

- Multiple Internal level topology for low drive losses
- High-side drive capable with 3000 V isolation
- 5000 V Signal Isolation (up to 10 s)
- Capable of high gate currents with 3 W maximum power
- RoHS Compliant

Section I: Introduction

The GA03IDDJT30-FR4 provides an optimized gate drive solution for SiC Junction Transistors (SJT). The board utilizes DC/DC converters and FOD3182 opto-isolators making it capable of driving high and low-side devices in a half-bridge configuration as well as IXDN609 gate driver ICs providing fast switching and customizable continuous gate currents necessary for SJT devices. Its footprint and 12 V supply voltage make it a plug-in replacement for existing SiC MOSFET gate drive solutions.

Section II: Compatibility with SiC SJTs

The GA03IDDJT30-FR4 has an installed R_G of 3.75 Ω on-board which may need to be modified by the user for safe operation of certain SJT parts. Please see the table below and Section VII for more information.

Section III: Operational Characteristics

Section IV: Pin Out Description

Figure 2: Gate Drive Board Top View

Section V: SJT Gate Driving Theory of Operation

ene:

MICONDUCTOR

The SJT transistor is a current controlled transistor which requires a positive gate current for turn-on as well as to remain in on-state. An ideal gate current waveform for ultra-fast switching of the SJT, while maintaining low gate drive losses, is shown in Figure 3. This is similar to what the GA03IDDJT30-FR4 provides.

An SJT is rapidly switched on when the necessary gate charge, Q_G, for turn-on is supplied by a burst of high gate current, I_{G,on}, until the gatesource capacitance, C_{GS} , and gate-drain capacitance, C_{GD} , are fully charged.

$$
Q_{on} = I_{G,on} * t_1
$$

$$
Q_{on} \ge Q_{gs} + Q_{gd}
$$

The I_{G,pon} pulse should ideally terminate, when the drain voltage falls to its on-state value, in order to avoid unnecessary drive losses during the steady on-state. In practice, the rise time of the $I_{G,on}$ pulse is affected by the parasitic inductances, L_{par} in the device package and drive circuit. A voltage developed across the parasitic inductance in the source path, Ls, can de-bias the gate-source junction, when high drain currents begin to flow through the device. The applied gate voltage should be maintained high enough, above the $V_{GS,ON}$ level to counter these effects.

After the SJT is turned on, I_G may be lowered to $I_{G,steady}$ for reducing unnecessary gate drive power losses. The minimum $I_{G,steady}$ is determined by noting the DC current gain, h_{FE} , of the device from its datasheet. The desired $I_{G, steady}$ is determined by the peak device junction temperature T_J during operation, drain current I_D, DC current gain h_{FE} , and a 50 % safety margin to ensure operating the device in the saturation region with low on-state voltage drop by the equation:

$$
I_{G,steady} \approx \frac{I_D}{h_{FE}(T,I_D)}*1.5
$$

For SJT turn -off, a high negative peak current, -I_{G,off} at the start of the turn-off transition rapidly sweeps out charge from the gate. While satisfactory turn off can be achieved with V_{GS} = 0 V, a negative gate voltage V_{GS} may be used in order to speed up the turn-off transition. The GA03IDDJT30-FR4 provides a negative bias of -5 V during off state.

Figure 3: Idealized SJT Gate Current Waveform

Section VI: Gate Driver Implementation

The GA03IDDJT30-FR4 is a gate driver circuit which can be used to drive an SJT transistor by supplying the required gate drive current I_G in a low-power gate drive solution. This configuration features a gate capacitor C_G (CG1 and CG2 in parallel) which creates a brief current peak I_{G,ON} during device turn-on and I_{G,OFF} during turn-off for fast switching and a gate resistor R_G (RG1 and RG2 in parallel) to set the continuous gate current I_{G,steady} required for an SJT to operate. This configuration is shown in the Figure 7 circuit diagram as well as in Figure 4 below with further details provided below. This section provides detail on selecting optimal C_G and R_G values based on the SJT, drain current, and temperature.

Figure 4: Primary gate drive circuit passive components with series gate resistance Schottky rectifier.

A: Gate Resistor RG Modification

The GA03IDDJT30-FR4 on board gate resistor R_G controls the continuous current I_{G,steady} during steady on-state. The gate current is determined according to:

$$
I_{G,steady} = \frac{V_{GL} - V_{GS, sat} - V_D}{R_G + 0.6 \Omega}
$$

$$
I_{G, steady} = \frac{4.7 V - V_{GS, sat}}{R_G + 0.6 \Omega}
$$

Where V_{GL} is the internal, low-level drive voltage (5 V), $V_{GS, sat}$ is the driven SJT saturated gate-source voltage obtained from the individual device datasheets, V_D is the Schottky diode voltage drop (approximately 0.3 V), and 0.6 Ω is added from internal GA03IDDJT30-FR4 drive components.

It is necessary for the user to reduce R_G from its pre-install value of 3.75 Ω for several SiC SJTs for safe operation with the GA03IDDJT30-FR4 under high drain current conditions. The location of RG on the circuit board is shown in Figure 5. The maximum allowable value of R_G for each device across all rated drain currents can be found in the Gate Drive section of each individual device datasheets. R_G may also be calculated from the following equation, where h_{FE} is the SJT DC current gain and $V_{GS,sat}$ is the gate-source saturation voltage. Both of these values may be taken from individual device datasheets.

$$
R_{G,max} = \frac{(4.7V - V_{GS,sat}) * h_{FE}(T, I_D)}{I_D * 1.5} - 0.6\Omega
$$

For some devices and drain currents it may be desired for the user to install a very low value of R_G or to short R_G (R_G = 0 Ω) to increase the gate current output. This is acceptable, but may limit the duty cycle D during operation. Please see section VII:B for more information.

B: Duty Cycle Limitation

The duty cycle *D* of the GA03IDDJT30-FR4 output may be limited by the 3 W power capability of the internal 5 V supply in some applications. If R_G remains un-changed by the user I_{G steady} will remain sufficiently low to allow 100 % duty cycle operation with an SJT. However, if R_G is shorted or reduced such that $R_G \le 2.8 \Omega$ in order to drive higher current devices, the duty cycle will be limited by the following equation:

$$
D \leq \frac{3W}{5V * I_{G,steady}} * 0.9
$$

Figure 5: Location of RG (RG1 and RG2 in parallel) on GA03IDDJT30-FR4 driver for substitution

C: Gate Capacitor CG Modification

An external gate capacitor C_G connected directly to the device gate pin delivers the positive current peak I_{GON} during device turn-on and the negative current peak I_{G,OFF} during turn-off. A high value resistor R₄ in parallel with C_G sets the SJT gate pin to a defined potential (-V_{EE}) during steady off-state.

At device turn-on, C_G is pulled to the GA03IDDJT30-FR4 internal voltage level V_{GH} which produces a transient peak of gate voltage and current. This current peak rapidly charges the internal SJT C_{GS} and C_{GD} capacitances. A Schottky diode, D1, in series with R_G blocks any C_G induced current from draining out through R_G and ensures that all of the charge within C_G flows only into the device gate, allowing for an ultrafast device turn-on. During steady on-state, a potential of V_{GH} - V_{GS =} V_{GH} - 3 V is across C_G. When the device is turned off, C_G is pulled to negative V_{EE} and V_{GS} is pulled to a transient peak of V_{GS,turn-off} = V_{EE} - (V_{GH} - 3 V), this induces the negative current peak I_{G,off} out of the gate which discharges the SJT internal capacitances.

D: Voltage Supply Selection

The GA03IDDJT30-FR4 gate drive design features three internal supply voltages V_{GH} , V_{GL} , and V_{EE} (listed in Table 4) supplied through two DC/DC converters. During device turn-on, V_{GH} charges the capacitor C_G thereby delivering the narrow width, high current pulse I_{GON} to the SJT gate and charges the SJT's internal terminal capacitances C_{GD} and C_{GS}. For a given level of parasitic inductance in the gate circuit and SJT package, the rise time of $I_{G,ON}$ is controlled by the value of V_{GH} and C_G . During the steady on-state, V_{GL} in combination with the internal and external gate resistances provides a continuous gate current for the SJT to remain on. The V_{EE} supply controls the gate negative voltage during turn-off and steady off-state for faster switching and to avoid spurious turn-on which may be caused by external circuit noise. The power rating of the provided voltage supplies are adequate to meet the gate drive power requirements as determined by

$$
P_{min,VGH} = \frac{1}{2} C_G V_{GH}^2 f_{sw}
$$

$$
P_{min,VEE} = \frac{1}{2} C_G V_{EE}^2 f_{sw}
$$

$$
P_{min,VGL} = V_{GL} I_{G,steady} D
$$

Table 4: GA03IDDJT30-FR4 Gate Drive Voltage Supply Component List

E: Voltage Supply Isolation

The DC/DC supply voltage converters are suggested to provide isolation at a minimum of twice the working V_{DS} on the SJT transistor during off-state to provide adequate protection to circuitry external to the gate drive circuit. The installed DC/DC converters have an isolation of 3.0 kV and greater. Alternatively, DC/DC converter galvanic isolation may be bypassed and direct connection of variable voltage supplies may

be done in a laboratory environment, this may be convenient during testing and prototyping but carries risk and is not suggested for extended usage.

Figure 6: Typical DC/DC converter configuration

F: Signal Isolation

The gate supply signal is suggested to be isolated to twice the working V_{DS} on the SJT during off-state to provide adequate protection to circuitry external to the gate drive circuit. This may be done using opto or galvanic isolation techniques.

Section VII: Detailed Schematic and Bill of Materials

Figure 7: Gate Drive Board Detailed Block Diagram

Section VIII: Mechanical Drawing

