

Ph. 480-503-4295 | NOPP@FocusLCD.com

TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

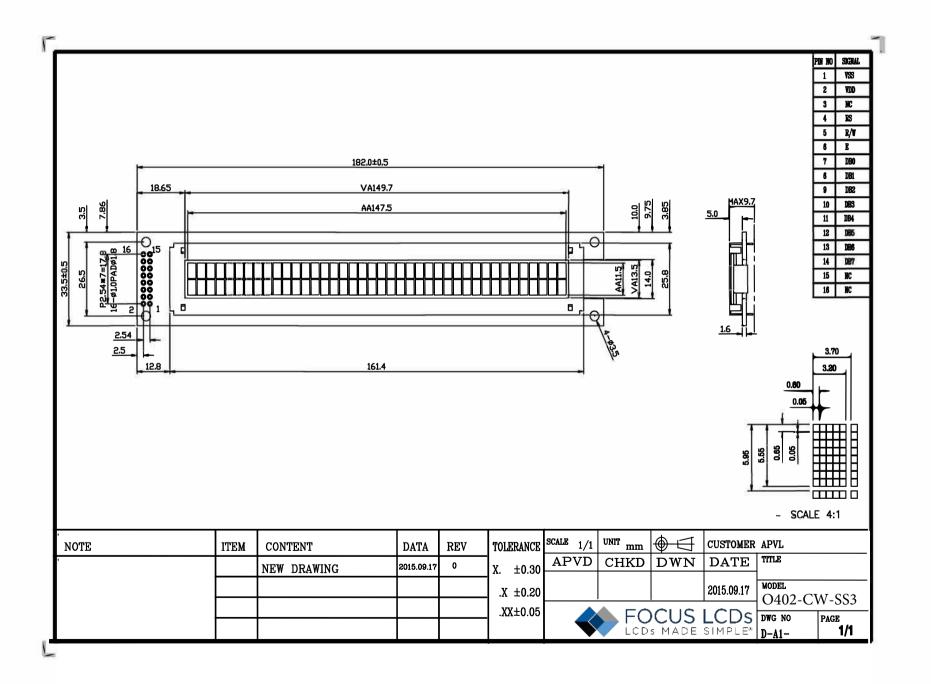
OLED Display Module

Part Number

O402-CW-SW3

Overview

Character OLED: 40x2 (182x33.5), White Pixels, Wide Temp (-40° to +70° operating/-40° to +85° storage), 3V OLED, RoHS Compliant. Controller: KS0066


GENERAL SPECIFICATION

ITEM	DESCRIPTION									
Product No	O402A-CW-SW3									
OLED Type	OLED V	OLED White & Black								
Rear Polarizer	Reflectiv	Reflective / Positive								
Backlight Type	OLED									
OLED Color	□ Yellow	□ Green	□ Amber	White						
Temperature Range	Wide Temp., 3.3V, Single Supply Voltage									
Frame	Black									

TO BE VERY CAREFUL !

The OLED driver ICs are made by CMOS process, which are very easy to be damaged by static charge, make sure the user is grounded when handling the LCM.

%This parts comply with RoHs

ABSOLUTE MAXIMUM RATING

(1) Electrical Absolute Ratings

Item	Symbol	Min.	Max.	Unit	Note
Power Supply for Logic	V _{DD} -V _{SS}	-0.3	5.5	Volt	
Power Supply for OLED	V _{DD} -V _{CC}	-0.3	13.0	Volt	
Input Voltage	VI	-0.3	V_{DD}	Volt	
Life Time (100 cd/m2)	$V_{CC} = 7.25V$ $T_a = 25^{\circ}C$ 50% RH	50,000		Hour	

(2) Environmental Absolute Maximum Ratings

	Wide Temperature									
Item	Oper	ating	Sto	rage						
	Min,	Max.	Min,	Max.						
Ambient Temperature	-40°C	+70°C	-40°C	+85°C						
Humidity(without condensation)	Note	e 4,5	Note	e 4,6						

Note 2 Ta \leq 50°C : 80% RH max

Ta>50°C : Absolute humidity must be lower than the humidity of 85%RH at 50°C

- Note 3 Ta at -20° C will be <48 hrs at 70° C will be <120 hrs when humidity is higher than 70° C.
- Note 4 Background color changes slightly depending on ambient temperature. This phenomenon is reversible.
- Note 5 $Ta \le 70^{\circ}C$: 75RH max Ta>70°C: absolute humidity must be lower than the humidity of 75%RH at 70°C
- Note 6 Ta at -30° C will be <48hrs, at 80 °C will be <120hrs when humidity is higher than 70%.

Item	Symbol	Condition	Min.	Тур	Max.	Unit	note
Power Supply for Logic	V_{DD} - V_{SS}	-	2.4	3.3	3.6	Volt	
Power Supply for OLED	V_{pp} - V_{SS}	-	8.5	9.0	9.5	Volt	Note 5
T (X7.1)	V_{IL}	L level	0	-	0.3 V _{DD}	Volt	
Input Voltage	V _{IH}	H level	0.7 V _{DD}	-	V _{DD}	Volt	
Onnut Valtaga	V _{OL}	L level	0	-	0.3 V _{DD}		
Onput Voltage	V _{OH}	H level	$0.7 V_{DD}$	-	V _{DD}		
Operating		Note 6	-	45.2	54.6		
Current for	I_{PP}	Note 7	-	47.2	62.2	Volt	
Vpp		Note 8	-	54.2	75.1		
Power Supply Current for OLED	I _{DD}	V _{DD} =3.3V Vpp =9.0V	-	55.0	75.9	mA	

ELECTRICAL CHARACTERISTICS

Note 5: Brightness (Lbr) and Supply Voltage for Display (Vpp) are subject to the change of the panel characteristics and the customer's request.

Note 6: $V_{DD} = 3.3V$, Vpp = 9.0V generated by internal DC/DC convertor, 30% Display Area Turn on.

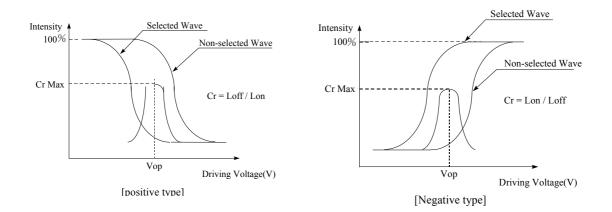
Note 7: $V_{DD} = 3.3V$, Vpp = 9.0V generated by internal DC/DC convertor, 50% Display Area Turn on. (POR)

Note 8: V_{DD} = 3.3V, Vpp =9.0V generated by internal DC/DC convertor, 100% Display Area Turn on.

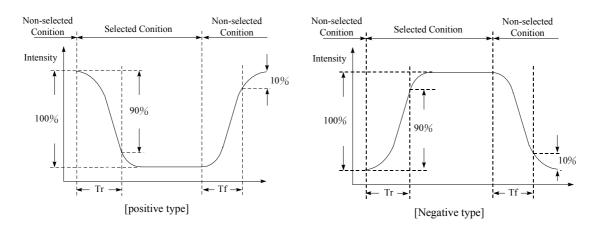
OPTICAL CHARACTERISTICS

Item	Symbol	Condition	Min.	Тур	Max.	Unit	note	
	$\Phi f(12 \text{ o'clock})$		-	75	-			
Viewing angle	Φ b(6 o'clock)	When $Cr \ge$	-	75	-	Dograa	9,10	
range	Φ l(9 o'clock)	10000:1	-	65	-	Degree	9,10	
	Φ r(3 o'clock)		-	65	-			
Rise Time	Tr		-	40		G		
Fall Time	Tf	V _{DD} =3.3V Vpp =9.0V	-	40		mS		
Contrast	Cr		-	10000:1	-		7	
Brightness	L	Check	40	55	-	cd/m ²		
Peak Emission Wavelength	C.I.E (White)	Board Brightness	X=0.25 Y=0.27	X=0.29 Y=0.31	X=0.33 Y=0.35	nm	Note 5	

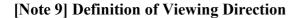
MECHANICAL SPECIFICATION

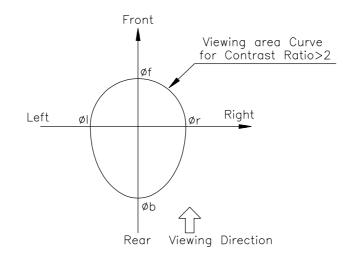

ITEM	DESCRIPTION
Product No.	O402A-CW-SW3
Viewing Area	149.7(W)mmx13.5(H)mm
Module Size	182.0(W)×33.5(H)×9.7 max(D)
Dot Size	0.60(W)mmx0.65(H)mm
Dot Pitch	0.65(W)mmx0.70(H)mm
Display Format	40 characters (W)×2 lines (H)
Controller Interface	KS0066 or Equivalent 8-bit 68xx-Series
ROM Selection	English_Japanese Character Font Table
Built-in	With DC/DC Converter

INTERFACE PIN ASSIGNMENT

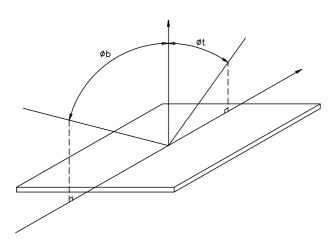

Pin No.	Pin Out	Level	Description
1	VSS	0V	Power Supply Ground
2	VDD	3.3V	Power Supply Voltage
3	NC		No Connector
4	RS	H/L	Register Select
5	R/W	H/L	Read / Write
6	Е	H,H→L	Enable Signal
7	DB0	H/L	Data Bit 0
8	DB1	H/L	Data Bit 1
9	DB2	H/L	Data Bit 2
10	DB3	H/L	Data Bit 3
11	DB4	H/L	Data Bit 4
12	DB5	H/L	Data Bit 5
13	DB6	H/L	Data Bit 6
14	DB7	H/L	Data Bit 7
15	NC		No Connector
16	NC		No Connector

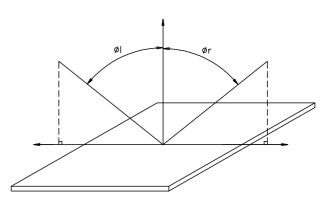
[Note 7] Definition of Operation Voltage (Vop)

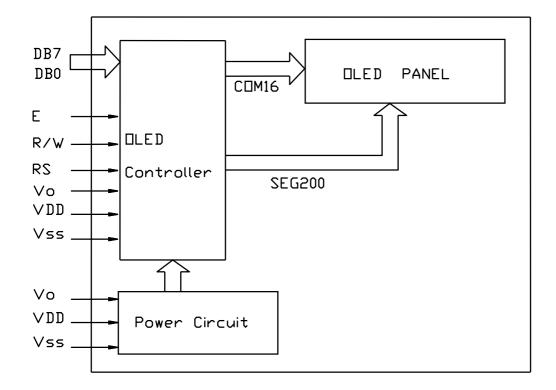


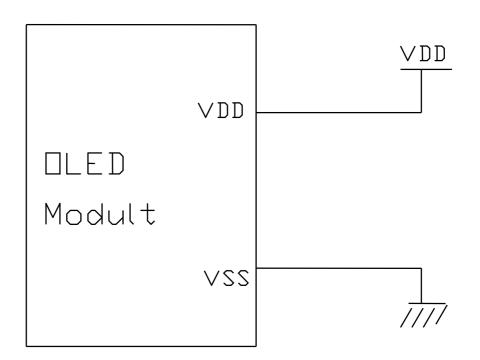

[Note 8] Definition of Response Time (Tr, Tf)

Conditions:

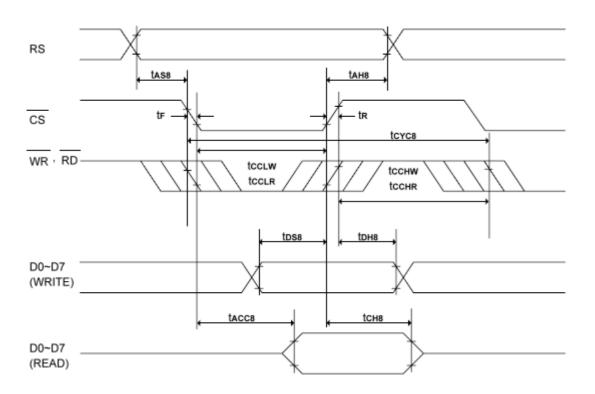

Operating Voltage : Vop Frame Frequency : 64 Hz Viewing Angle(θ , φ): 0°, 0° Driving Wave form : 1/N duty, 1/a bias




[Note 10] Definition of viewing angle



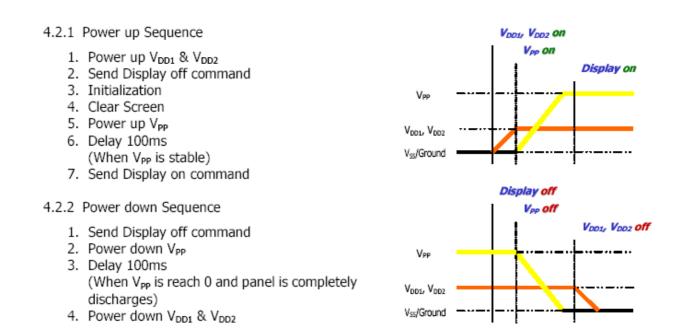
POWER SUPPLY



TIMING CHARACTERISTICS

Symbol	Description	Min	Max	Unit
tcvcs	System cycle time	500	-	ns
tas8	Address setup time	0	-	ns
tah8	Address hold time	0	-	ns
tds8	Data setup time	66	-	ns
tdh8	Data hold time	25	-	ns
tсня	Output disable time(CL = 100pF)	16	110	ns
tacc8	RD access time (CL = 100pF)	-	230	ns
tcclw	Control L pulse width (WR)	166	-	ns
tcclr	Control L pulse width (RD)	200	-	ns
tcchw	Control H pulse width (WR)	166	-	ns
tcchr	Control H pulse width (RD)	166	-	ns
tr	Rise time	-	25	ns
tr	Fall time	-	25	ns

* (VDD1 = 2.2 - 5.5V, TA = +25°C)



FUNCTIONAL SPECIFICATION

Commands

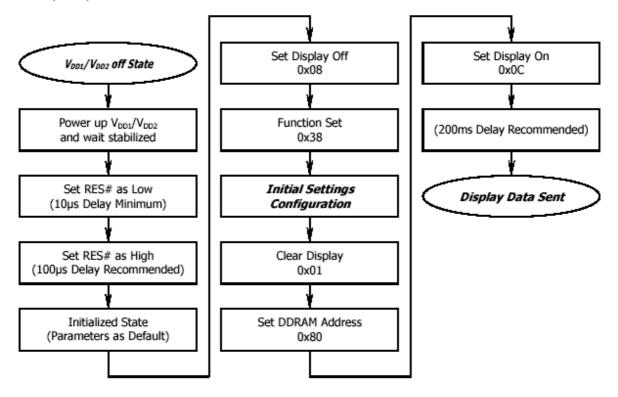
Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

Note :

- Since an ESD protection circuit is connected between V_{DD1}, V_{DD2} and V_{PP} inside the driver IC, V_{CC} becomes lower than V_{DD1} & V_{DD2} whenever V_{DD1} & V_{DD2} is ON and V_{PP} is OFF.
- 2) V_{cc} should be kept float (disable) when it is OFF.
- 3) Power Pins (V_{DD1}, V_{DD2}, V_{PP}) can never be pulled to ground under any circumstance.
- V_{DD1} & V_{DD2} should not be power down before V_{PP} power down.

RESET CIRCUIT


When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 5×8 Character Mode
- 3. Display start position is set at display RAM address 0
- 4. CGRAM address counter is set at 0
- 5. Cursor is OFF
- 6. Blink is OFF
- 7. Contrast control register is set at 7Fh
- 8. OLED command set is disabled
- 9. SEG direction set: SEG1 → SEG100
- 10. COM direction set: COM1 → COM32
- 11. Software set Font table disable
- 12. Font table select: Font table 1

ACTUAL APPLICATION EXAMPLE

<Power up Sequence>

CGROM CHARACTER CODE

	-	-	-			-			-	11	<u> </u>				<u>.</u>	
Upper 4bit .ower 4bit	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	('G BAM (1)	3			2			1						11		
0801	CG RAM (2)					۵					D	P			90	
0010	CG IRAM (3)			₽		R	b	;	5.]			-1			B	
0011	DG RAM (4)								CJ				T	Ŧ	W	.
0100	00 RAM (9)			4	D	I	۲	t.		83		I	ŀ			9
0.10.1	CG BAM (%)								1	22					B	
0110	06 BAM (7)		8	6	F	IJ			22			I		Π	Ø	2
0111	00 RAM (K)			P	G	IJ	Ø	W	2		8	Ŧ				π
1000	CG RAM (I)		C	8	H	X		38		B .	4			ļ		
1001	CG BAM (1)		2	Ð		P			W	æ.				ıL	-1	
1010	CG RaM (J)		-			X			Π					Ŀ		H
1011	(CG RAM (4)				ĸ		k	2	21			T			*	
1 100	CG RAM (5)														æ	F
1101	CG RAM (6)				Ë						IJ		-			
1110	(G BAM (7)			2		-			3					•		
H 11 1	06 BAM (8)				٥		0		4					D	33	

COMMANDS

		_		Inst	ructi	on (Code)	_	_		Description
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms
Return Home	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	١/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	с	в	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	s/C	R/L	x	x	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us
Function Set	0	0	0	0	1	DL	N	F	x	x	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

Note:

Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

HANDLING PRECAUTION

1. Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizes which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

2. Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and Wipe lightly.

-Isopropyl alcohol

-Ethyl alcohol

-Trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarize surface.

Do not use the following solvent :

-Water

-Kettle

-Aromatics

3. Caution against static charge

The LCD Module use C-MOSLSI drivers, so we recommend end that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

4. Packaging

-Modules use LCD elements, and must be treated as such. Avoid in tense shock and falls from a height.

-To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.

5. Caution for operation

-It is indispensable to drive LCD's with in the specified voltage limit since the higher voltage than the limit shorten LCD life.

An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.

-Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.

- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.

 A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the relative condition of 40 °C, 50%RH or less is required.

6. Storage

In the case of storing for a long period of time (for instance. For years) for the purpose or replacement use, The following ways are recommended.

- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.

- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.

-Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

7. Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.

- When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

Cosmetic Check (Display Off) in Non-	Active Area
--------------------------------------	-------------

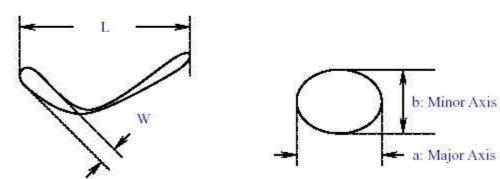
Check Item	Classification	Criteria
Panel General Chipping	Minor	X > 6 mm (Along with Edge) Y > 1 mm (Perpendicular to edge)

Cosmetic Check (Display Off) in Non-Active Area (Continued)

Check Item	Classification	Criteria
Panel Crack	Minor	Any crack is not allowable.
Cupper Exposed (Even Pin or Film)	Minor	Not Allowable by Naked Eye Inspection
Film or Trace Damage	Minor	0.44
Terminal Lead Twist	Minor	Not Allowable
Terminal Lead Broken	Minor	Not Allowable
Terminal Lead Prober Mark	Acceptable	

Check Item	Classification	Criteria
Terminal Lead Bent (Not Twist or Broken)	Minor	NG if any bent lead cause lead shorting.
	Minor	NG for horizontally bent lead more than 50% of its width.
Glue or Contamination on Pin (Couldn't Be Removed by Alcohol)	Minor	
Ink Marking on Back Side of panel (Exclude on Film)	Acceptable	Ignore for Any

Cosmetic Check (Display Off) in Non-Active Area (Continued)



Check Item	Classification	Criteria	
Any Dirt & Scratch on Polarizer's Protective Film	Acceptable	Ignore for not A Polarize	0 Mart 1
Scratches, Fiber, Line-Shape Defect (On Polarizer)	Minor	$\label{eq:W} \begin{array}{l} W \leq 0.1 \\ W > 0.1, L \leq 2 \\ L > 2 \end{array}$	Ignore $n \le 1$ n = 0
Dirt, Black Spot, Foreign Material, (On Polarizer)	Minor	$\Phi \le 0.1$ 0.1 < $\Phi \le 0.25$ 0.25 < Φ	Ignore $n \le 1$ n = 0
Dent, Bubbles, White spot (Any Transparent Spot on Polarizer)	Minor	Φ ≤ 0.5 → Ignore if no Ir Display 0.5 < Φ	further on $n = 0$
Fingerprint, Flow Mark (On Polarizer)	Minor	Not Allowa	ıble

! Cosmetic Check (Display Off) in Active Area

* Protective film should not be tear off when cosmetic check.

** Definition of W & L & Φ (Unit: mm): $\Phi = (a + b) / 2$

Pattern Check (Display On) in Active Area

Check Item	Classification	Criteria
No Display	Major	
Flicker	Major	Not Allowable
Missing Line	Major	
Pixel Short	Major	
Darker Pixel	Major	\bigcirc
Wrong Display	Major	
Un-uniform	Major	