INTEGRATED CIRCUITS

DATA SHEET

74ABT2241

Octal buffer with 30Ω series termination resistors; (3-State)

Product specification

1996 Sep 30

IC23 Data Handbook

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

FEATURES

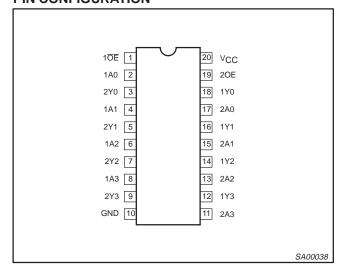
- Octal bus interface
- 3-State buffers
- Power-up 3-State
- Output capability: +12mA/-32mA
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ABT2241 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT2241 device is an octal buffer that is ideal for driving bus lines. The device features two Output Enables ($1\overline{OE}$, 2OE), each controlling four of the 3-State outputs.

The 74ABT2241 is designed with 30Ω series resistance in both the High and Low states of the output. The design reduces line noise in applications such as memory address drivers, clock drivers, and bus receivers/transceivers.

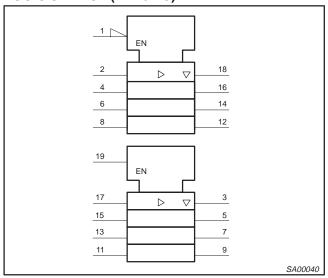

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $T_{amb} = 25^{\circ}C; GND = 0V$	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay An to Yn	$C_L = 50pF; V_{CC} = 5V$	2.9	ns
C _{IN}	Input capacitance	$V_I = 0V$ or V_{CC}	3	pF
C _{OUT}	Output capacitance	Outputs disabled; V _O = 0V or V _{CC}	7	pF
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} = 5.5V	50	μΑ

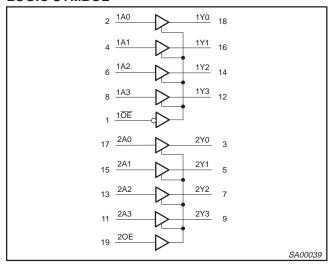
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
20-Pin Plastic DIP	-40°C to +85°C	74ABT2241 N	74ABT2241 N	SOT146-1
20-Pin plastic SO	-40°C to +85°C	74ABT2241 D	74ABT2241 D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +85°C	74ABT2241 DB	74ABT2241 DB	SOT339-1
20-Pin Plastic TSSOP Type I	-40°C to +85°C	74ABT2241 PW	7ABT2241PW DH	SOT360-1

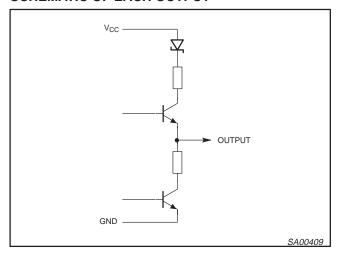
PIN CONFIGURATION


PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 4, 6, 8	1A0 – 1A3	Data inputs
17, 15, 13, 11	2A0 – 2A3	Data inputs
18, 16, 14, 12	1Y0 – 1Y3	Data outputs
3, 5, 7, 9	2Y0 – 2Y3	Data outputs
1, 19	1 0E , 20E	Output enables
10	GND	Ground (0V)
20	V _{CC}	Positive supply voltage


Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241


LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

SCHEMATIC OF EACH OUTPUT

FUNCTION TABLE

	INP	OUTF	PUTS		
10E	1An	20E	2An	1Yn	2Yn
L	L	Н	L	L	L
L	Н	Н	Н	Н	Н
Н	Х	L	Х	Z	Z

H = High voltage level

L = Low voltage level

X = Don't care

Z = High impedance "off" state

ABSOLUTE MAXIMUM RATINGS1, 2

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		−0.5 to +7.0	V
I _{IK}	DC input diode current	V _I < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
I _{OUT}	DC output current	output in Low state	128	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT
		Min	Max	
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		12	mA
Δt/Δν	Input transition rise or fall rate	0	5	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

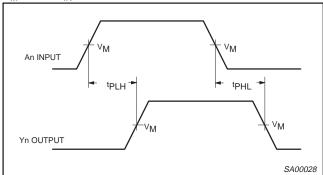
				LIMITS			
PARAMETER	TEST CONDITIONS	Ta	_{mb} = +25	5°C	T _{amb} =	-40°C 85°C	UNIT
		Min Typ Max		Min	Max		
Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA		-0.9	-1.2		-1.2	V
	$V_{CC} = 4.5V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	2.5	2.9		2.5		V
High-level output voltage	$V_{CC} = 5.0V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	3.0	3.4		3.0		V
	$V_{CC} = 4.5V$; $I_{OH} = -32mA$; $V_I = V_{IL}$ or V_{IH}	2.0	2.4		2.0		V
Low lovel output voltage	$V_{CC} = 4.5V$; $I_{OL} = 5mA$; $V_I = V_{IL}$ or V_{IH}		0.32	0.55		0.55	V
Low-level output voltage	$V_{CC} = 4.5V$; $I_{OL} = 12mA$; $V_I = V_{IL}$ or V_{IH}			0.8		0.8	V
Input leakage current	V _{CC} = 5.5V; V _I = GND or 5.5V		±0.01	±1.0		±1.0	μΑ
Power-off leakage current	$V_{CC} = 0.0V$; V_I or $V_O \le 4.5V$		±5.0	±100		±100	μΑ
Power-up/down 3-State output current ³	$V_{\underline{CC}}$ = 2.0V; V_{O} = 0.5V; V_{I} = GND or V_{CC} ; V_{OE} = V_{CC} ; V_{OE} = GND		±5.0	±50		±50	μА
3-State output High current	$V_{CC} = 5.5V$; $V_O = 2.7V$; $V_I = V_{IL}$ or V_{IH}		5.0	50		50	μΑ
3-State output Low current	$V_{CC} = 5.5V; V_{O} = 0.5V; V_{I} = V_{IL} \text{ or } V_{IH}$		-5.0	-50		-50	μΑ
Output High leakage current	V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND or V_{CC}		5.0	50		50	μΑ
Output current ¹	$V_{CC} = 5.5V; V_{O} = 2.5V$	-50	-100	-180	-50	-180	mA
	$V_{CC} = 5.5V$; Outputs High, $V_{I} = GND$ or V_{CC}		50	250		250	μА
Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_I = GND or V_{CC}		24	30		30	mA
	V_{CC} = 5.5V; Outputs 3–State; V_{I} = GND or V_{CC}		50	250		250	μА
	Outputs enabled, one input at 3.4V, other inputs at V_{CC} or GND; $V_{CC} = 5.5V$		0.5	1.5		1.5	mA
Additional supply current per input pin ²	Outputs 3-State, one data input at 3.4V, other inputs at V_{CC} or GND; V_{CC} = 5.5V		50	250		250	μА
	Outputs 3-State, one enable input at 3.4V, other inputs at V_{CC} or GND; $V_{CC} = 5.5V$		0.5	1.5		1.5	mA
	Input clamp voltage High-level output voltage Low-level output voltage Input leakage current Power-off leakage current Power-up/down 3-State output current ³ 3-State output High current Output High leakage current Output current ¹ Quiescent supply current Additional supply current per	Input clamp voltage $V_{CC} = 4.5V; \ I_{IK} = -18mA$ $V_{CC} = 4.5V; \ I_{OH} = -3mA; \ V_I = V_{IL} \text{ or } V_{IH}$ $V_{CC} = 5.0V; \ I_{OH} = -3mA; \ V_I = V_{IL} \text{ or } V_{IH}$ $V_{CC} = 4.5V; \ I_{OH} = -32mA; \ V_I = V_{IL} \text{ or } V_{IH}$ $V_{CC} = 4.5V; \ I_{OL} = 5mA; \ V_I = V_{IL} \text{ or } V_{IH}$ $V_{CC} = 4.5V; \ I_{OL} = 5mA; \ V_I = V_{IL} \text{ or } V_{IH}$ $V_{CC} = 4.5V; \ I_{OL} = 12mA; \ V_I = V_{IL} \text{ or } V_{IH}$ $V_{CC} = 4.5V; \ I_{OL} = 12mA; \ V_I = V_{IL} \text{ or } V_{IH}$ $V_{CC} = 5.5V; \ V_I = \text{GND or } 5.5V$ $V_{CC} = 0.0V; \ V_I \text{ or } V_O \leq 4.5V$ $V_{OE} = V_{CC}; \ V_{OE} = GND$ $3\text{-State output High current} V_{CC} = 5.5V; \ V_O = 0.5V; \ V_I = GND \text{ or } V_{CC}; \ V_{OE} = V_{CC}; \ V_{OE} = V_{CC}; \ V_{OE} = S.5V; \ V_I = V_{IL} \text{ or } V_{IH}$ $Output \ High \ leakage \ current} V_{CC} = 5.5V; \ V_O = 0.5V; \ V_I = V_{IL} \text{ or } V_{IH}$ $Output \ High \ leakage \ current} V_{CC} = 5.5V; \ V_O = 0.5V; \ V_I = GND \text{ or } V_{CC}$ $Output \ current^1 V_{CC} = 5.5V; \ Outputs \ High, \ V_I = GND \text{ or } V_{CC}$ $V_{CC} = 5.5V; \ Outputs \ High, \ V_I = GND \text{ or } V_{CC}$ $V_{CC} = 5.5V; \ Outputs \ Low, \ V_I = GND \text{ or } V_{CC}$ $V_{CC} = 5.5V; \ Outputs \ S-State; \ V_I = GND; \ V_{CC} = 5.5V$ $Outputs \ av \ V_{CC} = 5.5V$ $Outputs \ av \ S-State, \ one \ data \ input \ at \ 3.4V, \ other \ inputs \ at \ V_{CC} = 5.5V$ $Outputs \ 3-State, \ one \ enable \ input \ at \ 3.4V,$	$ Input clamp voltage V_{CC} = 4.5V; I_{IK} = -18mA V_{CC} = 4.5V; I_{OH} = -3mA; V_I = V_{IL} \text{ or } V_{IH} 2.5 V_{CC} = 4.5V; I_{OH} = -3mA; V_I = V_{IL} \text{ or } V_{IH} 3.0 V_{CC} = 4.5V; I_{OH} = -32mA; V_I = V_{IL} \text{ or } V_{IH} 2.0 V_{CC} = 4.5V; I_{OH} = -32mA; V_I = V_{IL} \text{ or } V_{IH} 2.0 V_{CC} = 4.5V; I_{OL} = 5mA; V_I = V_{IL} \text{ or } V_{IH} V_{CC} = 4.5V; I_{OL} = 12mA; V_I = V_{IL} \text{ or } V_{IH} V_{CC} = 4.5V; I_{OL} = 12mA; V_I = V_{IL} \text{ or } V_{IH} V_{CC} = 4.5V; V_I = 0.00; V_I \text{ or } V_{OL} = 0.5V; V_I = 0.00; V_I \text{ or } V_{OL} = 0.00; V_I \text{ or } V_{OL} = 0.00; V_I \text{ or } V_{OL} = 0.00; V_I = 0.00; V_I$	$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTES:

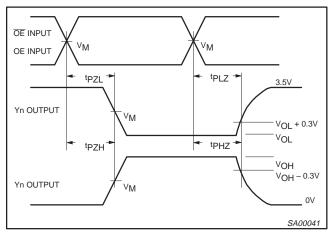
Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

- 1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
- 2. This is the increase in supply current for each input at 3.4V.
- 3. This parameter is valid for any V_{CC} between 0V and 2.1V with a transition time of up to 10msec. For V_{CC} = 2.1V to V_{CC} = 5V \pm 10%, a transition time of up to 100 µsec is permitted.


AC CHARACTERISTICS

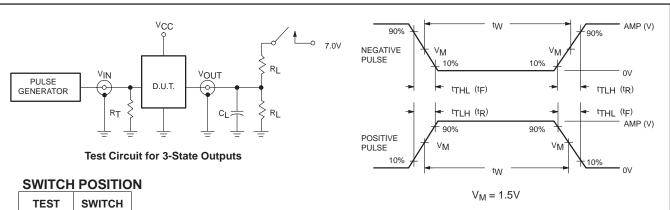
GND = 0V; $t_R = t_F = 2.5 \text{ns}$; $C_L = 50 \text{pF}$, $R_L = 500 \Omega$


					LIMIT	rs		
SYMBOL	PARAMETER	WAVEFORM	T _a	_{imb} = +25° 'CC = +5.0'	C V	T _{amb} = -40° V _{CC} = +5	°C to +85°C .0V ±0.5V	UNIT
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay An to Yn	1	1.0 1.0	2.7 3.9	4.3 5.3	1.0 1.0	4.7 5.6	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.1 2.1	3.3 5.4	4.8 7.6	1.1 2.1	5.8 8.4	ns
t _{PHZ}	Output disable time from High and Low level	2	1.7 1.7	3.8 3.4	5.6 5.8	1.7 1.7	6.6 6.4	ns

AC WAVEFORMS

 $V_{M} = 1.5V, V_{IN} = GND \text{ to } 3.0V$

Waveform 1. Waveforms Showing the Input (An) to Output (Yn) Propagation Delays



Waveform 2. Waveforms Showing the 3-State Output Enable and Disable Times

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t_{PLZ}	closed
t _{PZL}	closed
All other	open

DEFINITIONS

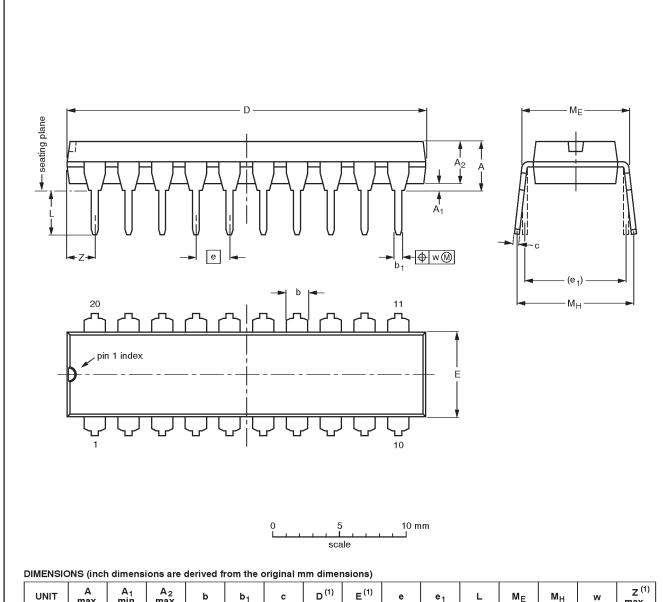
R_L = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 $\begin{aligned} R_T = & \text{ Termination resistance should be equal to } Z_{OUT} \text{ of } \\ & \text{ pulse generators.} \end{aligned}$

FAMILY	IN	PUT PULSE R	EQUIRE	MENTS	
FAMILI	Amplitude	Rep. Rate	t _W	t _R	t _F
74ABT	3.0V	1MHz	500ns	2.5ns	2.5ns

Input Pulse Definition


SA00012

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

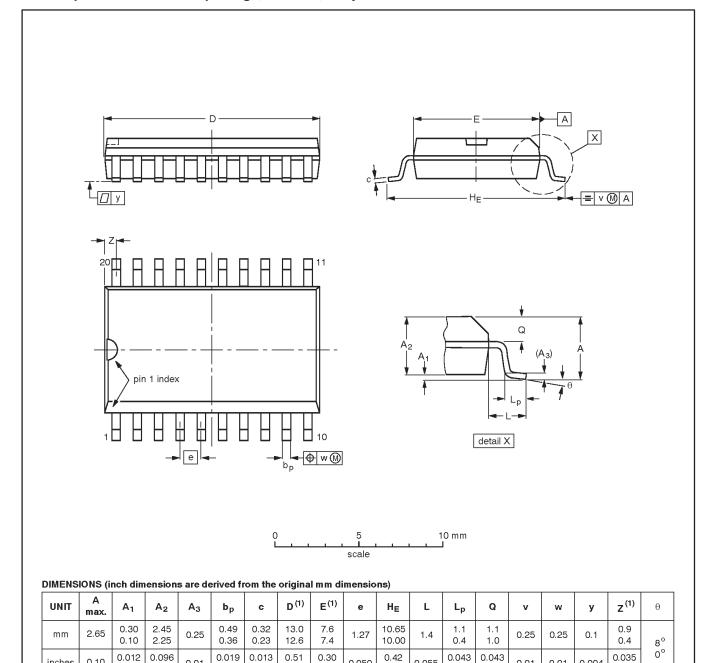
DIP20: plastic dual in-line package; 20 leads (300 mil)

SOT146-1

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT146-1			SC603		-92-11-17 95-05-24	

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

Note

inches

0.10

0.004

0.089

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

0.014

0.009

0.49

0.29

0.01

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013AC				-92-11-17 95-01-24

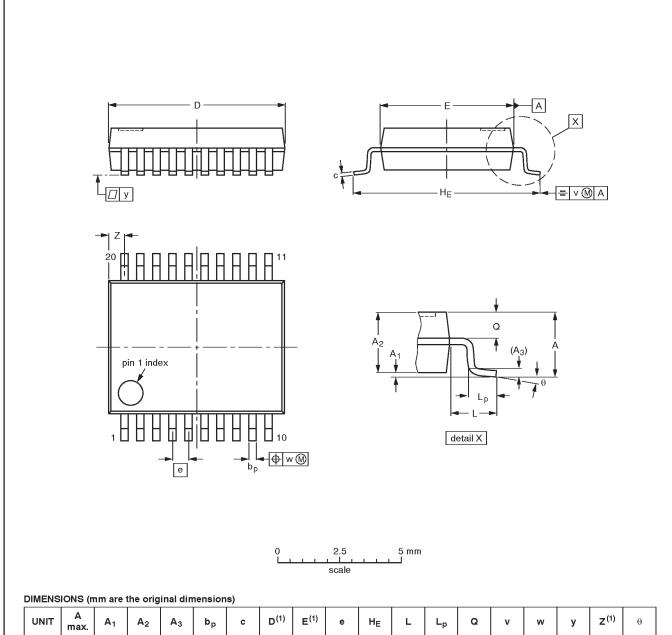
0.050

0.055

0.01

0.01

0.004


1996 Sep 30

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

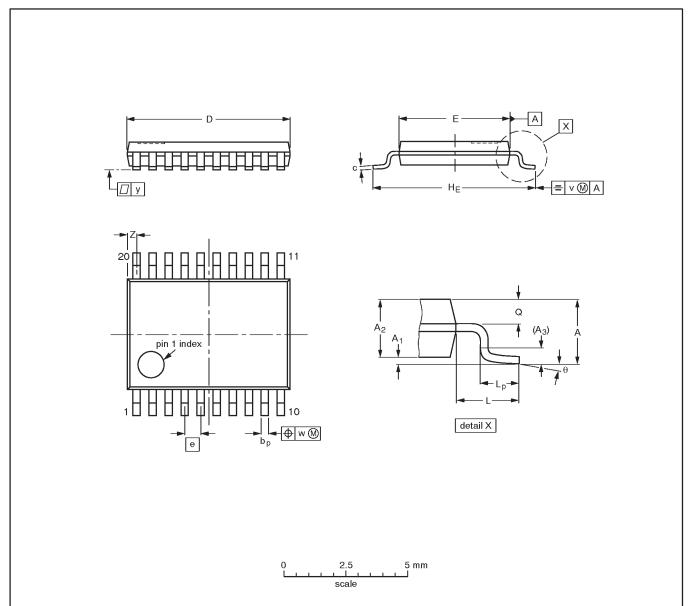
SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

UNIT	A max.	Α1	A ₂	A ₃	рb	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT339-1		MO-150AE				93-09-08 95-02-04


1996 Sep 30

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

DIMENSIONS (mm are the original dimensions)

			09	iiiai aiii		,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUEDATE	
SOT360-1		MO-153AC				-93-06-16 95-02-04	

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

NOTES

1996 Sep 30

Octal buffer with 30Ω series termination resistors (3-State)

74ABT2241

	DEFINITIONS							
Data Sheet Identification		Definition						
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.						
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.						
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.						

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1996

All rights reserved. Printed in U.S.A.