi Zero to use the board.

We recommend you putting some electrical tape on top of the Raspberry Pi Ethernet port before mounting the board. If you mount the board
without using standoffs (as I’ve done in the example figure below), there’s a chance the board will make contact with the Ethernet port
housing and cause a problem.

Figure 1

For a production project, We’d definitely recommend using standoffs to hold the two boards in place.

The relay board is configured for an older Raspberry Pi with a 26 pin header, so when you connected it to a Raspberry Pi with 40 pin
headers, you’ll need to shift it all the way to the side like We’ve shown in the figure. If you don’t align the pins correctly, you’ll have problems
later as it simply won’t work.

Enabling I2C

The relay board communicates with the Raspberry Pi through an I2C interface https://en.wikipedia.org/wiki/I%C2%B2C. This interface is
disabled by default in the Pi’s Raspbian OS, so you’ll have to turn it on before you can use the board. Power up the Pi and let it boot to the
graphical interface. When it’s up and running, open the Pi menu, select Preferences, then Raspberry Pi Configuration as shown in the
following figure:

Figure 2

In the window that opens, select the Interfaces tab as shown in the following figure. Enable the option next to I2C as shown in the figure and
click the OK button to continue. When you reboot the PC, the Pi should see the relay board. In the next section, we’ll verify that the Pi sees
the relay board.

Figure 3

Validating the Raspberry Pi Sees the Relay Board

With the I2C interface enabled, it’s time to make sure the Raspberry Pi sees the relay board. Open a terminal window on the Pi and execute
the following command:

1 i2cdetect -y -r 1

The application will display a dump of the recognized I2C devices as shown in the following figure. In this example, there’s only one I2C
board on the system, the relay board configured at an address of 20. You’ll see how this value is important later in this article.

Figure 4

You’re supposed to be able to use switches on the relay board to set the I2C address, there are 4 DIP switches on the board, let’s see what
happens when you change them.

There are four switches, three labeled A0 through A2, and one labeled NC. The NC means No Connection. Each switch has a high and a low
setting, so the following table will lay out how to use them to set an I2C address for the board:

A0 A1 A2 Address

High High High 20

Low High High 21

High Low High 22

High High Low 24

High Low Low 26

Low Low Low 27

Running the Test Application

Please use the test code from github repository. Grab the code from there and you’ll be able to easily complete the following step.

To run the test application, open a terminal window, navigate to where you’ve extracted the sample application and run the application using
the following command:

1 python ./seeed_relay_test.py

Figure 4

When prompted for input, you’ll type commands to turn the relays on and off:

 Typing 1on, 2on, 3on, or 4on and pressing enter will cause the specified relay to turn on.

 Typing 1off, 2off, 3off, or 4off and pressing enter will cause the specified relay to turn off

 Typing allon or alloff will turn all relays on or off.

Using The Python Module

To use the module in your own Python applications, copy the module (relay_lib_seeed.py) into your project folder, then import the module in
your Python application by adding the following line to the beginning of your application:

from relay_lib_seeed import *

This exposes a series of functions to your application:

 relay_on(int_value) - Turns a single relay on. Pass an integer value between 1 and 4 (inclusive) to the function to specify the relay you wish
to turn on. For example: relay_on(1) will turn the first relay (which is actually relay 0 internally) on.

 relay_off(int_value) - Turns a single relay on. Pass an integer value between 1 and 4 (inclusive) to the function to specify the relay you wish
to turn on. For example: relay_on(4) will turn the first relay (which is actually relay 3 internally) off.

 relay_all_on() - Turns all of the relays on simultaneously.

 relay_all_off() - Turns all of the relays off simultaneously.

The module exposes a configuration value you will want to keep in mind as you work with the board:

1

2
7 bit address (will be left shifted to add the read write bit)

DEVICE_ADDRESS = 0x20

Remember that value? 20? The board defaults to this address. If you change the switches on the board, you will need to update this variable
accordingly.

To see the module in action, open a terminal window on the Raspberry Pi, navigate to the folder where you extracted this repository's files,
and execute the following command:

1 python ./relay_lib_seeed_test.py

The application will:

 Turn all of the relays on for a second

 Turn all of the relays off

 Cycle through each of the relays (1 through 4) turning each on for a second

The module will write indicators to the console as it performs each step as shown in the following figure:

Figure 6

LEDs on the relay board (one for each relay) will illuminate when the relays come one. On my board, they weren't in sequence, so don't
expect them to light in order.

The code that does all this looks like the following:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

turn all of the relays on

relay_all_on()

wait a second

time.sleep(1)

turn all of the relays off

relay_all_off()

wait a second

time.sleep(1)

now cycle each relay every second in an infinite loop

while True:

for i in range(1, 5):

 relay_on(i)

 time.sleep(1)

 relay_off(i)

That’s it, that’s all there is to it. Enjoy.

Resources

 Raspberry_Pi_Relay_Board_v1.0_sch_pcb

 Raspberry_Pi_Relay_Board_v1.0_PDF

 HLS8L Datasheet

 PCAL9535A Datasheet

 Python Test Code

 C# Test Code

Tech Support

Please submit any technical issue into our forum or drop mail to techsupport@seeed.cc.

 http://wiki.seeedstudio.com/Raspberry_Pi_Relay_Board_v1.0/11‐29‐18

