
KEY PARAMETERS

VALUE

200 - 1000

60

150

SOD-128

UNIT

٧

Α

°C

2A, 200V - 1000V High Efficient Surface Mount Rectifier

FEATURES

- AEC-Q101 qualified
- Glass passivated chip junction
- Ideal for automated placement
- Low power loss, high efficiency
- · Fast switching for high efficiency
- Low profile package
- Moisture sensitivity level: level 1, per J-STD-020
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

Δ	D	DI		C	Δ	TI	n	N:	3
_		_	_	•	_		u	14-	

- Freewheeling
- Snubber
- DC/DC converters
- Automotive application

MECHANICAL DATA

• Case: SOD-128

• Molding compound meets UL 94V-0 flammability rating

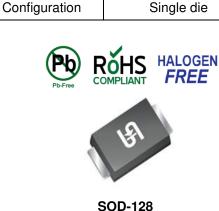
Terminal: Matte tin plated leads, solderable per J-STD-002

Meet JESD 201 class 2 whisker test

Polarity: Indicated by cathode bandWeight: 0.028g (approximately)

ability rating per J-STD-002	SOD-128
	Cathode — Anode

PARAMETER


 I_{F}

 V_{RRM}

 I_{FSM}

 T_{JMAX}

Package

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)								
2224555		SYMBOL	HS2D	HS2G	HS2J	HS2K	HS2M	UNIT
PARAMETER	FSH		FSH	FSH	FSH	FSH		
Marking code on the device			HS2DFH	HS2GFH	HS2JFH	HS2KFH	HS2MFH	
Repetitive peak reverse volta	V_{RRM}	200	400	600	800	1000	V	
Reverse voltage, total rms va	$V_{R(RMS)}$	140	280	420	560	700	V	
Forward current	I _F	2				Α		
Surge peak forward current, single half sine-wave	t = 8.3ms				60			Α
superimposed on rated load	t = 1.0ms	I _{FSM}	120					Α
Junction temperature	T _J	-55 to +150				°C		
Storage temperature	T _{STG}	-55 to +150			°C			

THERMAL PERFORMANCE						
PARAMETER	SYMBOL	TYP	UNIT			
Junction-to-lead thermal resistance	R _{eJL}	17	°C/W			
Junction-to-ambient thermal resistance	$R_{\Theta JA}$	53	°C/W			
Junction-to-case thermal resistance	$R_{ ext{ iny OLD}}$	21	°C/W			

Thermal Performance Note: Units mounted on PCB (5mm x 5mm Cu pad test board)

PARAMETER		CONDITIONS	SYMBOL	TYP	MAX	UNIT
		I _F = 1A, T _J = 25°C		0.81	-	V
	HS2DFSH	I _F = 2A, T _J = 25°C		0.87	1.00	V
		I _F = 1A, T _J = 125°C		0.67	-	V
		I _F = 2A, T _J = 125°C		0.74	0.82	V
		I _F = 1A, T _J = 25°C		0.90	-	V
	HOOFOLL	I _F = 2A, T _J = 25°C		0.99	1.30	V
	HS2GFSH	I _F = 1A, T _J = 125°C		0.76	-	V
C(1)		I _F = 2A, T _J = 125°C		0.86	0.96	V
Forward voltage ⁽¹⁾		I _F = 1A, T _J = 25°C	V _F	1.00	-	V
	HOOTEOH	I _F = 2A, T _J = 25°C		1.10	1.70	V
	HS2JFSH	I _F = 1A, T _J = 125°C		0.80	-	V
		I _F = 2A, T _J = 125°C		0.92	1.10	V
	HS2KFSH HS2MFSH	I _F = 1A, T _J = 25°C		1.30	-	V
		I _F = 2A, T _J = 25°C		1.48	1.70	V
		I _F = 1A, T _J = 125°C		0.94	-	V
		I _F = 2A, T _J = 125°C		1.11	1.23	V
Reverse current @ rated V _R ⁽²⁾	T _J = 25°C	- 1-	-	1	μΑ	
Reverse current @ rated V _R		T _J = 125°C	- I _R	-	80	μΑ
	HS2DFSH HS2GFSH		t _{rr}	-	50	ns
Reverse recovery time	HS2JFSH HS2KFSH HS2MFSH	$I_F = 0.5A, I_R = 1.0A,$ $I_{rr} = 0.25A$		-	75	ns
HS2DF				32	-	pF
	HS2GFSH			25	-	pF
Junction capacitance	HS2JFSH	1MHz, $V_R = 4.0V$	CJ	17	-	pF
HS2KFSH HS2MFSH		1		12	-	pF

Notes:

- (1) Pulse test with PW = 0.3ms
- (2) Pulse test with PW = 30ms

ORDERING INFORMATION						
ORDERING CODE ⁽¹⁾	PACKAGE	PACKING				
HS2xFSH	SOD-128	14,000 / Tape & Reel				

Notes:

(1) "x" defines voltage from 200V(HS2DFSH) to 1000V(HS2MFSH)

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Fig.1 Forward Current Derating Curve

Fig.3 Typical Reverse Characteristics

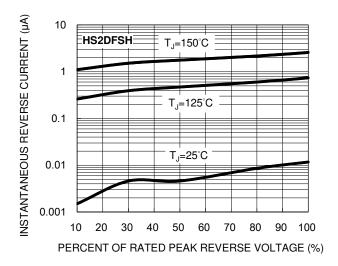


Fig.5 Typical Reverse Characteristics

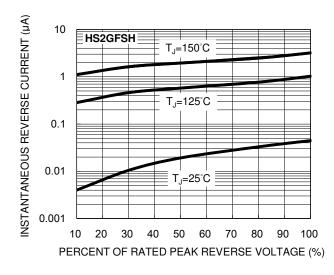


Fig.2 Typical Junction Capacitance

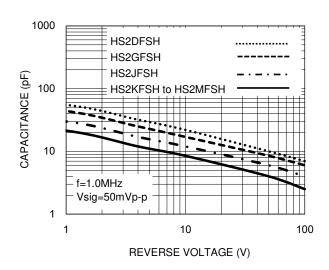


Fig.4 Typical Forward Characteristics

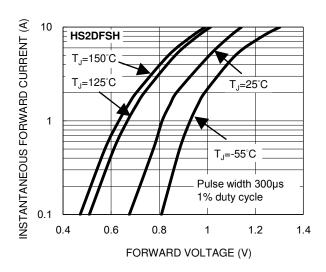
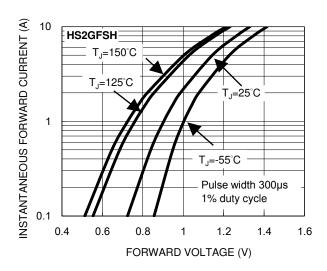



Fig.6 Typical Forward Characteristics

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Fig.7 Typical Reverse Characteristics

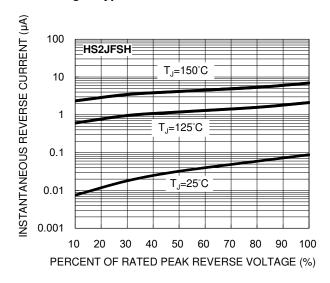


Fig.9 Typical Reverse Characteristics

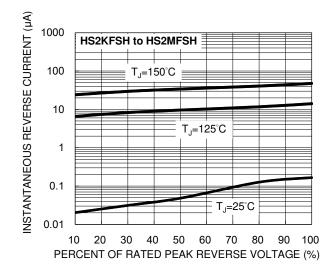


Fig.8 Typical Forward Characteristics

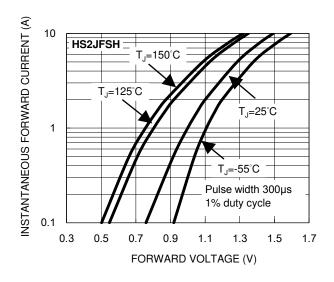


Fig.10 Typical Forward Characteristics

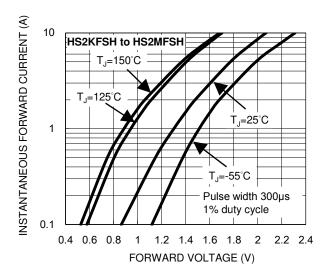
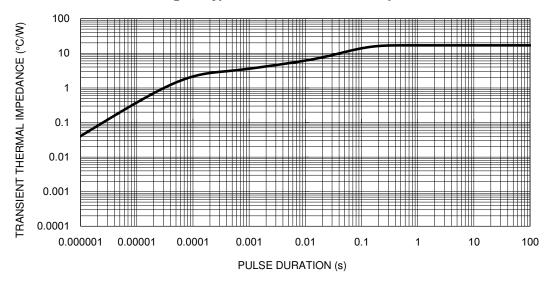
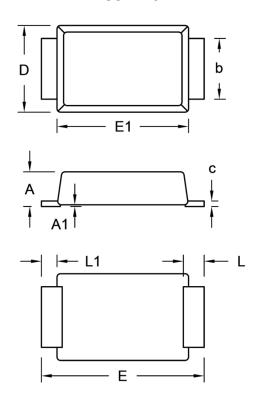
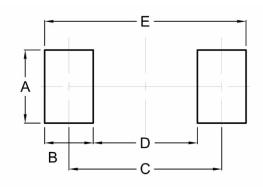




Fig.11 Typical Transient Thermal Impedance


PACKAGE OUTLINE DIMENSIONS

SOD-128

DIM.	Unit	(mm)	Unit (inch)		
DIIVI.	Min.	Max.	Min.	Max.	
Α	0.90	1.10	0.035	0.043	
A1	0.00	0.10	0.000	0.004	
b	1.60	1.90	0.063	0.075	
С	0.10	0.22	0.004	0.009	
D	2.30	2.70	0.091	0.106	
E	4.40	5.00	0.173	0.197	
E1	3.60	4.00	0.142	0.157	
L	0.40	0.80	0.016	0.031	
L1	0.30	0.60	0.012	0.024	

SUGGESTED PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
Α	2.10	0.083
В	1.40	0.055
С	4.40	0.173
D	3.00	0.118
E	5.80	0.228

MARKING DIAGRAM

P/N = Marking Code YW = Date Code F = Factory Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.