KCU105 Board

User Guide

UG917 (v1.10) February 6, 2019

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
02/06/2019	1.10	Revised Electrostatic Discharge Caution. Added memory component information in DDR4 Component Memory. Replaced pin AM9 with D28 in Table 1-13. Revised appendix title and removed constraints file listing in Appendix D, Xilinx Design Constraints. Updated Markings in Appendix G, Regulatory and Compliance Information.
05/08/2018	1.9	Updated System Clock Source and Table 1-19.
07/26/2017	1.8	Updated Table 1-22 and Table 1-23. Added Documentation Navigator and Design Hubs.
01/12/2017	1.7	Revised Programmable User Clock Source, FMC HPC Connector J22, FMC LPC Connector J2, and Switches. Revised Figure A-1.
03/31/2016	1.6	Updated Table 1-11.
03/24/2016	1.5	Updated Figure 1-21. Changed the IOSTANDARD LVCMOS18 line in KCU105 Board Constraints File Listing on page 120. Added board thickness to Dimensions. Updated the Declaration of Conformity.
09/25/2015	1.4	Updated FMC HPC Connector J22. Revised Figure 1-23. Updated the binary format for I2C EEPROM in Table 1-19. Updated the clocks constraints file listing in Appendix D, Master Constraints File Listing.
06/27/2015	1.3	Updated connectivity information for Quad 226, Quad 227, and Quad 228 in GTH Transceivers. Updated Figure 1-21 and Figure 1-36. Updated HDMI Video Output, including updating Figure 1-22 and Table 1-18.
05/20/2015	1.2.1	Made typographical edits.
05/07/2015	1.2	Updated Table 1-17, Table 1-21, and Figure 1-22.
04/07/2015	1.1	Changed the Si5328C clock multiplier/jitter attenuator to Si5328B throughout, including updating the frequency range. Added impedance and insertion loss information to GTH SMA Clock Input, GTH TX and RX SMA Differential Pairs, PCI Express Endpoint Connectivity, SFP/SFP+ Module Connectors, FMC HPC Connector J22, and FMC LPC Connector J2. Updated Figure 1-2, Figure 1-8, Figure 1-9, Figure 1-22, Figure 1-23, Figure 1-29, Figure 1-34, Figure 1-36, Figure A-1, Figure C-1, and Figure C-2. Changed IIC to I2C throughout. Updated Table 1-4 and Table 1-25. Added Table 1-26, Maxim Power Tool GUI Regulator Settings. Updated information for J11, J47, and J49 in Table A-2. Updated callout number in KCU105 Board Zynq-7000 SoC XC7Z010 System Controller. Added instructions for accessing the system controller main menu in Appendix C, System Controller. Updated Clock Menu section. Updated the KCU105 Board Constraints File Listing in Appendix D. Updated the KCU105 evaluation kit master answer record number.
12/18/2014	1.0	Initial Xilinx release.

Table of Contents

pter 1: KCU105 Evaluation Board Features	
KCU105 Evaluation Board Features	
Board Diagram	
eature Descriptions	
lectrostatic Discharge Caution	
Kintex UltraScale XCKU040-2EEVA1156E Device	
DDR4 Component Memory	
Dual Quad-SPI Flash Memory	
Micro-SD Card Interface	
USB ITAG Interface	
FMC Connector JTAG Bypass	
Clock Generation	
GTH Transceivers	
PCI Express Endpoint Connectivity	
SFP/SFP+ Module Connectors	
10/100/1000 Mb/s Tri-Speed Ethernet PHY	
Ethernet PHY Status LEDs	
Dual USB-to-UART Bridge	
HDMI Video Output.	
I2C Bus, Topology, and Switches	
Status and User LEDs	
User I/O	
Switches	
FPGA Mezzanine Card Interface	
KCU105 Board Power System	
FMC VADJ_1V8 Power Rail	
Monitoring Voltage and Current	
SYSMON Power System Measurement	
Cooling Fan	
KCU105 Board Zynq-7000 SoC XC7Z010 System Controller	

Appendix A: Default Switch and Jumper Settings

Switches	89
Jumpers	90

Appendix B: VITA 57.1 FMC Connector Pinouts

Overview

E XILINX_®

Appendix C: System Controller

Overview	94
Power-On and Reset	97
KCU105 On-board Clocks	97 97
PMBus Menu PMBus Menu Options	102 .102
SYSMON MenuSYSMON Menu Options	104 .105
FMC Menu FMC Menu Options	107 .108
GPIO Menu	115 .115
EEPROM Menu	116 .116
CONFIG Menu.	117 .117
UltraScale FPGA User Design Considerations	118
Appendix D: Xilinx Design Constraints	
Overview	119
Appendix F: Board Setup	
Installing the KCI 1105 Board in a PC Chassis	120
	120
Appendix F: Board Specifications	
Dimensions	122
Environmental	122
Temperature	.122
Humidity	.122
Operating Voltage	.122
Appendix G: Regulatory and Compliance Information	
Overview	123
CE Directives	123
CE Standards	123
Electromagnetic Compatibility	.123
Safety	.124
Markings	124
Appendix H: Additional Resources and Legal Notices	
Xilinx Resources	125
Solution Centers	125

Documentation Navigator and Design Hubs	125
References	126
Please Read: Important Legal Notices	128

Chapter 1

KCU105 Evaluation Board Features

Overview

The KCU105 evaluation board for the Xilinx[®] Kintex[®] UltraScale[™] FPGA provides a hardware environment for developing and evaluating designs targeting the UltraScale XCKU040-2FFVA1156E device. The KCU105 evaluation board provides features common to many evaluation systems, including a DDR4 component memory, a high definition multimedia interface (HDMI[™]), two small form-factor pluggable (SFP+) connectors, an eight-lane PCI Express[®] interface, an Ethernet PHY, general purpose I/O, and two UART interfaces. Other features can be added by using VITA-57 FPGA mezzanine cards (FMCs) attached to the low pin count (LPC) FMC and high pin count (HPC) FMC connectors.

KCU105 Evaluation Board Features

The KCU105 evaluation board features are listed here. Detailed information for each feature is provided in Feature Descriptions.

- Kintex UltraScale XCKU040-2FFVA1156E device
- Zynq[®] SoC XC7Z010 based system controller
- 2 GB DDR4 component memory (four [256 Mb x 16] devices)
- Dual 256 Mb Quad serial peripheral interface flash memory (Dual Quad SPI)
- Micro secure digital (SD) connector
- USB JTAG interface via Digilent module with micro-B USB connector
- Clock sources:
 - Si5335A quad fixed frequency clock generator (300 MHz, 125 MHz, 90 MHz, 33.333 MHz)
 - Si5328B clock multiplier and jitter attenuator (8 kHz 808 MHz)
 - Si570 I2C programmable LVDS clock generator (10 MHz 810 MHz)
 - Subminiature version A (SMA) connectors (differential)
- 20 GTH transceivers (five Quads)
 - FMC HPC connector (eight GTH transceivers)

- FMC LPC connector (one GTH transceiver)
- 8-Lane PCI Express (eight GTH transceivers)
- Two SFP+ connectors (two GTH transceivers)
- TX and RX pair SMA connectors (one GTH transceiver)
- PCI Express endpoint connectivity
 - Gen1 8-lane (x8)
 - Gen2 8-lane (x8)
 - Gen3 8-lane (x8)
- Two SFP+ connectors
- Ethernet PHY SGMII interface with RJ-45 connector
- Dual USB-to-UART bridge with micro-B USB connector
- HDMI codec with HDMI connector
- I2C bus
- Status LEDs
- User I/O
- Program_B pushbutton
- Pmod Headers
- VITA 57.1 FMC HPC connector J22
- VITA 57.1 FMC LPC connector J2
- Power on/off slide switch SW1
- Power management with PMBus voltage monitoring through Maxim power controllers and GUI, current monitoring via the FPGA SYSMON block
- Single 10-bit 0.2 MSPS SYSMON analog-to-digital converter
- Configuration options:
 - Dual Quad-SPI flash memory
 - USB JTAG configuration port (Digilent module)
 - Platform cable header J3 JTAG configuration port
 - System controller micro-SD card

Board Diagram

The KCU105 board diagram is shown in Figure 1-1

Note: Page numbers reference the page number of schematic 0381556

X18365-113016

Figure 1-1: KCU105 Evaluation Board Block Diagram

Feature Descriptions

Figure 1-2 shows the KCU105 board. Each numbered feature that is referenced in Figure 1-2 is described in Table 1-1 with a link to detailed information provided under Feature Descriptions.

IMPORTANT: Figure 1-2 is for visual reference only and might not reflect the current revision of the board.

Electrostatic Discharge Caution

CAUTION! ESD can damage electronic components when they are improperly handled, and can result in total or intermittent failures. Always follow ESD-prevention procedures when removing and replacing components.

To prevent ESD damage:

- Use an ESD wrist or ankle strap and ensure that it makes skin contact. Connect the equipment end of the strap to an unpainted metal surface on the chassis.
- Avoid touching the adapter against your clothing. The wrist strap protects components from ESD on the body only.
- Handle the adapter by its bracket or edges only. Avoid touching the printed circuit board or the connectors.
- Put the adapter down only on an antistatic surface such as the bag supplied in your kit.
- If you are returning the adapter to Xilinx Product Support, place it back in its antistatic bag immediately.

X18366-113016

Figure 1-2: KCU105 Evaluation Board Components

Table 1-1:	KCU105 Board	Component	Descriptions
------------	--------------	-----------	--------------

Callout	Component Description	Notes	Schematic ⁽¹⁾ 0381556 Page Number
	Kintex UltraScale XCKU040-2FFVA1156E Device	XCKU040-2FFVA1156E	
1	With fan-sink on top of the FPGA soldered on the board	Radian FB95+K52B+T710	
2	DDR4 Component Memory,	Micron MT40A256M16HA-083E	17 20
2	DDR4 Memory 2GB (4x512M U60-U63)		17-20
З	Dual Quad-SPI Flash Memory,	Micron N25Q256A11ESF40F	39
5	Dual Quad-SPI Flash (2x256Mb) (U35-U36)	U35 on top, U36 on bottom of board	55
Δ	Micro-SD Card Interface,	Molex 5025700893	33
4	Micro SD Card Interface Connector (J83)		
5	USB JTAG Interface,	Digilent USB JTAG Module	16
5	w/Micro-B Connector		10
6	Clock Generation,	Si5335A-B02436-GM, 4 outputs:	34
0	SYSCLK and other clocks, 1.8V LVDS (U122)	300MHz, 125MHz, 90MHz, 33.33MHz	54
	Programmable User Clock Source,	Silicon Labs Si570BAB0000544DG	
7	I2C Prog. User Clock 3.3V LVDS (U32) with 1-to-2 LVDS buffer (U104)	(default 156.250MHz) with 5i53340 buffer	35
8	Jitter Attenuated Clock,	Silicon Labs Si5328B-C-GM	37
0	Jitter Attenuated Clock (U57)		57
9	User SMA Clock Input,	Rosenberger 32K10K-400L5	36
	User Differential SMA Clock P/N (J34/J35)		50
10	GTH SMA Clock Input,	Rosenberger 32K10K-400L5	36
10	SMA_MGT_REFCLK_P/N (J33/J32)		
11	User SMA GPIO,	Rosenberger 32K10K-400L5	36
	User SMA GPIO Connectors P/N (J36/J37)		
12	GTH TX and RX SMA Differential Pairs,	Rosenberger 32K10K-400L5	36
	User SMA TX and RX_P/N (J31/J30, J29/J28)		
13	GTH Transceivers	Embedded within FPGA U1	10
14	PCI Express Endpoint Connectivity,	8-lane card edge connector	26
- ·	PCI Express Connector (P1)		20
15	SFP/SFP+ Module Connectors,	Molex 74441-0010	27
	SFP/SFP+ Module Connector SFP0(P5)		
16	SFP/SFP+ Module Connectors,	Molex 74441-0010	28
	SFP/SFP+ Module Connector SFP1 (P4)		
17	10/100/1000 Mb/s Tri-Speed Ethernet PHY, SGMII Mode Only (U58,P3)	Marvell M88E1111-BAB1C000 with Halo HFJ11-1G01E-L12RL RJ45	38

Table 1-1:	KCU105 Board	Component	Descriptions	(Cont'd)

Callout	Component Description	Notes	Schematic ⁽¹⁾ 0381556 Page Number
18	Ethernet PHY Status LEDs, LEDs are integrated into P3 bezel	Halo HFJ11-1G01E-L12RL RJ45 integrated Status LEDs (Rev B)	38
19	Dual USB-to-UART Bridge, Bridge device (U34) with Mini-B Connector (J4)	Silicon Labs CP2105-F01-GM bridge, Hirose ZX62D-AB-5P8 connector	40
20	HDMI Video Output, HDMI Controller (U52), HDMI Connector (P6)	Analog Devices ADV7511KSTZ-P, Molex 47151-001	46, 47
21	I2C Bus, Topology, and Switches, I2C Bus MUX (U28)	TI TCA9548APWR bottom of board	49
22	I2C Bus, Topology, and Switches, I2C Bus MUX (U80)	TI PCA9544ARGYR bottom of board	50
23	Status and User LEDs, User LEDs (DS6-DS10, DS31-DS33)	GPIO LEDs, GREEN 0603 Lumex SML-LX0603GW-TR	41
24	User Pushbuttons, User Pushbuttons, active-High (SW6-SW10)	E-Switch TL3301EF100QG in North, South, East, West, Center pattern	41
25	User Pushbuttons, User CPU RESET, active-High (SW5)	E-Switch TL3301EF100QG	41
26	GPIO DIP Switch, GPIO DIP Switch (SW12)	4-pole C&K SDA04H1SBD	41
27	Program_B Pushbutton Switch, FPGA PROG Pushbutton (SW4)	E-Switch TL3301EF100QG	41
28	FPGA Configuration DIP Switch, DIP Switch (SW15)	6-pole C&K SDA06H1SBD	32
29	User PMOD GPIO Headers, PMOD Hdrs. (J52,J53) w/Level-Shifters (U41,U42)	2x6 0.1 inch male header Sullins PBC36DAAN; TI TXS0108EPWR	48
30	Power On/Off Slide Switch SW1, Power On/Off Switch (SW1)	C&K 1201M2S3AQE2	51
31	KCU105 Board Power System, Power Management System (top and bottom)	Maxim MAX15301 and MAX15303 Digital P.O.L. Controllers	52 - 65
32	SYSMON Power System Measurement SYSMON External Circuitry	Analog Devices MUX ADG707BRUZ TI Op Amps INA333AIDGKR	44 - 45
33	FMC HPC Connector J22, FMC HPC connector (J22)	Samtec ASP_134486_01	21 - 24
34	FMC LPC Connector J2, FMC LPC connector (J2)	Samtec ASP_134603_01	25

Callout	Component Description	Notes	Schematic ⁽¹⁾ 0381556 Page Number
35	SYSMON Power System Measurement,	2x6 0.1inch male header, part of	13
55	SYSMON Header (J75)	breakaway 2x36 Sullins PBC36DAAN	45
36	KCU105 Board Zynq-7000 SoC XC7Z010 System Controller,	XC7Z010CLG225	29 - 31
	Zynq-7000 SoC XC7Z010CLG225 (U111)		
37	2x8 shrouded PMBus connector J39, see Monitoring Voltage and Current	ASSMAN AWHW16G-0202	50
38	2x7 2mm shrouded JTAG cable connector J82, see Monitoring Voltage and Current	MOLEX 87832-1420	32
39	12V power input 2x3 connector (J15), see Power On/Off Slide Switch SW1	MOLEX-39-30-1060	51
40	Rotary Switch,	PANASONIC EVQ-WK4001	41
40	Active-High (SW13)		71

Table 1-1: KCU105 Board Component Descriptions (Cont'd)

Notes:

- 1. The KCU105 board schematics are available for download. See the KCU105 Evaluation Kit website.
- 2. The KCU105 board jumper header locations are shown in Figure A-1.

Kintex UltraScale XCKU040-2FFVA1156E Device

[Figure 1-2, callout 1]

The KCU105 board is populated with the Kintex UltraScale XCKU040-2FFVA1156E device. For more information on Kintex UltraScale FPGAs, see *Kintex UltraScale Data Sheet: DC and AC Switching Characteristics* (DS892) [Ref 1].

FPGA Configuration

The UltraScale FPGA is configured using either the master SPI or JTAG mode as determined by the configuration DIP switch SW15.

X18367-113016

Figure 1-3: Configuration DIP Switch

Interfaces supporting these configuration modes are:

- Master SPI: Quad SPI flash memory (U35 and U36)
- JTAG:
 - Digilent USB-to-JTAG configuration module (U115)
 - Platform cable header (J3)
 - System controller (U111)

Each configuration interface corresponds to one or more configuration modes and bus widths, as listed in Table 1-2. The FPGA mode pins M1 and M0 are hard-wired to logic 0 and 1, respectively. FPGA mode pin M2 is wired to SW15 pin 6 position 6, which has a default setting of OPEN, enabling the M2 net to be pulled down to logic 0 (for example, the FPGA default mode setting M[2:0] = 001, selecting Quad SPI configuration mode).

Table 1-2: 🛛 🕻	Configuration	Modes
----------------	---------------	-------

Configuration Mode	M[2:0]	Bus Width	CCLK Direction
Master SPI	001	x1, x2, x4	Output
JTAG	101	x1	Not Applicable

Prior to KCU105 board power-up, the UltraScale FPGA U1 configuration method is selected with DIP switch SW15 switch settings:

- Master SPI Mode
 - With both SW15.6 (FPGA_M2) and SW15.5 (SYSCTLR_ENABLE) in the OFF (disable the SYSCTLR_ENABLE) position, a bitstream programmed into the dual-QSPI flash devices (U35, U36) is used to configure the UltraScale FPGA U1.
- JTAG Mode
 - With switch SW15.6 ON and SW15.5 in the OFF position, either the USB JTAG Digilent U115 or the JTAG cable header J3 can be used.

With both switches SW15.6 and SW15.5 in the ON position, the Xilinx integrated configuration engine is used to configure the UltraScale FPGA U1 over JTAG with one of several bitstreams stored on a micro-SD card inserted in to the SD card connector J83. Selecting the bitstream to use for this JTAG configuration is accomplished by setting SW15.1 (MSB) through SW15.4 (LSB) to one of the sixteen possible binary values. The technical reference design (TRD) files are available on the KCU105 Evaluation Kit website.

Once the board is powered up or when the system controller POR pushbutton (SW14) is pressed, the system controller menu, accessed through the USB UART (J4), is available for user initiated configuration of the UltraScale FPGA. The "Configure UltraScale FPGA from micro-SD card" option (see CONFIG Menu Options) utilizes the Xilinx integrated configuration engine to prompt for one of sixteen micro-SD card resident bitstreams to configure the UltraScale FPGA (U1). When configuration is initiated through the system controller menu, the bitstream number entered at the text prompt determines the selected bitstream. DIP switch SW15 positions 1 to 4 do not determine the selected bitstream.

See Appendix C, System Controller for information on installing and using the user interface.

For complete details on configuring the FPGA, see *UltraScale Architecture Configuration User Guide* (UG570) [Ref 2].

Encryption Key Battery Backup Circuit

The XCKU040 device U1 implements bitstream encryption key technology. The KCU105 board provides the encryption key backup battery circuit shown in Figure 1-4. The Seiko TS518FE rechargeable 1.5V lithium button-type battery B1 is soldered to the board with the positive output connected to the XCKU040 device U1 VBATT pin AD7. The battery supply current I_{BATT} specification is described in the *Kintex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics* (DS892) [Ref 1]. The battery provides backup power to a RAM-based encryption key when the board power is off. B1 is charged from the SYS_1V8 1.8V rail through a series diode with a typical forward voltage drop of 0.38V and 4.7 K Ω current limit resistor. The nominal charging voltage is 1.42V. The VBATT is only required for use with encrypted bitstreams as it provides backup power to a RAM-based encryption key in the absence of powering the entire FPGA. The stored key is used for decrypting an encrypted bitstream during configuration.

See *UltraScale Architecture Configuration User Guide* (UG570) [Ref 2] for more details about Xilinx UltraScale bitstream encryption solutions.

X18368-113016

Figure 1-4: Encryption Key Backup Circuit

I/O Voltage Rails

There are ten I/O banks available on the KCU040 device and the KCU105 board. The voltages applied to the FPGA I/O banks (shown in Figure 1-5) used by the KCU105 board are listed in Table 1-3.

X18369-113016

Figure 1-5: UltraScale XCKU040 Bank Locations

www.xilinx.com

FPGA (U1) Bank	Power Supply Rail Net Name	Voltage
Bank 0	VCC1V8_FPGA	1.8V
HP Bank 44	VCC1V2_FPGA	1.2V
HP Bank 45	VCC1V2_FPGA	1.2V
HP Bank 46	VCC1V2_FPGA	1.2V
HP Bank 47	VADJ_1V8_FPGA	1.8V
HP Bank 48	VADJ_1V8_FPGA	1.8V
HR Bank 64	VCC1V8_FPGA	1.8V
HR Bank 65	VCC1V8_FPGA	1.8V
HP Bank 66	VADJ_1V8_FPGA	1.8V
HP Bank 67	VADJ_1V8_FPGA	1.8V
HP Bank 68	VADJ_1V8_FPGA	1.8V

Table 1-3: I/O Bank Voltage Rails

DDR4 Component Memory

[Figure 1-2, callout 2]

The 2 GB DDR4 component memory system is comprised of four 256 Mb x 16 DDR4 SDRAM devices located at U60-U63.

- Part number: MT40A256M16GE-083E (Micron Technology)
- Configuration: 4Gb: 256 Mb x 16
- Supply voltage: 1.2V
- Datapath width: 64 bits
- Data rate: Up to 2400 MT/s

The KCU105 XCKU040 FPGA memory interface performance is documented in the *Kintex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics* (DS892) [Ref 1].

This memory system is connected to the XCKU040 HP banks 44, 45, and 46. The DDR4 0.6V VTT termination voltage (net DDR4_VTT) is sourced from the TI TPS51200DR linear regulator U24. The connections between the DDR4 component memories and the XCKU040 banks 44, 45, and 46 are listed in Table 1-4.

FPGA	Schematic Net	1/O Standard		Component Memory			
(U1) Pin	Name	I/O Standard	Pin #	Pin Name	Ref. Des.		
AE23	DDR4_DQ0	POD12_DCI	G2	DQL0	U60		
AG20	DDR4_DQ1	POD12_DCI	F7	DQL1	U60		
AF22	DDR4_DQ2	POD12_DCI	H3	DQL2	U60		
AF20	DDR4_DQ3	POD12_DCI	H7	DQL3	U60		
AE22	DDR4_DQ4	POD12_DCI	H2	DQL4	U60		
AD20	DDR4_DQ5	POD12_DCI	H8	DQL5	U60		
AG22	DDR4_DQ6	POD12_DCI	J3	DQL6	U60		
AE20	DDR4_DQ7	POD12_DCI	J7	DQL7	U60		
AJ24	DDR4_DQ8	POD12_DCI	A3	DQU0	U60		
AG24	DDR4_DQ9	POD12_DCI	B8	DQU1	U60		
AJ23	DDR4_DQ10	POD12_DCI	C3	DQU2	U60		
AF23	DDR4_DQ11	POD12_DCI	C7	DQU3	U60		
AH23	DDR4_DQ12	POD12_DCI	C2	DQU4	U60		
AF24	DDR4_DQ13	POD12_DCI	C8	DQU5	U60		
AH22	DDR4_DQ14	POD12_DCI	D3	DQU6	U60		
AG25	DDR4_DQ15	POD12_DCI	D7	DQU7	U60		
AG21	DDR4_DQS0_T	DIFF_POD12_DCI	G3	DQSL_T	U60		
AH21	DDR4_DQS0_C	DIFF_POD12_DCI	F3	DQSL_C	U60		
AH24	DDR4_DQS1_T	DIFF_POD12_DCI	B7	DQSU_T	U60		
AJ25	DDR4_DQS1_C	DIFF_POD12_DCI	A7	DQSU_C	U60		
AD21	DDR4_DM0	POD12_DCI	E7	DML_B/DBIL_B	U60		
AE25	DDR4_DM1	POD12_DCI	E2	DMU_B/DBIU_B	U60		
AL22	DDR4_DQ16	POD12_DCI	G2	DQL0	U61		
AL25	DDR4_DQ17	POD12_DCI	F7	DQL1	U61		
AM20	DDR4_DQ18	POD12_DCI	H3	DQL2	U61		
AK23	DDR4_DQ19	POD12_DCI	H7	DQL3	U61		
AK22	DDR4_DQ20	POD12_DCI	H2	DQL4	U61		
AL24	DDR4_DQ21	POD12_DCI	H8	DQL5	U61		
AL20	DDR4_DQ22	POD12_DCI	J3	DQL6	U61		
AL23	DDR4_DQ23	POD12_DCI	J7	DQL7	U61		
AM24	DDR4_DQ24	POD12_DCI	A3	DQU0	U61		
AN23	DDR4_DQ25	POD12_DCI	B8	DQU1	U61		
AN24	DDR4_DQ26	POD12_DCI	C3	DQU2	U61		

Table 1-4:	DDR4 Memor	y Connections	to the FPGA
------------	------------	---------------	-------------

FPGA	Schematic Net		Component Memory			
(U1) Pin	Name	I/O Standard	Pin #	Pin Name	Ref. Des.	
AP23	DDR4_DQ27	POD12_DCI	C7	DQU3	U61	
AP25	DDR4_DQ28	POD12_DCI	C2	DQU4	U61	
AN22	DDR4_DQ29	POD12_DCI	C8	DQU5	U61	
AP24	DDR4_DQ30	POD12_DCI	D3	DQU6	U61	
AM22	DDR4_DQ31	POD12_DCI	D7	DQU7	U61	
AJ20	DDR4_DQS2_T	DIFF_POD12_DCI	G3	DQSL_T	U61	
AK20	DDR4_DQS2_C	DIFF_POD12_DCI	F3	DQSL_C	U61	
AP20	DDR4_DQS3_T	DIFF_POD12_DCI	B7	DQSU_T	U61	
AP21	DDR4_DQS3_C	DIFF_POD12_DCI	A7	DQSU_C	U61	
AJ21	DDR4_DM2	POD12_DCI	E7	DML_B/DBIL_B	U61	
AM21	DDR4_DM3	POD12_DCI	E2	DMU_B/DBIU_B	U61	
AH28	DDR4_DQ32	POD12_DCI	G2	DQL0	U62	
AK26	DDR4_DQ33	POD12_DCI	F7	DQL1	U62	
AK28	DDR4_DQ34	POD12_DCI	H3	DQL2	U62	
AM27	DDR4_DQ35	POD12_DCI	H7	DQL3	U62	
AJ28	DDR4_DQ36	POD12_DCI	H2	DQL4	U62	
AH27	DDR4_DQ37	POD12_DCI	H8	DQL5	U62	
AK27	DDR4_DQ38	POD12_DCI	J3	DQL6	U62	
AM26	DDR4_DQ39	POD12_DCI	J7	DQL7	U62	
AL30	DDR4_DQ40	POD12_DCI	A3	DQU0	U62	
AP29	DDR4_DQ41	POD12_DCI	B8	DQU1	U62	
AM30	DDR4_DQ42	POD12_DCI	C3	DQU2	U62	
AN28	DDR4_DQ43	POD12_DCI	C7	DQU3	U62	
AL29	DDR4_DQ44	POD12_DCI	C2	DQU4	U62	
AP28	DDR4_DQ45	POD12_DCI	C8	DQU5	U62	
AM29	DDR4_DQ46	POD12_DCI	D3	DQU6	U62	
AN27	DDR4_DQ47	POD12_DCI	D7	DQU7	U62	
AL27	DDR4_DQS4_T	DIFF_POD12_DCI	G3	DQSL_T	U62	
AL28	DDR4_DQS4_C	DIFF_POD12_DCI	F3	DQSL_C	U62	
AN29	DDR4_DQS5_T	DIFF_POD12_DCI	Β7	DQSU_T	U62	
AP30	DDR4_DQS5_C	DIFF_POD12_DCI	A7	DQSU_C	U62	
AH26	DDR4_DM4	POD12_DCI	E7	DML_B/DBIL_B	U62	
AN26	DDR4_DM5	POD12_DCI	E2	DMU_B/DBIU_B	U62	
AH31	DDR4_DQ48	POD12_DCI	G2	DQL0	U63	

Table 1-4: DDR4 Memory Connections to the FPGA (Cont'	R4 Memory Connections to the FPGA (Cont'd	ole 1-4: DDR4 Memo	Table 1-4:
---	---	--------------------	------------

FPGA	Schematic Net		Component Memory			
(U1) Pin	Name	I/O Standard	Pin #	Pin Name	Ref. Des.	
AH32	DDR4_DQ49	POD12_DCI	F7	DQL1	U63	
AJ34	DDR4_DQ50	POD12_DCI	H3	DQL2	U63	
AK31	DDR4_DQ51	POD12_DCI	H7	DQL3	U63	
AJ31	DDR4_DQ52	POD12_DCI	H2	DQL4	U63	
AJ30	DDR4_DQ53	POD12_DCI	H8	DQL5	U63	
AH34	DDR4_DQ54	POD12_DCI	J3	DQL6	U63	
AK32	DDR4_DQ55	POD12_DCI	J7	DQL7	U63	
AN33	DDR4_DQ56	POD12_DCI	A3	DQU0	U63	
AP33	DDR4_DQ57	POD12_DCI	B8	DQU1	U63	
AM34	DDR4_DQ58	POD12_DCI	C3	DQU2	U63	
AP31	DDR4_DQ59	POD12_DCI	C7	DQU3	U63	
AM32	DDR4_DQ60	POD12_DCI	C2	DQU4	U63	
AN31	DDR4_DQ61	POD12_DCI	C8	DQU5	U63	
AL34	DDR4_DQ62	POD12_DCI	D3	DQU6	U63	
AN32	DDR4_DQ63	POD12_DCI	D7	DQU7	U63	
AH33	DDR4_DQS6_T	DIFF_POD12_DCI	G3	DQSL_T	U63	
AJ33	DDR4_DQS6_C	DIFF_POD12_DCI	F3	DQSL_C	U63	
AN34	DDR4_DQS7_T	DIFF_POD12_DCI	B7	DQSU_T	U63	
AP34	DDR4_DQS7_C	DIFF_POD12_DCI	A7	DQSU_C	U63	
AJ29	DDR4_DM6	POD12_DCI	E7	DML_B/DBIL_B	U63	
AL32	DDR4_DM7	POD12_DCI	E2	DMU_B/DBIU_B	U63	
AE17	DDR4_A0	SSTL12_DCI	P3	A0	U60-U62	
AH17	DDR4_A1	SSTL12_DCI	P7	A1	U60-U62	
AE18	DDR4_A2	SSTL12_DCI	R3	A2	U60-U62	
AJ15	DDR4_A3	SSTL12_DCI	N7	A3	U60-U62	
AG16	DDR4_A4	SSTL12_DCI	N3	A4	U60-U62	
AL17	DDR4_A5	SSTL12_DCI	P8	A5	U60-U62	
AK18	DDR4_A6	SSTL12_DCI	P2	A6	U60-U62	
AG17	DDR4_A7	SSTL12_DCI	R8	A7	U60-U62	
AF18	DDR4_A8	SSTL12_DCI	R2	A8	U60-U62	
AH19	DDR4_A9	SSTL12_DCI	R7	A9	U60-U62	
AF15	DDR4_A10	SSTL12_DCI	M3	A10/AP	U60-U62	
AD19	DDR4_A11	SSTL12_DCI	T2	A11	U60-U62	
AJ14	DDR4_A12	SSTL12_DCI	M7	A12/BC_B	U60-U62	

Table 1-4:	DDR4 Memory	<pre>/ Connections to the FPGA (Cont'd)</pre>

FPGA	Schematic Net	1/O Standard	Component Memory		
(U1) Pin	Name	ij O Standard	Pin #	Pin Name	Ref. Des.
AG19	DDR4_A13	SSTL12_DCI	Т8	A13	U60-U62
AD16	DDR4_A14_WE_B	SSTL12_DCI	L2	WE_B/A14	U60-U62
AG14	DDR4_A15_CAS_B	SSTL12_DCI	M8	CAS_B/A15	U60-U62
AF14	DDR4_A16_RAS_B	SSTL12_DCI	L8	RAS_B/A16	U60-U62
AF17	DDR4_BA0	SSTL12_DCI	N2	BA0	U60-U62
AL15	DDR4_BA1	SSTL12_DCI	N8	BA1	U60-U62
AG15	DDR4_BG0	SSTL12_DCI	M2	BG0	U60-U62
AH14	DDR4_ACT_B	SSTL12_DCI	L3	ACT_B	U60-U62
AH16	DDR4_TEN	SSTL12_DCI	N9	TEN	U60-U62
AJ16	DDR4_ALERT_B	SSTL12_DCI	P9	ALERT_B	U60-U62
AD18	DDR4_PAR	SSTL12_DCI	Т3	PAR	U60-U62
AJ18	DDR4_ODT	SSTL12_DCI	К3	ODT	U60-U62
AL19	DDR4_CS_B	SSTL12_DCI	L7	CS_B	U60-U62
AD15	DDR4_CKE	SSTL12_DCI	K2	CKE	U60-U62
AL18	DDR4_RESET_B	LVCMOS12	P1	RESET_B	U60-U62
AE16	DDR4_CK_T	DIFF_SSTL12_DCI	K7	CK_T	U60-U62
AE15	DDR4_CK_C	DIFF_SSTL12_DCI	K8	CK_C	U60-U62

Table 1-4: DDR4 Memory Connections to the FPGA (Cont'd)

The KCU105 board DDR4 memory component interface adheres to the constraints guidelines documented in the DDR4 Design Guidelines section of *UltraScale Architecture PCB Design User Guide* (UG583) [Ref 3] and in *UltraScale Architecture-Based FPGAs Memory IP LogiCORE IP Product Guide (Vivado Design Suite)* (PG150) [Ref 4]. The KCU105 board DDR4 memory component interface is a 40 Ω impedance implementation. For more details about the Micron DDR4 component memory, see the Micron EDY4016AABG-DR-F-D data sheet at the Micron website [Ref 5].

Dual Quad-SPI Flash Memory

[Figure 1-2, callout 3]

The Quad-SPI flash memory located at U35 and U36 provides 2 x 256 Mb of nonvolatile storage that can be used for configuration and data storage. For details on FPGA configuration operation and implementation related to the dual Quad-SPI interfaces, see *UltraScale Architecture Configuration User Guide* (UG570) [Ref 2].

- Part number: N25Q256A11ESF40F (Micron)
- Supply voltage: 1.8V

- Datapath width: 4 bits
- Data rate: various depending on single/dual/quad mode

The connections between the SPI flash memories and the XCKU040 device are listed in Table 1-5.

FPGA (U1) Pin	Schematic Net Name	I/O Standard	Pin #	Pin Name	Ref. Des.
AC7	QSPI0_IO0	LVCMOS18	15	SI_IO0	U35
AB7	QSPI0_IO1	LVCMOS18	8	SI_IO1	U35
AA7	QSPI0_IO2	LVCMOS18	9	SI_IO2	U35
Y7	QSPI0_IO3	LVCMOS18	1	SI_IO3	U35
AA9	FPGA_CCLK	NA ⁽¹⁾	16	SCK	U35, U36
U7	QSPI0_CSB	LVCMOS18	7	CS_B	U35
M20	QSPI1_IO0	LVCMOS18	15	SI_IO0	U36
L20	QSPI1_IO1	LVCMOS18	8	SI_IO1	U36
R21	QSPI1_IO2	LVCMOS18	9	SI_IO2	U36
R22	QSPI1_IO3	LVCMOS18	1	SI_IO3	U36
G26	QSPI1_CSB	LVCMOS18	7	CS_B	U36

Table 1-5: Quad-SPI Flash Memory Connections to FPGA U1

Notes:

1. CCLK is a dedicated pin and does not require an IOSTANDARD or LOC attribute.

Figure 1-6 shows the connections of the linear Quad-SPI flash memory on the KCU105 evaluation board. For more details, see the Micron N25Q256A11ESF40F data sheet at the Micron website [Ref 5].

X18370-013119

Figure 1-6: Dual Quad-SPI 256 Mb Flash Memory

Micro-SD Card Interface

[Figure 1-2, callout 4]

The KCU105 board includes a secure digital input/output (SDIO) interface to provide access to general purpose nonvolatile micro-SD memory cards and peripherals. The micro-SD card slot supports 50 MHz high-speed micro-SD cards. The SDIO signals are connected to I/O bank 64, which has its VCCO set to 1.8V. Fairchild FSSD07 (U107) and STMicroelectronics STG3220 (U110) 2:1 multiplexers are used between the FPGA and the micro-SD card connector (J83), and the XC7Z010 system controller (U111), and the micro-SD card connector (J83). Table 1-6 shows the connections of the SD card interface to the FPGA (U1) on the KCU105 board.

Table 1-6: SDIO Connections to FPGA U1

FPGA (U1)	Schematic Net	I/O Standard	SD	SD MUX/Level-Shifter (U107) Schematic Net			Connector (J83)		
Pin	Name	Stanuaru	Pin #	Pin Name	Pin #	Pin Name	Name	Pin #	Pin Name
AD9	SDIO_CMD_FPGA	LVCMOS18	13	2CMD	2	CMD	SDIO_CMD_HDR	3	CMD
AL10	SDIO_CLK_FPGA	LVCMOS18	11	2CLK	5	CLK	SDIO_CLK_HDR	5	CLK
AH9	SDIO_DATA2_FPGA	LVCMOS18	15	2DAT_2	24	DAT_2	SDIO_DATA2_HDR	1	DAT2
AN9	SDIO_DATA1_FPGA	LVCMOS18	9	2DAT_1	7	DAT_1	SDIO_DATA1_HDR	8	DAT1
AP9	SDIO_DATA0_FPGA	LVCMOS18	10	2DAT_0	6	DAT_0	SDIO_DATA0_HDR	7	DAT0
AH8	SDIO_DATA3_FPGA	LVCMOS18	14	2DAT_3	1	DAT_3	SDIO_DATA3_HDR	2	CD_DAT3
			DUAL SPDT CMOS SWITCH (U110)						
			Pin #	Pin Name	Pin #	Pin Name			
AM10	SDIO_CD_FPGA	LVCMOS18	4	2S1	6	D2	SDIO_CD_HDR	13	DETECT

Figure 1-7 shows the connections of the SD card interface on the KCU105 board.

X18371-113016

Figure 1-7: SD Connector Circuit Topology

For more details about the multiplexer devices, see the Fairchild FSSD07 data sheet at the Fairchild Semiconductor website [Ref 6] and the STMicroelectronics STG3220 data sheet at the STMicroelectronics website [Ref 7]. For more information on Secure Digital nonvolatile memory card technology, see the SanDisk Corporation website [Ref 8] and the SD Association website [Ref 9].

USB JTAG Interface

[Figure 1-2, callout 5]

JTAG configuration is provided through a Digilent onboard USB-to-JTAG configuration logic module (U115) where a host computer accesses the KCU105 board JTAG chain through a type-A (host side) to micro-B (KCU105 board side J87) USB cable.

A 2-mm JTAG header (J3) is also provided in parallel for access by Xilinx download cables such as the platform cable USB II and the parallel cable IV. The JTAG chain of the KCU105 board is illustrated in Figure 1-8. JTAG configuration is allowed at any time regardless of FPGA mode pin settings. JTAG initiated configuration takes priority over the configuration method selected through the FPGA mode pin M2 (which is wired to SW15 pin 6, position 6).

IMPORTANT: The KCU105 board JTAG chain implementation supports up to 15 MHz TCK operation. When using the Vivado Design Suite Hardware Manager to configure the KCU105 board, 15 MHz or lower must be used for the TCK frequency setting. If the JTAG TCK is set to >15 MHz, the Vivado tools display an unknown device instead of detecting the UltraScale Kintex KU040 device.

For more details about the Digilent USB JTAG Module, see the Digilent website [Ref 10].

Figure 1-8: JTAG Chain Block Diagram

IMPORTANT: The Digilent USB module, Xilinx platform USB cable interface header (J3), and the system controller (U111) bank 34 JTAG interface cannot be operated simultaneously. Make sure that only one JTAG configuration interface is selected.

FMC Connector JTAG Bypass

When an FMC mezzanine card is attached to the KCU105 board, it is automatically added to the JTAG chain through electronically controlled single-pole single-throw (SPST) switches U26 (HPC) and U27 (LPC). The SPST switches are in a normally closed state and transition to an open state when an FMC mezzanine card is attached. Switch U26 adds an attached HPC FMC mezzanine card to the FPGAs JTAG chain as determined by the FMC_HPC_PRSNT_M2C_B signal (active-Low). Switch U27 adds an attached LPC FMC mezzanine card to the FPGAs JTAG chain as determined by the FMC_LPC_PRSNT_M2C_B signal (active-Low). The attached FMC card must implement a TDI-to-TDO connection via a device or bypass jumper to ensure that the JTAG chain connects to the FPGA U1.

The JTAG connectivity on the KCU105 board allows a host computer to download bitstreams to the FPGA using the Vivado design tools. In addition, the JTAG connector allows debug tools such as the Vivado serial I/O analyzer or a software debugger to access the FPGA. The Vivado design tools can also be used to program the dual Quad-SPI Flash memory.

Clock Generation

[Figure 1-2, callout 6]

The KCU105 evaluation board provides nine clock sources for the XCKU040 device. The KCU105 board clocking system is illustrated in Figure 1-9.

X18373-113016

Figure 1-9: KCU105 Board Clocking Block Diagram

Table 1-7 lists the source devices for each clock.

Table 1-7:	KCU105	Board	Clock	Sources

Clock Name	Clock Ref. Des.	Description
System Clock 300 MHz	U122	 Silicon Labs Si5335A 1.8V LVDS Any Frequency Quad Clock Generator CLK0.
		 See Clock Generation (SYSCLK_300_P and SYSCLK_300_N).
System Clock 125 MHz	U122	 Silicon Labs Si5335A 1.8V LVDS Any Frequency Quad Clock Generator CLK1.
		 See Clock Generation (CLK_125MHZ).
EMC Clock 90 MHz	U122	 Silicon Labs Si5335A 1.8V LVCMOS Single-Ended Any Frequency Quad Clock Generator CLK2.
		 See Clock Generation (FPGA_EMCCLK).
System Ctlr. Clock 33.333 MHz	U122	 Silicon Labs Si5335A 1.8V LVCMOS single-ended any frequency quad clock generator CLK3.
		 See Clock Generation (SYSCTLR_CLK).
User Clock 10 MHz-810 MHz	U32	 Silicon Labs Si570 3.3V LVDS I2C programmable oscillator, 156.250 MHz default. Available from the output Q0 of Silicon Labs Si53340 clock buffer.
		 See Programmable User Clock Source (USER_SI570_CLOCK_P and USER_SI570_CLOCK_N).
GTH SMA REF Clock	J33(P), J32(N)	User clock input SMAs.
		 See GTH TX and RX SMA Differential Pairs (SMA_MGT_REFCLK_P and SMA_MGT_REFCLK_N).
User SMA Clock	J34(P), J35(N)	User clock input SMAs.
		 See User SMA Clock Input (USER_SMA_CLOCK_P and USER_SMA_CLOCK_N).
Jitter Attenuated Clock CKOUT1	U57	 Silicon Labs Si5328B LVDS precision clock multiplier/jitter attenuator.
		 See Jitter Attenuated Clock (SI5328_OUT_P and SI5328_OUT_N).
Jitter Attenuated Clock CKOUT2	U57	 Silicon Labs Si5328B LVDS precision clock multiplier/jitter attenuator.
		 See Jitter Attenuated Clock (SI5328_OUT2_P and SI5328_OUT2_N).

Table 1-8 lists the KCU105 board clock sources to the XCKU040 device U1 connections.

Clock Source Ref. Des. and Pin	Schematic Net Name	I/O Standard	XCKU040 Device (U1) Pin
U122.22	SYSCLK_300_P	LVDS	AK17
U122.21	SYSCLK_300_N	LVDS	AK16
U122.18	CLK_125MHZ_P	LVDS	G10
U122.17	CLK_125MHZ_N	LVDS	F10
U122.14	FPGA_EMCCLK	LVCMOS18	K20
U122.10	SYSCTLR_CLK	LVCMOS18	С7
U104.9	USER_SI570_CLOCK_P	LVDS_25	M25
U104.10	USER_SI570_CLOCK_N	LVDS_25	M26
U104.11	MGT_SI570_CLOCK_P	NA ⁽¹⁾	P6
U104.12	MGT_SI570_CLOCK_N	NA ⁽¹⁾	Р5
J33.1	SMA_MGT_REFCLK_P	NA ⁽¹⁾	V6
J32.1	SMA_MGT_REFCLK_N	NA ⁽¹⁾	V5
J34.1	USER_SMA_CLOCK_P	LVDS	D23
J35.1	USER_SMA_CLOCK_N	LVDS	C23
U57.28	SI5328_OUT_P	NA ⁽¹⁾	M6
U57.29	SI5328_OUT_N	NA ⁽¹⁾	M5

Table 1-8:	KCU105 Board Clock Sources to XCKU040 Device U1 Connections
------------	---

Notes:

1. Capacitively coupled, serial transceiver connections I/O standard not applicable.

System Clock Source

[Figure 1-2, callout 6]

The system clock source is a Silicon Labs Si5335A quad clock generator/buffer at U122. The system clock (SYSCLK) is a LVDS 300 MHz clock sourced from the CLK0A output pair of U122. SYSCLK is wired to a clock capable (GC) input on programmable logic bank 45. The signal pair is named SYSCLK_300_P and SYSCLK_300_N connected to the XCKU040 device U1 (bank 45 pins AK17 and AK16, respectively).

- Clock Generator: Silicon Labs Si5335A-B02436-GM (CLK0A 300 MHz)
- Low phase jitter of 0.7 pS RMS
- LVDS Differential Output

The system clock circuit is shown in Figure 1-10.

X18374-020519

Figure 1-10: KCU105 Board System Clock

Three additional clocks are sourced from the U122 quad clock generator:

- 125 MHz LVDS signal pair CLK_125MHZ_P and CLK_125MHZ_N, connected to the XCKU040 device U1 bank 66 pins G10 and F10, respectively.
- 90.0 MHz single-ended 1.8V LVCMOS, series resistor coupled FPGA_EMCCLK, connected to the XCKU040 device U1 bank 65 dedicated EMCCLK input pin K20.
- 33.3333 MHz single-ended 1.8V LVCMOS, series resistor coupled SYSCTLR_CLK, connected to system controller XC7Z010 Zynq-7000 SoC U111 bank 500 dedicated PS_CLK input pin C7.

Programmable User Clock Source

[Figure 1-2, callout 7]

The KCU105 evaluation board has a Si570 programmable low-jitter 3.3V LVDS differential oscillator (U32) connected to the CLK0 P/N inputs (pin 6 (P) and 7 (N)) of clock buffer Si53340 U104, a 3.3V 1:4 LOW-JITTER LVDS CLOCK BUFFER WITH 2:1 INPUT MUX.

U104 CLK1 P/N inputs (pin 3 (P) and 4 (N)) are driven from the Si5328B clock multiplier/jitter attenuator U57 CLKOUT2 pins 35 (P) and 34 (N). The Si5328B is discussed in Jitter Attenuated Clock.

The 3.3V Si53340 U104 has four LVDS output clock pairs, two (Q2, Q3) unused. U104 output Q0 drives clock pair USER_SI570_CLOCK_P and USER_SI570_CLOCK_N, connected to the XCKU040 device U1 bank 65 GC pins M25 and M26, respectively.

U104 output Q1 drives clock pair MGT_SI570_CLOCK_P and MGT_SI570_CLOCK_N, which are connected to the XCKU040 device U1 GTH BANK 227 MGTREFCLK0P/N pins P6 and P5, respectively.

The U104 2:1 pin 2 MUX select net SI570_CLK_SEL is connected to the XCKU040 device U1 bank 66 pin F12 via 3.3V-to-1.8V level-shifter U43. USER_SI570_CLOCK_P/N and MGT_SI570_CLOCK_P/N are sourced by U32 SI570 when SI570_CLK_SEL = 0 and by U57 SI5328 CKOUT2 output when SI570_CLK_SEL = 1.

On power-up, the Si570 user clock defaults to an output frequency of 156.250 MHz. User applications can change the output frequency within the range of 10 MHz to 810 MHz through an I2C interface. Power cycling the KCU105 evaluation board resets the user clock to the default frequency of 156.250 MHz.

- Programmable oscillator: Silicon Labs Si570BAB0000544DG (10 MHz-810 MHz)
- Frequency tolerance: 50 ppm
- 3.3V LVDS differential output

The system clock circuit is shown in Figure 1-11.

Figure 1-11: KCU105 Board User Clock

Jitter Attenuated Clock

[Figure 1-2, callout 8]

The KCU105 board includes a Silicon Labs Si5328B jitter attenuator U57 (8 kHz - 808 MHz) on the back side of the board. The GTH transceiver can output the RX recovered clock to a differential I/O pair on I/O bank 64 (REC_CLOCK_C_P, pin AG11 and REC_CLOCK_C_N, pin AH11) for jitter attenuation. The jitter attenuated clock (Si5328_OUT_C_P (U57 pin 28), Si5328_OUT_C_N (U57 pin 29)) is then routed as a reference clock to GTH Quad 227 inputs MGTREFCLK0P (U1 pin P6) and MGTREFCLK0N (U1 pin P5).

The primary purpose of this clock is to support synchronous protocols such as CPRI or OBSAI that perform clock recovery from a user-supplied SFP/SFP+ module and use the jitter attenuated recovered clock to drive the reference clock inputs of a GTH transceiver. The system controller configures the Si5328B in free-run mode (see KCU105 Board Zynq-7000 SoC XC7Z010 System Controller). Enabling the jitter attenuation feature requires additional user programming from the FPGA through the I2C bus.

 \diamondsuit

The jitter attenuated clock circuit is shown in Figure 1-12.

Figure 1-12: KCU105 Board Jitter Attenuated Clock

IMPORTANT: The Silicon Labs Si5328 U57 pin 1 reset net SI5328_RST must be driven High to enable the device. U57 pin 1 net SI5328_RST is level-shifted to 1.8V by U47 and is connected to FPGA U1 bank 65 pin K23.

An active-Low input at U57 pin 1 RST_B performs an external hardware reset of this device. This resets all internal logic to a known state and forces the device registers to their default value. The clock outputs are disabled during reset. The part must be programmed after a reset or power on to get a clock output. The reset pin 1 has a weak internal pull-up. For more details on the Silicon Labs Si5335A, Si570, Si53340, and Si5328B devices, see the Silicon Labs website [Ref 11]. For more information on UltraScale FPGA clocking, see *UltraScale Architecture Clocking Resources User Guide* (UG572) [Ref 12].

User SMA Clock Input

[Figure 1-2, callout 9]

The KCU105 board provides a pair of SMAs for differential user clock input into FPGA U1 bank 67 (see Figure 1-13). The P-side SMA J34 signal USER_SMA_CLOCK_P is connected to U1 GC pin D23, with the N-side SMA J35 signal USER_SMA_CLOCK_N connected to U1 GC pin C23. Bank 67 VCCO is nominally 1.8V VADJ_1V8_FPGA. The USER_SMA_CLOCK input voltage swing should not exceed VADJ. Any signal connected to the USER_SMA_CLOCK connector inputs must be equal to or less than the VCCO for bank 67. Valid values for the VADJ rail VADJ_1V8_FPGA are 1.5V and 1.8V. This value must be confirmed prior to applying signals to the USER_SMA_CLOCK connectors.

Figure 1-13: User SMA Clock

GTH SMA Clock Input

[Figure 1-2, callout 10]

The KCU105 board includes a pair of SMA connectors for a GTH clock wired to GTH Quad bank 226. This differential clock has signal names SMA_MGT_REFCLK_P and SMA_REFCLK_N, which are capacitively connected to FPGA U1 GTH bank 226 pins V6 and V5, respectively.

- External user-provided GTH reference clock on SMA input connectors
- Differential Input

The GTH SMA REFCLK signal data paths are routed with a differential characteristic impedance of 100Ω (±10%).

Figure 1-14 shows this AC-coupled clock circuit.

Figure 1-14: User GTH REF Clock

GTH TX and RX SMA Differential Pairs

[Figure 1-2, callout 12]

The KCU105 board includes two pairs (TX and RX) of SMA connectors wired to GTH Quad bank 226. These differential SMA pairs have signal names SMA_MGT_TX_P, SMA_MGT_TX_N and SMA_MGT_RX_P, SMA_MGT_RX_N (RX are capacitively coupled) and are connected to FPGA U1 GTH bank 226 pins R4, R3 and P2, P1, respectively.

- External user-provided GTH TX and RX on SMA connectors
- Differential SMA pairs

The GTH TX and RX SMA transmit and receive signal data paths are routed with a differential characteristic impedance of 100Ω (±10%) with an insertion loss of <4 dB up to 8 GHz.

Figure 1-15 shows the TX SMA pair and the AC-coupled RX SMA pair.

X18379-113016

Figure 1-15: User GTH TX and RX SMA Pairs

GTH Transceivers

[Figure 1-2, callout 13]

The KCU105 board provides access to 20 GTH transceivers:

- Eight of the GTH transceivers are wired to the PCI Express x8 edge connector (P1)
- Eight of the GTH transceivers are wired to the FMC HPC connector (J22)
- One GTH transceiver is wired to the FMC LPC connector (J2)
- One GTH transceiver is wired to SMA connectors (RX: J31, J30 TX: J29, J28)
- Two GTH transceivers are wired to SFP/SFP+ Module connectors (P4, P5)

The GTH transceivers in the XCKU040 device are grouped into four channels described as Quads. The reference clock for a Quad can be sourced from the Quad above or Quad below the GTH Quad of interest. There are five GTH Quads on the KCU105 board with connectivity as shown here:

Quad 224:

- MGTREFCLK0 not connected
- MGTREFCLK1 not connected
- Contains 4 GTH transceivers allocated to PCIe lanes 4-7

Quad 225:

- MGTREFCLK0 PCIE_CLK_Q0_P/N PCIe edge connector clock
- MGTREFCLK1 not connected
- Contains 4 GTH transceivers allocated to PCIe lanes 0-3

Quad 226:

- MGTREFCLK0 SMA_MGT_REFCLK_C_P/N SMA GTH clock input
- MGTREFCLK1 FMC_LPC_GBTCLK0_M2C_C_P/N
- Contains one GTH transceiver allocated to FMC_LPC_DP0_C2M_P/N
- Contains two GTH transceivers allocated to SFP_TX_P/N and RX_P/N SFP/SFP+ connectors SFP0 and SFP1
- Contains one GTH transceiver allocated to SMA_MGT_TX_P/N and SMA_MGT_RX_P/N SMA connector pairs

Quad 227:

- MGTREFCLK0 MGT_SI570_CLOCK_C_P/N clock
- MGTREFCLK1 SI5328_OUT_C_P/N jitter attenuator clock
- Contains four GTH transceivers allocated to FMC_HPC_DP[7:4]_C2M_P/N

Quad 228:

- MGTREFCLK0 FMC_HPC_GBTCLK0_M2C_C_P/N clock
- MGTREFCLK1 FMC_HPC_GBTCLK1_M2C_C_P/N clock
- Contains four GTH transceivers allocated to FMC_HPC_DP[3:0]_C2M/M2C_P/N

Table 1-9 lists the GTH banks 224 and 225 interface connections between FPGA U1 and 8-lane PCIe connector P1.

Table 1-9: KCU105 Board FPGA U1 GTH Banks 224 and 225 Connections to PCIe Connector P1

Transceiver Bank	FPGA (U1) Pin	FPGA (U1) Pin Name	Schematic Net Name	Connected Pin	Connected Pin Name	Connected Device
	AN4	MGTHTXP0_224	PCIE_TX7_P	A47	PERp7	_
	AN3	MGTHTXN0_224	PCIE_TX7_N	A48	PERn7	
	AP2	MGTHRXP0_224	PCIE_RX7_P	B45	PETp7	
	AP1	MGTHRXN0_224	PCIE_RX7_N	B46	PETn7	
	AM6	MGTHTXP1_224	PCIE_TX6_P	A43	PERp6	
	AM5	MGTHTXN1_224	PCIE_TX6_N	A44	PERn6	
	AM2	MGTHRXP1_224	PCIE_RX6_P	B41	PETp6	PCIe Edge
	AM1	MGTHRXN1_224	PCIE_RX6_N	B42	PETn6	
	AL4	MGTHTXP2_224	PCIE_TX5_P	A39	PERp5	
GTH Bank	AL3	MGTHTXN2_224	PCIE_TX5_N	A40	PERn5	
224	AK2	MGTHRXP2_224	PCIE_RX5_P	B37	PETp5	P1
	AK1	MGTHRXN2_224	PCIE_RX5_N	B38	PETn5	
	AK6	MGTHTXP3_224	PCIE_TX4_P	A35	PERp4	
	AK5	MGTHTXN3_224	PCIE_TX4_N	A36	PERn4	
	AJ4	MGTHRXP3_224	PCIE_RX4_P	B33	PETp4	
	AJ3	MGTHRXN3_224	PCIE_RX4_N	B34	PETn4	
	AF6	MGTREFCLK0P_224	NC	NA	NA	
	AF5	MGTREFCLK0N_224	NC	NA	NA	
	AD6	MGTREFCLK1P_224	NC	NA	NA	
	AD5	MGTREFCLK1N_224	NC	NA	NA	

Transceiver Bank	FPGA (U1) Pin	FPGA (U1) Pin Name	Schematic Net Name	Connected Pin	Connected Pin Name	Connected Device
	AH6	MGTHTXP0_225	PCIE_TX3_P	A29	PERp3	-
	AH5	MGTHTXN0_225	PCIE_TX3_N	A30	PERn3	
	AH2	MGTHRXP0_225	PCIE_RX3_P	B27	PETp3	
	AH1	MGTHRXN0_225	PCIE_RX3_N	B28	PETn3	
	AG4	MGTHTXP1_225	PCIE_TX2_P	A25	PERp2	
	AG3	MGTHTXN1_225	PCIE_TX2_N	A26	PERn2	
	AF2	MGTHRXP1_225	PCIE_RX2_P	B23	PETp2	
	AF1	MGTHRXN1_225	PCIE_RX2_N	B24	PETn2	
	AE4	MGTHTXP2_225	PCIE_TX1_P	A21	PERp1	PCIe Edge Connector P1
GTH Bank	AE3	MGTHTXN2_225	PCIE_TX1_N	A22	PERn1	
225	AD2	MGTHRXP2_225	PCIE_RX1_P	B19	PETp1	
	AD1	MGTHRXN2_225	PCIE_RX1_N	B20	PETn1	
	AC4	MGTHTXP3_225	PCIE_TX0_P	A16	PERp0	
	AC3	MGTHTXN3_225	PCIE_TX0_N	A17	PERn0	
	AB2	MGTHRXP3_225	PCIE_RX0_P	B14	PETp0	
	AB1	MGTHRXN3_225	PCIE_RX0_N	B15	PETn0	
	AB6	MGTREFCLK0P_225	PCIE_CLK_QO_P	A13	REFCLK+	
	AB5	MGTREFCLK0N_225	PCIE_CLK_QO_N	A14	REFCLK-	
	Y6	MGTREFCLK1P_225	NC	NA	NA	1
	Y5	MGTREFCLK1N_225	NC	NA	NA]

Table 1-9: KCU105 Board FPGA U1 GTH Banks 224 and 225 Connections to PCIe Connector P1 (Cont'd)

Table 1-10 lists the GTH bank 226 interface connections between FPGA U1, FMC LPC connector J2, SFP0 connector P5, SFP1 connector P4 and MGT TX SMA connectors J29/J28, MGT RX SMA connectors J31/J30 and MGT REFCLK SMA connectors J33/J32.

Transceiver Bank	FPGA (U1) Pin	FPGA (U1) Pin Name	Schematic Net Name	Connected Pin	Connected Pin Name	Connected Device	
	AA4	MGTHTXP0_226	FMC_LPC_DP0_C2M_P	C2	DP0_C2M_P		
	AA3	MGTHTXN0_226	FMC_LPC_DP0_C2M_N	C3	DP0_C2M_N		
	Y2	MGTHRXP0_226	FMC_LPC_DP0_M2C_P	C6	DP0_M2C_P	FINIC LPC J2	
	Y1	MGTHRXN0_226	FMC_LPC_DP0_M2C_N	C7	DP0_M2C_N		
	W4	MGTHTXP1_226	SFP1_TX_P	18	TD_P		
	W3	MGTHTXN1_226	SFP1_TX_N	19	TD_N		
	V2	MGTHRXP1_226	SFP1_RX_P	13	RD_P	5171 74	
	V1	MGTHRXN1_226	SFP1_RX_N	12	RD_N		
	U4	MGTHTXP2_226	SFP0_TX_P	18	TD_P	SFP0 P5	
GTH Bank	U3	MGTHTXN2_226	SFP0_TX_N	19	TD_N		
226	T2	MGTHRXP2_226	SFP0_RX_P	13	RD_P		
	T1	MGTHRXN2_226	SFP0_RX_N	12	RD_N		
	R4	MGTHTXP3_226	SMA_MGT_TX_P	1	SIG	SMA J29	
	R3	MGTHTXN3_226	SMA_MGT_TX_N	1	SIG	SMA J28	
	P2	MGTHRXP3_226	SMA_MGT_RX_C_P	1	SIG	SMA J31	
	P1	MGTHRXN3_226	SMA_MGT_RX_C_N	1	SIG	SMA J30	
	V6	MGTREFCLK0P_226	SMA_MGT_REFCLK_C_P	1	SIG	SMA J33	
	V5	MGTREFCLK0N_226	SMA_MGT_REFCLK_C_N	1	SIG	SMA J32	
	Т6	MGTREFCLK1P_226	FMC_LPC_GBTCLK0_M2C_C_P	D4	GBTCLK0_M2C_P		
	T5	MGTREFCLK1N_226	FMC_LPC_GBTCLK0_M2C_C_N	D5	GBTCLK0_M2C_N		

Table 1-10: KCU105 Board FPGA U1 GTH Bank 226 Connections

Table 1-11 lists the GTH banks 227 and 228 interface connections between FPGA U1 and the FMC HPC J22 connector.

Table 1-11: K	CU105 Board FF	'GA U1 GTH Bank	227 and 228	Connections
---------------	----------------	-----------------	-------------	-------------

Transceiver Bank	FPGA (U1) Pin	FPGA (U1) Pin Name	Schematic Net Name	Connected Pin	Connected Pin Name	Connected Device
	N4	MGTHTXP0_227	FMC_HPC_DP4_C2M_P	A34	DP4_C2M_P	
	N3	MGTHTXN0_227	FMC_HPC_DP4_C2M_N	A35	DP4_C2M_N	
	M2	MGTHRXP0_227	FMC_HPC_DP4_M2C_P	A14	DP4_M2C_P	
	M1	MGTHRXN0_227	FMC_HPC_DP4_M2C_N	A15	DP4_M2C_N	
	L4	MGTHTXP1_227	FMC_HPC_DP6_C2M_P	B36	DP6_C2M_P	
	L3	MGTHTXN1_227	FMC_HPC_DP6_C2M_N	B37	DP6_C2M_N	
	K2	MGTHRXP1_227	FMC_HPC_DP6_M2C_P	B16	DP6_M2C_P	FMC HPC J22
	K1	MGTHRXN1_227	FMC_HPC_DP6_M2C_N	B17	DP6_M2C_N	
	J4	MGTHTXP2_227	FMC_HPC_DP5_C2M_P	A38	DP5_C2M_P	
GTH Bank	J3	MGTHTXN2_227	FMC_HPC_DP5_C2M_N	A39	DP5_C2M_N	
227	H2	MGTHRXP2_227	FMC_HPC_DP5_M2C_P	A18	DP5_M2C_P	
	H1	MGTHRXN2_227	FMC_HPC_DP5_M2C_N	A19	DP5_M2C_N	
	G4	MGTHTXP3_227	FMC_HPC_DP7_C2M_P	B32	DP7_C2M_P	
	G3	MGTHTXN3_227	FMC_HPC_DP7_C2M_N	B33	DP7_C2M_N	
	F2	MGTHRXP3_227	FMC_HPC_DP7_M2C_P	B12	DP7_M2C_P	
	F1	MGTHRXN3_227	FMC_HPC_DP7_M2C_N	B13	DP7_M2C_N	
	P6	MGTREFCLK0P_227	MGT_SI570_CLOCK_C_P	11	Q1_P	Si53340
	P5	MGTREFCLK0N_227	MGT_SI570_CLOCK_C_N	12	Q1_N	U104
	M6	MGTREFCLK1P_227	SI5328_OUT_C_P	28	CKOUT1_P	Si5328B
	M5	MGTREFCLK1N_227	SI5328_OUT_C_N	29	CKOUT1_N	U57

Transceiver Bank	FPGA (U1) Pin	FPGA (U1) Pin Name	Schematic Net Name	Connected Pin	Connected Pin Name	Connected Device
	F6	MGTHTXP0_228	FMC_HPC_DP0_C2M_P	C2	DP0_C2M_P	
	F5	MGTHTXN0_228	FMC_HPC_DP0_C2M_N	C3	DP0_C2M_N	
	E4 MC	MGTHRXP0_228	FMC_HPC_DP0_M2C_P	C6	DP0_M2C_P	
	E3	MGTHRXN0_228	FMC_HPC_DP0_M2C_N	C7	DP0_M2C_N	
	D6	MGTHTXP1_228	FMC_HPC_DP1_C2M_P	A22	DP1_C2M_P	
	D5	MGTHTXN1_228	FMC_HPC_DP1_C2M_N	A23	DP1_C2M_N	
	D2	MGTHRXP1_228	FMC_HPC_DP1_M2C_P	A2	DP1_M2C_P	FMC HPC J22
	D1	MGTHRXN1_228	FMC_HPC_DP1_M2C_N	A3	DP1_M2C_N	
	C4	MGTHTXP2_228	FMC_HPC_DP2_C2M_P	A26	DP2_C2M_P	
GTH Bank	C3	MGTHTXN2_228	FMC_HPC_DP2_C2M_N	A27	DP2_C2M_N	
228	B2	MGTHRXP2_228	FMC_HPC_DP2_M2C_P	A6	DP2_M2C_P	
	B1	MGTHRXN2_228	FMC_HPC_DP2_M2C_N	A7	DP2_M2C_N	
	B6	MGTHTXP3_228	FMC_HPC_DP3_C2M_P	A30	DP3_C2M_P	
	B5	MGTHTXN3_228	FMC_HPC_DP3_C2M_N	A31	DP3_C2M_N	
	A4	MGTHRXP3_228	FMC_HPC_DP3_M2C_P	A10	DP3_M2C_P	
	A3	MGTHRXN3_228	FMC_HPC_DP3_M2C_N	A11	DP3_M2C_N	
	K6	MGTREFCLK0P_228	FMC_HPC_GBTCLK0_M2C_C_P	D4	GBTCLK0_M2C_P	
	K5	MGTREFCLK0N_228	FMC_HPC_GBTCLK0_M2C_C_N	D5	GBTCLK0_M2C_N	
	H6	MGTREFCLK1P_228	FMC_HPC_GBTCLK1_M2C_C_P	B20	GBTCLK1_M2C_P	
	H5	MGTREFCLK1N_228	FMC_HPC_GBTCLK1_M2C_C_N	B21	GBTCLK1_M2C_N	

Table 1-11:	KCU105 Board FPGA U1 GTH Bank 227 and 228 Connections	(Cont'd)

For additional information on GTH transceivers, see *UltraScale Architecture GTH Transceivers User Guide* (UG576) [Ref 13] and *UltraScale FPGAs Transceivers Wizard Product Guide for Vivado Design Suite* (PG182) [Ref 14]. For additional information about UltraScale FPGA PCIe functionality, see *UltraScale Architecture Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide* (PG156) [Ref 15]. Additional information about the PCI Express standard is available at the PCI Express website [Ref 16].

www.xilinx.com

PCI Express Endpoint Connectivity

[Figure 1-2, callout 14]

The 8-lane PCI Express edge connector P1 performs data transfers at the rate of 2.5 GT/s for Gen1 applications, 5.0 GT/s for Gen2 applications, and 8.0 GT/s for Gen3 applications. The PCIe transmit and receive signal datapaths have a characteristic impedance of $85\Omega \pm 10\%$. The PCIe clock is routed as a 100Ω differential pair.

The PCIe transmit and receive signal data paths are routed with a differential characteristic impedance of 85 Ω (±10%) with an insertion loss of <4 dB up to 8 GHz.

The XCKU040-2FFVA1156E (-2 speed grade) device included with the KCU105 board supports up to Gen3 x8.

The PCIe reference clock input is from the P1 edge connector. It is AC coupled to FPGA U1 through the MGTREFCLK0 pins of Quad 225. PCIE_CLK_Q0_P is connected to U1 pin AB6, and the _N net is connected to pin AB5. The PCI Express clock circuit is shown in Figure 1-16.

X18380-113016

PCIe lane width/size is selected by jumper J74 (Figure 1-17). The default lane size selection is 8-lane (J74 pins 5 and 6 jumpered).

X18381-113016

Figure 1-17: PCI Express Lane Size Select Jumper J74

Table 1-12 details the PCIe P1 edge connector wiring to FPGA U1.

	Schematic Net	PCIe Edge P1		
FPGA (01) PIN	Name	Pin Number	Pin Name	
AN4	PCIE_TX7_P	A47	PERp7	
AN3	PCIE_TX7_N	A48	PERn7	
AP2	PCIE_RX7_P	B45	PETp7	
AP1	PCIE_RX7_N	B46	PETn7	
AM6	PCIE_TX6_P	A43	PERp6	
AM5	PCIE_TX6_N	A44	PERn6	
AM2	PCIE_RX6_P	B41	PETp6	
AM1	PCIE_RX6_N	B42	PETn6	
AL4	PCIE_TX5_P	A39	PERp5	
AL3	PCIE_TX5_N	A40	PERn5	
AK2	PCIE_RX5_P	B37	PETp5	
AK1	PCIE_RX5_N	B38	PETn5	
AK6	PCIE_TX4_P	A35	PERp4	
AK5	PCIE_TX4_N	A36	PERn4	
AJ4	PCIE_RX4_P	B33	PETp4	
AJ3	PCIE_RX4_N	B34	PETn4	
AH6	PCIE_TX3_P	A29	PERp3	
AH5	PCIE_TX3_N	A30	PERn3	
AH2	PCIE_RX3_P	B27	PETp3	
AH1	PCIE_RX3_N	B28	PETn3	
AG4	PCIE_TX2_P	A25	PERp2	
AG3	PCIE_TX2_N	A26	PERn2	
AF2	PCIE_RX2_P	B23	PETp2	
AF1	PCIE_RX2_N	B24	PETn2	
AE4	PCIE_TX1_P	A21	PERp1	
AE3	PCIE_TX1_N	A22	PERn1	
AD2	PCIE_RX1_P	B19	PETp1	
AD1	PCIE_RX1_N	B20	PETn1	
AC4	PCIE_TX0_P	A16	PERp0	
AC3	PCIE_TX0_N	A17	PERn0	
AB2	PCIE_RX0_P	B14	PETp0	
AB1	PCIE_RX0_N	B15	PETn0	

Table 1-12:	KCU105 Board FPGA U1 to PCIe Edge P1 Connections
-------------	--

EDGA (111) Din	Schematic Net	PCIe Edge P1		
	Name	Pin Number	Pin Name	
AB6	PCIE_CLK_QO_P	A13	REFCLK+	
AB5	PCIE_CLK_QO_N	A14	REFCLK-	

Table 1-12: KCU105 Board FPGA U1 to PCIe Edge P1 Connections (Cont'd)

SFP/SFP+ Module Connectors

[Figure 1-2, callout 15]

The KCU105 board hosts two small form-factor pluggable (SFP/SFP+) P4 and P5 that accept SFP or SFP+ modules. The connectors are housed within a single dual SFP cage assembly.

The SFP transmit and receive signal data paths are routed with a differential characteristic impedance of 100 Ω (±10%) with an insertion loss of <4 dB up to 8 GHz.

Figure 1-18 shows SFP/SFP+ module connector circuitry typical of the two implementations.

X18382-113016

Figure 1-18: **SFP/SFP+ Module Connector**

www.xilinx.com

 Table 1-13 lists the SFP+ module connections to FPGA U1.

FPGA (U1) Pin	Schematic Net Name	FPGA (U1) Direction	Pin Number	Pin Name	SFP/SFP+ Module
T2	SFP0_RX_P	Input	13	RD_P	
T1	SFP0_RX_N	Input	12	RD_N	
U4	SFP0_TX_P	Output	18	TD_P	SFP0 P5
U3	SFP0_TX_N	Output	19	TD_N	
AL8	SFP0_TX_DISABLE	Output	3	TX_DISABLE	
V2	SFP1_RX_P	Input	13	RD_P	
V1	SFP1_RX_N	Input	12	RD_N	
W4	SFP1_TX_P	Output	18	TD_P	SFP1 P4
W3	SFP1_TX_N	Output	19	TD_N	
D28	SFP1_TX_DISABLE	Output	3	TX_DISABLE	

Notes:

1. SFP0_TX_DISABLE, SFP1_TX_DISABLE I/O standard LVCMOS18; MGT connections I/O standard not applicable.

SFP Control/Status Signal		SFP Module		
	Tost Doint 116	High = Fault		
SFP_IX_FAULI	Test Point J10	Low = Normal operation		
	lumpor 16	Off = SFP Disabled		
SFF_IA_DISABLE	Jumper Jo	On = SFP Enabled		
		High = Module not present		
SFP_MOD_DETECT	Test Point J17	Low = Module present		
	lumper 142	Jumper pins 1-2 = Full RX bandwidth	- 3FFUF3	
3FP_K30	Jumper J42	Jumper pins 2-3 = Reduced RX bandwidth		
	lumper 141	Jumper pins 1-2 = Full RX bandwidth		
3FF_K31	Jumper J41	Jumper pins 2-3 = Reduced RX bandwidth		
	Test Doint 119	High = Loss of receiver signal		
SFF_LUS	Test Point J18	Low = Normal operation		

Table 1-14: SFP0 and SFP1 Module Control and Status Connections

SFP Control/Status Signal		Board Connection		
	Tost Point 119	High = Fault		
SFF_TA_FAOLT	Test Folint J19	Low = Normal operation		
		Off = SFP Disabled	1	
STF_TA_DISABLE	Jumper J	On = SFP Enabled		
		High = Module not present		
		Low = Module present	CED1 DA	
	lumpor 144	Jumper pins 1-2 = Full RX bandwidth	JIFIF4	
3FF_K30	Jumper J44	Jumper pins 2-3 = Reduced RX bandwidth		
CED DC1	lumpor 1/2	Jumper pins 1-2 = Full RX bandwidth		
JFF_KJI	Jumper J45	Jumper pins 2-3 = Reduced RX bandwidth		
	Tost Point 121	High = Loss of receiver signal		
JFF_LUS	Test Follit J21	Low = Normal operation		

Table 1-14:	SFPO and SFP1	Module Control	and Status	Connections	(Cont'd)
-------------	---------------	-----------------------	------------	-------------	----------

For additional information about the enhanced Small Form Factor Pluggable (SFP+) module, see the SFF-8431 specification [Ref 17].

10/100/1000 Mb/s Tri-Speed Ethernet PHY

[Figure 1-2, callout 17]

The KCU105 evaluation board uses the Marvell Alaska PHY device (M88E1111) at U58 for Ethernet communications at 10 Mb/s, 100 Mb/s, or 1000 Mb/s. The board supports SGMII mode only. The PHY connection to a user-provided Ethernet cable is through RJ-45 connector P3, a Halo HFJ11-1G01E-L12RL with built-in magnetics and status LEDs.

On power-up, or on reset, the PHY is configured to operate in SGMII mode with PHY address **0b00111** using the settings shown in Table 1-15. These settings can be over written via software commands passed over the MDIO interface.

Pin	Bit[2]	Bit[1]	Bit[0]	Default Values for Bit[2:0]	Setting Description
CFG0	PHYADR[2]	PHYADR[1]	PHYADR[0]	111	PHYAddr 00111. Do not
CFG1	ENA_PAUSE	PHYADR[4]	PHYADR[3]	000	advertise the PAUSE bit.
CFG2	ANEG[3]	ANEG[2]	ANEG[1]	111	Auto-Neg en, advertise all
CFG3	ANEG[0]	ENA_XC	DIS_125	111	caps; prefer slave. Auto crossover enabled. 125 MHz CLK option disabled.
CFG4	HWCFG_MD[2]	HWCFG_MD[1]	HWCFG_MD[0]	100	SGMII to Cu mode.
CFG5	DIS_FC	DIS_SLEEP	HWCFG_MD[3]	110	disabled. Sleep mode disabled.
CFG6	SEL_BDT	INT_POL	75/50Ω	010	MDC/MDIO selected. Active-Low interrupt. 50Ω SERDES option.

Table 1-15: Board Connections for PHY Configuration Pins

Table 1-16: FPGA U1 to Ethernet PHY U58 Connections

EDGA (U1) Din	Not Namo	1/O Standard	M88E111	L PHY U58
	Net Name	iyo Stanuaru	Pin	Name
H26	PHY_MDIO	LVCMOS18	M1	MDIO_SDA
L25	PHY_MDC	LVCMOS18	L3	MDC_SCL
K25	PHY_INT	LVCMOS18	L1	INT_B
J23	PHY_RESET	LVCMOS18	К3	RESET_B

Notes:

Ethernet PHY_ U58 signals are level-shifted to 1.8V for interface to FPGA U1 bank 65.

X18383-113016

Figure 1-19: Ethernet PHY J45 Configuration Jumper J45

KCU105 Board User Guide UG917 (v1.10) February 6, 2019

www.xilinx.com

Ethernet PHY Status LEDs

[Figure 1-2, callout 17]

The Ethernet PHY status LEDs are integrated into the metal frame of the P3 RJ-45 connector. These LEDs are visible on the left edge of the KCU105 board when it is installed into a PCIe slot in a PC chassis. The two PHY status LEDs are integrated within the frame of the RJ45 Ethernet jack as shown in Figure 1-20.

X18385-113016

Figure 1-20: Ethernet PHY Status LEDs

Details about the tri-mode Ethernet MAC core are provided in *Tri-Mode Ethernet MAC LogiCORE IP Product Guide* (PG051) [Ref 18].

The product brief for the Marvell M88E1111 Alaska Gigabit Ethernet Transceiver is available on the Marvell Semiconductor website [Ref 19]. The data sheet can be obtained under NDA from Marvell. The contact information is on the Marvell Semiconductor website [Ref 19].

Dual USB-to-UART Bridge

[Figure 1-2, callout 19]

The KCU105 evaluation board contains a Silicon Labs CP2105GM dual USB-to-UART bridge device (U34) which allows a connection to a host computer with a USB port. The USB cable is supplied in the KCU105 evaluation board kit (Standard Type-A end to host computer, Type Micro-B end to KCU105 evaluation board connector J4). The CP2105GM is powered by the USB 5V provided by the host PC when the USB cable is plugged into the USB port on the KCU105 evaluation board.

The dual UART interface connections are split between two components:

- UART1 SCI (standard) 4-wire interface is connected to the XCKU040 U1 device
- UART2 ECI (enhanced) 2-wire interface is connected to the XC7Z010 U111 Zynq-7000 SoC system controller

Table 1-17 lists the dual-UART U34 connections to FPGA U1.

Silicon Labs provides royalty-free Virtual COM Port (VCP) drivers for the host computer. These drivers permit the CP2105GM dual USB-to-UART bridge to appear as a pair of COM ports to communications application software (for example, Tera Term or HyperTerm) that runs on the host computer. The VCP device drivers must be installed on the host PC prior to establishing communications with the KCU105 evaluation board. The driver assigns the higher PC COM port number to UART1 (SCI) and the lower PC COM port number to UART2 (ECI).

The Silicon Labs CP2105GM dual USB-to-UART bridge circuit is shown in Figure 1-21.

Figure 1-21: KCU105 Board Dual UART CP2105GM U34

X18386-113016

Table 1-17 lists the CP2105GM connections to FPGA U1.

EDGA (U1) Din	Eurotion	Direction	1/O Standard	Schematic Net	CP21	05GM Dev	ice (U34)
FFGA (01) FIII	Function	Direction	Name		Pin	Function	Direction
XCKU040 FPGA (U1) - UART1 SCI ⁽¹⁾							
G25	RX	Input	LVCMOS18	USB_UART_TX	21	TXD	Output
K26	ТХ	Output	LVCMOS18	USB_UART_RX	20	RXD	Input
L23	CTS	Output	LVCMOS18	USB_UART_CTS	18	CTS	Input
K27	RTS	Input	LVCMOS18	USB_UART_RTS	19	RTS	Output

Table 1-17: FPGA U1 to CP2105GM U34 Connections

Notes:

1. The USB_UART_sig nets are named from the perspective of the CP2105GM device (U34).

For more technical information on the CP2105GM and the VCP drivers, see the Silicon Labs website [Ref 11].

Xilinx UART IP is expected to be implemented in the FPGA logic using IP as described in the *LogiCORE IP AXI UART Lite Product Guide* (PG142) [Ref 20].

HDMI Video Output

[Figure 1-2, callout 20]

The KCU105 evaluation board provides a HDMI video output using an Analog Devices ADV7511KSTZ-P HDMI transmitter at U52. The HDMI transmitter U52 is connected to the XCKU040 device bank 64 and its output is provided on a Molex 500254-1927 HDMI type-A receptacle at P6. The ADV7511 supports 1080P 60 Hz, YCbCr 4:2:2 encoding via 16-bit input data mapping.

The KCU105 evaluation board supports these HDMI device interfaces:

- 16 data lines
- Independent VSYNC, HSYNC
- Single-ended input CLK
- Interrupt Out Pin to FPGA
- I2C
- SPDIF

The HDMI U52 circuit is shown in Figure 1-22.

Figure 1-22: HDMI Codec Circuit

Table 1-18 lists the HDMI Codec U52 to the XCKU040 device U1 connections. All HDMI nets in this table are series resistor coupled.

FPGA (U1)	Schematic Net	FPGA (U1)	L/O Standard	ADV7511 U52		
Pin	Name	Direction	i/O Standard	Pin Number	Name	
AK11	HDMI_D0	Output	LVCMOS18	88	D8	
AP11	HDMI_D1	Output	LVCMOS18	87	D9	
AP13	HDMI_D2	Output	LVCMOS18	86	D10	
AN13	HDMI_D3	Output	LVCMOS18	85	D11	
AN11	HDMI_D4	Output	LVCMOS18	84	D12	
AM11	HDMI_D5	Output	LVCMOS18	83	D13	
AN12	HDMI_D6	Output	LVCMOS18	82	D14	
AM12	HDMI_D7	Output	LVCMOS18	81	D15	
AL12	HDMI_D8	Output	LVCMOS18	80	D16	
AK12	HDMI_D9	Output	LVCMOS18	78	D17	
AL13	HDMI_D10	Output	LVCMOS18	74	D18	
AK13	HDMI_D11	Output	LVCMOS18	73	D19	
AD11	HDMI_D12	Output	LVCMOS18	72	D20	
AH12	HDMI_D13	Output	LVCMOS18	71	D21	
AG12	HDMI_D14	Output	LVCMOS18	70	D22	
AJ11	HDMI_D15	Output	LVCMOS18	69	D23	
AE11	HDMI_DE	Output	LVCMOS18	97	DE	
AE12	HDMI_SPDIF	Output	LVCMOS18	10	SPDIF	
AF13	HDMI_CLK	Output	LVCMOS18	79	CLK	
AH13	HDMI_VSYNC	Output	LVCMOS18	2	VSYNC	
AE13	HDMI_HSYNC	Output	LVCMOS18	98	HSYNC	
AJ13	HDMI_INT ⁽¹⁾	Input	LVCMOS18	45	INT	
AF12	HDMI_SPDIF_OUT	Input	LVCMOS18	46	SPDIF_OUT	

Table 1-18: HDMI Codec U52 to XCKU040 Device U1 Connections

Notes:

1. The HDMI_INT net is direct coupled (no series resistor).

For more information about the Analog Devices ADV7511KSTZ-P, see the Analog Devices website [Ref 21]. For additional information about HDMI IP options, see the *DisplayPort LogiCORE Product Guide* (PG064) [Ref 22].

I2C Bus, Topology, and Switches

[Figure 1-2, callouts 21, 22]

The KCU105 evaluation board implements a 2-to-1 I2C bus arrangement. A single I2C bus from the FPGA U1 XCKU040 (IIC_MAIN_SCL/SDA_LS) and system controller Zynq-7000 SoC U111 (SYSCTLR_I2C_SCL/SDA) is wired to the main I2C bus via level-shifters. FPGA U1 is wired through level-shifter U77 and system controller U111 is wired through level-shifter U108. The output sides of U77 and U108 are wired in parallel to the main I2C bus (IIC_SDA and _SCL_MAIN). This common main I2C bus is then routed to a pair of bus switches, a TI TCA9548 1-to-8 channel I2C bus switch (U28) and a TI PCA9544 1-to-4 channel I2C bus switch (U80). The bus switches can operate at speeds up to 400 kHz.

The KCU105 evaluation board I2C bus topology overview is shown in Figure 1-23 and Table 1-19 lists the address for each device on the I2C bus.

X18388-113016

Figure 1-23: I2C Bus Topology Overview

Note: See Table 1-19 for device I2C address assignments.

\$

IMPORTANT: The TCA9548 U28 RESET_B pin 3 is connected to FPGA U1 bank 64 pin AP10 via level-shifter U44. The PCA9544 does not have a reset pin. FPGA pin AP10 LVCMOS18 net IIC_MUX_RESET_B_LS must be driven High to enable I2C bus transactions with the devices connected to U28.

User FPGA applications that communicate with devices on one of the downstream I2C buses must first set up a path to the desired target bus through the U28 or U80 bus switch at I2C address 0x74 (0b1110100) or 0x75 (0b1110101), respectively. Table 1-19 lists the address for each device on the I2C bus.

12C Devices	I2C Switch I2C Address		Dovico	
IZC Devices	Position	Binary Format	Hex Format	Device
TCA9548 8-channel bus switch	N/A	0b1110100	0x74	U28 TCA9548
Si570 clock	0	0b1011101	0x5D	U32 Si570
I2C port expander	1	0b0100001	0x21	U89 TCA6416
SFP module 0 (SFP0)	2	0b1010000	0x50	P5 SFP0
SFP module 1 (SFP1)	3	0b1010000	0x50	P4 SFP1
Si5328 clock	4	0b1101000	0x68	U57 Si5328B
ADV7511 HDMI	5	0b0111001	0x39	U52 ADV7511
FPGA SYSMON	6	0b0110010	0x32	U1 SYSMON
Not used	7	N/A	N/A	N/A
				1
PCA9544 4-channel bus switch	N/A	0b1110101	0x75	U80 PCA9544
PMBUS regulators	0	0b0010000-	0 2 1 0 - 0 2 1 9	MAX15301/3 (1)
FINIDOS TEGUIATORS	0	0b0011000	0X10-0X18	WAX15501/5 (1)
FMC HPC	1	0bxxxxxxx	0x##	J22 FMC HPC
FMC LPC	2	0bxxxxxx	0x##	J2 FMC LPC
I2C EEPROM	3	0b1010100	0x54	U12 M24C08

Table 1-19: I2C Devices

Notes:

MAX15301: U29,U30,U31; MAX15303: U3,U4,U6,U7,U8,U9,U10.

Information on the TCA9548 and PCA9544 is available on the Texas Instruments website [Ref 23].

For additional information on the Zynq-7000 SoC device I2C controller, see *Zynq-7000 SoC Overview Data Sheet* (DS190) [Ref 24] and *Zynq-7000 SoC Technical Reference Manual* (UG585) [Ref 25].

Status and User LEDs

Table 1-20 defines KCU105 board status and user LEDs.

TUDIE 1-20. RCOIDS BOATA Status and User LEDS	Table 1-20:	KCU105	Board	Status	and	User	LEDs
---	-------------	--------	-------	--------	-----	------	------

Reference Designator	Description
DS2	INIT
DS3	OR'D POWER GOOD
DS4	CP2105 DUAL UART GPIO0_ECI_IO
DS5	CP2105 DUAL UART GPIO0_SCI_IO
DS6	GPIO_LED_1
DS7	GPIO_LED_0
DS8	GPIO_LED_2
DS9	GPIO_LED_5
DS10	GPIO_LED_4
DS14	UTIL_3V3_PGOOD
DS15	MGTAVCC_PGOOD
DS16	VCC1V2_PGOOD
DS17	MGTAVTT_PGOOD
DS18	VCCAUX_PGOOD
DS19	VADJ_1V8_PGOOD
DS21	VCCINT_PGOOD
DS23	VCCBRAM_PGOOD
DS24	VCC1V8_PGOOD
DS25	MGTVCCAUX_PGOOD
DS26	12V ON
DS27	SYS_2V5 ON
DS28	SYS_1V8 ON
DS31	GPIO_LED_7
D\$32	GPIO_LED_6
D\$33	GPIO_LED_5
DS34	DONE
DS36	DDR4 VTT ON
DS37	CP2105 DUAL UART GPIO1_SCI_IO
DS38	CP2105 DUAL UART GPIO1_ECI_IO
DS42	SYSCTLR INIT
DS43	SYSCTLR STATUS
DS44	SYSCTLR DONE

Reference Designator	Description
DS45	SYSCTLR ERROR
DS46	SYS_1VO ON
DS49	5V ON
EPHY P3 GREEN LED	ENET PHY LINK1000
EPHY P3 YELLOW LED	ENET PHY TX

Table 1-20: KCU105 Board Status and User LEDs (Cont'd)

User I/O

[Figure 1-2, callouts 23-26, 40]

The KCU105 board provides these user and general purpose I/O capabilities:

- Eight user LEDs (callout 23)
 - GPIO_LED[7-0]: DS31, DS32, DS33, DS10, DS19, DS8, DS6, DS7
- Five user pushbuttons and CPU reset switch (callout 24)
 - GPIO_SW_[NESWC]: SW10, SW9, SW8, SW6, SW7
 - CPU_RESET: SW5
- 4-position user DIP Switch (callout 25)
 - GPIO_DIP_SW[3:0]: SW12
- User Rotary Switch (callout 40)
 - ROTARY_PUSH, ROTARY_INCA, ROTARY_INCB: SW13
- User SMA (callout 26)
 - USER_SMA_GPIO_P, USER_SMA_GPIO_N: J36, J37

User GPIO LEDs

[Figure 1-2, callout 23]

Figure 1-24 shows the GPIO LED circuit.

User Pushbuttons

[Figure 1-2, callout 24]

Figure 1-25 shows the user pushbuttons circuit.

X18391-113016

Figure 1-25: User Pushbuttons

CPU Reset Pushbutton

[Figure 1-2, callout 25]

Figure 1-26 shows the CPU reset pushbutton circuit.

X18392-113016

Figure 1-26: CPU Reset Pushbutton

GPIO DIP Switch

[Figure 1-2, callout 26]

Figure 1-27 shows the GPIO DIP switch circuit.

Figure 1-27: CPU GPIO DIP Switch

www.xilinx.com

Rotary Switch

[Figure 1-2, callout 40]

Figure 1-28 shows the rotary switch SW13.

X18394-113016

Figure 1-28: **Rotary Switch SW13**

User SMA GPIO

[Figure 1-2, callout 11]

Figure 1-29 shows the GPIO SMAs J36 and J37.

X18395-113016

Figure 1-29: GPIO SMAs J36 and J37

Table 1-21 lists the GPIO Connections to FPGA U1.

FPGA (U1) Pin	Schematic Net Name	FPGA (U1) Direction	I/O Standard	Device	
GPIO LEDs ((Active-High) ⁽¹⁾				
AP8	GPIO_LED_0	Output	LVCMOS18	DS7.1	
H23	GPIO_LED_1	Output	LVCMOS18	DS6.1	
P20	GPIO_LED_2	Output	LVCMOS18	DS8.1	
P21	GPIO_LED_3	Output	LVCMOS18	DS9.1	
N22	GPIO_LED_4	Output	LVCMOS18	DS10.1	
M22	GPIO_LED_5	Output	LVCMOS18	D\$33.1	
R23	GPIO_LED_6	Output	LVCMOS18	D\$32.1	
P23	GPIO_LED_7	Output	LVCMOS18	DS31.1	
Directional Pushbuttons (Active-High)					
AD10	GPIO_SW_N	Input	LVCMOS18	SW10.3, U111.A13	
AE8	GPIO_SW_E	Input	LVCMOS18	SW9.3, U111.B14	
AF9	GPIO_SW_W	Input	LVCMOS18	SW6.3, U111.D14	
AF8	GPIO_SW_S	Input	LVCMOS18	SW8.3, U111.C14	
AE10	GPIO_SW_C	Input	LVCMOS18	SW7.3, U111.B12	

Table 1-21: KCU105 Board GPIO Connections to FPGA U1

FPGA (U1) Pin	Schematic Net Name	FPGA (U1) Direction	I/O Standard	Device			
4-Pole DIP SW (Active-High) ⁽¹⁾							
AN16	GPIO_DIP_SW0	Input	LVCMOS12	SW12.4			
AN19	GPIO_DIP_SW1	Input	LVCMOS12	SW12.3			
AP18	GPIO_DIP_SW2	Input	LVCMOS12	SW12.2			
AN14	GPIO_DIP_SW3	Input	LVCMOS12	SW12.1			
User Rotary Switch (Active-High) ⁽¹⁾							
Y21	ROTARY_INCA	Input	LVCMOS18	SW13.1			
AD26	ROTARY_INCB	Input	LVCMOS18	SW13.6			
AF28	ROTARY_PUSH	Input	LVCMOS18	SW13.5			
User GPIO SMA							
G27	USER_SMA_GPIO_N	I/O	LVCMOS18	J36.1			
H27	USER_SMA_GPIO_P	I/O	LVCMOS18	J36.1			

Table 1-21: KCU105 Board GPIO Connections to FPGA U1 (Cont'd)

Notes:

1. Routed through a 3.3V-to-1.8V level-shifter to FPGA.

User PMOD GPIO Headers

[Figure 1-2, callout 34]

The KCU105 evaluation board supports two PMOD GPIO headers J52 (right-angle female) and J53 (vertical male). The PMOD nets connected to these headers are accessed via level-shifters U41 (PMOD0 J52) and U42 (PMOD1 J53). The level-shifters are wired to the XCKU040 device U1 banks 44 and 45.

Figure 1-30 shows the GPIO PMOD headers J52 and J53.

X18396-113016

Figure 1-30: PMOD Connectors J52 and J53 with Level-Shifters U42 and U43

Table 1-22 shows the level-shifter U40 and U41 connections to FPGA U1.

FPGA	Schematic Net Name	FPGA (U1) Direction	1/O Standard	Level-Shifter		Schematic	PMOD
(U1) Pin			I/O Standard	Side A 1.2V	Side B 3.3V	Net Name	Pin
AK25	PMOD0_0_LS	I/O	LVCMOS12	U41.1	U41.20	PMOD0_0	J52.1
AN21	PMOD0_1_LS	I/O	LVCMOS12	U41.3	U41.18	PMOD0_1	J52.3
AH18	PMOD0_2_LS	I/O	LVCMOS12	U41.4	U41.17	PMOD0_2	J52.5
AM19	PMOD0_3_LS	I/O	LVCMOS12	U41.5	U41.16	PMOD0_3	J52.7
AE26	PMOD0_4_LS	I/O	LVCMOS12	U41.6	U41.15	PMOD0_4	J52.2
AF25	PMOD0_5_LS	I/O	LVCMOS12	U41.7	U41.14	PMOD0_5	J52.4
AE21	PMOD0_6_LS	I/O	LVCMOS12	U41.8	U41.13	PMOD0_6	J52.6
AM17	PMOD0_7_LS	I/O	LVCMOS12	U41.9	U41.12	PMOD0_7	J52.8
AL14	PMOD1_0_LS	I/O	LVCMOS12	U42.1	U42.20	PMOD1_0	J53.1
AM14	PMOD1_1_LS	I/O	LVCMOS12	U42.3	U42.18	PMOD1_1	J53.3
AP16	PMOD1_2_LS	I/O	LVCMOS12	U42.4	U42.17	PMOD1_2	J53.5
AP15	PMOD1_3_LS	I/O	LVCMOS12	U42.5	U42.16	PMOD1_3	J53.7
AM16	PMOD1_4_LS	I/O	LVCMOS12	U42.6	U42.15	PMOD1_4	J53.2
AM15	PMOD1_5_LS	I/O	LVCMOS12	U42.7	U42.14	PMOD1_5	J53.4
AN18	PMOD1_6_LS	I/O	LVCMOS12	U42.8	U42.13	PMOD1_6	J53.6
AN17	PMOD1_7_LS	I/O	LVCMOS12	U42.9	U42.12	PMOD1_7	J53.8

Table 1-22: PMOD Connector J52, J53 Connections via Level-shifter U42, U43 to FPGA U1

For more information about PMOD connector compatible PMOD modules, see [Ref 10].

Switches

[Figure 1-2, callouts 27, 30]

The KCU105 evaluation board includes a power on-off slide switch and a configuration pushbutton switch:

- Power On/Off Slide Switch SW1 (callout 30)
- FPGA PROG_B SW4, active-Low (callout 27)

Power On/Off Slide Switch SW1

[Figure 1-2, callout 30]

The KCU105 board power switch is SW1. Sliding the switch actuator from the Off to On position applies 12VDC power from the 6-pin mini-fit power input connector J15. Green LED DS26 illuminates when the KCU105 board power is on. See KCU105 Board Power System for details on the onboard power system.

CAUTION! Do NOT plug a PC ATX power supply 6-pin connector into J15 on the KCU105 evaluation board. The ATX 6-pin connector has a different pinout than J15. Connecting an ATX 6-pin connector to J15 damages the KCU105 evaluation board and voids the board warranty.

The KCU105 evaluation board kit provides the adapter cable shown in Figure 1-31 for powering the KCU105 board from the ATX power supply 4-pin peripheral connector. The Xilinx part number for this cable is 2600304, and is equivalent to Sourcegate Technologies part number AZCBL-WH-1109-RA4. See [Ref 26] for ordering information.

X18397-113016

Figure 1-31: ATX Power Supply Adapter Cable

Figure 1-32 shows the power connector J15, power switch SW1 and indicator LED DS26.

X18398-113016

Figure 1-32: Power On/Off Switch SW1

Program_B Pushbutton Switch

[Figure 1-2, callout 27]

Switch SW4 grounds the XCKU040 device U1 PROGRAM_B pin when pressed. This action clears the FPGA programmable logic configuration. The FPGA_PROG_B signal is connected to the XCKU040 device U1 pin T7. For further configuration details, see *UltraScale Architecture Configuration User Guide* (UG570) [Ref 2]. Figure 1-33 shows switch SW4.

Figure 1-33: Program_B Pushbutton Switch SW4

FPGA Mezzanine Card Interface

[Figure 1-2, callouts 33, 34]

The KCU105 evaluation board supports the VITA 57.1 FPGA mezzanine card (FMC) specification by providing subset implementations of the high pin count (HPC) connector at J22 and low pin count (LPC) version at J2. Both connectors use a 10 x 40 form factor. The HPC connector is populated with 400 pins, while the LPC connector is partially populated with 160 pins. The connectors are keyed so that a mezzanine card, when installed in either of these FMC connectors on the KCU105 evaluation board, faces away from the board.

Connector type:

• Samtec SEAF Series, 1.27 mm (0.050 in) pitch. Mates with SEAM series connector

More information about SEAF series connectors is available at the Samtec, Inc. website [Ref 27].

More information about the VITA 57.1 FMC specification is available at the VITA FMC Marketing Alliance website [Ref 28].

FMC HPC Connector J22

[Figure 1-2, callout 33]

The 400-pin HPC connector defined by the FMC specification (Figure B-2) provides connectivity for up to:

- 160 single-ended or 80 differential user-defined signals
- 10 GTH transceivers
- 2 GTH clocks
- 4 differential clocks
- 159 ground and 15 power connections

The HPC connector at J22 implements a subset of the full FMC HPC connectivity:

- 116 single-ended or 58 differential user-defined pairs (34 LA pairs: LA[00:33]; 24 HA pairs: HA[00:23])
- 8 GTH transceivers
- 2 GTH clocks
- 2 differential clocks
- 159 ground and 15 power connections

The FMC DP[7:0] transmit and receive signal data paths are routed with a differential characteristic impedance of 100Ω (±10%) with an insertion loss of <4 dB up to 8 GHz. The KCU105 board FMC VADJ voltage VADJ_1V8 for the J22 and J2 FMC connectors is sourced by the MAX15301 U30 voltage regulator described in KCU105 Board Power System.

Table 1-23 shows the FMC HPC J22 to the XCKU040 device U1 connections in FMC connector section pairs.

J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	
A/B Connections to FPGA U1								
A2	FMC_HPC_DP1_M2C_P		D2	B1	NC			
A3	FMC_HPC_DP1_M2C_N		D1	B4	NC			
A6	FMC_HPC_DP2_M2C_P		B2	B5	NC			
A7	FMC_HPC_DP2_M2C_N		B1	B8	NC			
A10	FMC_HPC_DP3_M2C_P		A4	B9	NC			
A11	FMC_HPC_DP3_M2C_N		A3	B12	FMC_HPC_DP7_M2C_P		F2	
A14	FMC_HPC_DP4_M2C_P		M2	B13	FMC_HPC_DP7_M2C_N		F1	
A15	FMC_HPC_DP4_M2C_N		M1	B16	FMC_HPC_DP6_M2C_P		K2	
A18	FMC_HPC_DP5_M2C_P		H2	B17	FMC_HPC_DP6_M2C_N		K1	
A19	FMC_HPC_DP5_M2C_N		H1	B20	FMC_HPC_GBTCLK1_M2C_P (1)	LVDS	H6	
A22	FMC_HPC_DP1_C2M_P		D6	B21	FMC_HPC_GBTCLK1_M2C_N (1)	LVDS	H5	
A23	FMC_HPC_DP1_C2M_N		D5	B24	NC			
A26	FMC_HPC_DP2_C2M_P		C4	B25	NC			
A27	FMC_HPC_DP2_C2M_N		C3	B28	NC			
A30	FMC_HPC_DP3_C2M_P		B6	B29	NC			
A31	FMC_HPC_DP3_C2M_N		B5	B32	FMC_HPC_DP7_C2M_P		G4	
A34	FMC_HPC_DP4_C2M_P		N4	B33	FMC_HPC_DP7_C2M_N		G3	
A35	FMC_HPC_DP4_C2M_N		N3	B36	FMC_HPC_DP6_C2M_P		L4	
A38	FMC_HPC_DP5_C2M_P		J4	B37	FMC_HPC_DP6_C2M_N		L3	
A39	FMC_HPC_DP5_C2M_N		J3	B40	NC			
C/D Connections to FPGA U1								
C2	FMC_HPC_DP0_C2M_P		F6	D1	VADJ_1V8_PGOOD ⁽²⁾	LVCMOS18	U30.32	
C3	FMC_HPC_DP0_C2M_N		F5	D4	FMC_HPC_GBTCLK0_M2C_P (1)	LVDS	K6	
C6	FMC_HPC_DP0_M2C_P		E4	D5	FMC_HPC_GBTCLK0_M2C_N ⁽¹⁾	LVDS	K5	
C7	FMC_HPC_DP0_M2C_N		E3	D8	FMC_HPC_LA01_CC_P	LVDS	G9	
C10	FMC_HPC_LA06_P	LVDS	D13	D9	FMC_HPC_LA01_CC_N	LVDS	F9	
C11	FMC_HPC_LAO6_N	LVDS	C13	D11	FMC_HPC_LA05_P	LVDS	L13	

Table 1-23: FMC HPC J22 Connections to XCKU040 Device U1

J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin
C14	FMC_HPC_LA10_P	LVDS	L8	D12	FMC_HPC_LA05_N	LVDS	K13
C15	FMC_HPC_LA10_N	LVDS	K8	D14	FMC_HPC_LA09_P	LVDS	J9
C18	FMC_HPC_LA14_P	LVDS	B10	D15	FMC_HPC_LA09_N	LVDS	H9
C19	FMC_HPC_LA14_N	LVDS	A10	D17	FMC_HPC_LA_13_P	LVDS	D9
C22	FMC_HPC_LA18	LVDS	E22	D18	FMC_HPC_LA_13_N	LVDS	C9
C23	FMC_HPC_LA18	LVDS	E23	D20	D20 FMC_HPC_LA17_CC_P		D24
C26	FMC_HPC_LA27	LVDS	H21	D21	FMC_HPC_LA17_CC_N	LVDS	C24
C27	FMC_HPC_LA27	LVDS	G21	D23	FMC_HPC_LA23_P	LVDS	G22
C30	FMC_HPC_IIC_SCL (6)		U80.9	D24	FMC_HPC_LA23_N	LVDS	F22
C31	FMC_HPC_IIC_SDA ⁽⁶⁾		U80.8	D26	FMC_HPC_LA26_P	LVDS	G20
C34	GND			D27	FMC_HPC_LA_26_N	LVDS	F20
C35	VCC12_SW			D29	FMC_HPC_TCK_BUF ⁽³⁾		U19.17
C37	VCC12_SW			D30	FPGA_TDO_FMC_TDI_BUF ⁽⁴⁾		U26.1
C39	UTIL_3V3_10A			D31	FMC_HPC_TDO_LPC_TDI ⁽³⁾⁽⁴⁾		U19.21, U26.2, J2.D30
				D32	UTIL_3V3_10A		
				D33	FMC_HPC_TMS_BUF ⁽³⁾		U19.20
				D34	NC		
				D35	GND		
				D36	UTIL_3V3_10A		
				D38	UTIL_3V3_10A		
				D40	UTIL_3V3_10A		
			E/F Conn	ections t	to FPGA U1		
E2	FMC_HPC_HA01_CC_P	LVDS	E16	F1	FMC_HPC_PG_M2C ⁽⁷⁾	LVCMOS18	U44.18
E3	FMC_HPC_HA01_CC_N	LVDS	D16	F4	FMC_HPC_HA00_CC_P	LVDS	G17
E6	FMC_HPC_HA05_P	LVDS	J15	F5	FMC_HPC_HA00_CC_N	LVDS	G16
E7	FMC_HPC_HA05_N	LVDS	J14	F7	FMC_HPC_HA04_P	LVDS	G19
E9	FMC_HPC_HA09_P	LVDS	F18	F8	FMC_HPC_HA04_P	LVDS	F19
E10	FMC_HPC_HA09_N	LVDS	F17	F10	FMC_HPC_HA08_P	LVDS	K18
E12	FMC_HPC_HA13_P	LVDS	B14	F11	FMC_HPC_HA08_N	LVDS	K17
E13	FMC_HPC_HA13_N	LVDS	A14	F13	FMC_HPC_HA12_P	LVDS	K16
E15	FMC_HPC_HA16_P	LVDS	A19	F14	FMC_HPC_HA12_N	LVDS	J16
E16	FMC_HPC_HA16_N	LVDS	A18	F16	FMC_HPC_HA15_P	LVDS	D14
E18	FMC_HPC_HA20_P	LVDS	C19	F17	FMC_HPC_HA15_N	LVDS	C14

Table 1-23. FINC HPC JZZ Connections to ACROU40 Device 01 (Cont a)	Table 1-23:	FMC HPC J22 Connections to XCKU040 Device U1 ((Cont'd)
--	-------------	--	----------

J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin
E19	FMC_HPC_HA20_N	LVDS	B19	F19	FMC_HPC_HA19_P	LVDS	D19
E21	NC			F20	FMC_HPC_HA19_N	LVDS	D18
E22	NC			F22	NC		
E24	NC			F23	NC		
E25	NC			F25	NC		
E27	NC			F26	NC		
E28	NC			F28	NC		
E30	NC			F29	NC		
E31	NC			F31	NC		
E33	NC			F32	NC		
E34	NC			F34	NC		
E36	NC			F35	NC		
E37	NC			F37	NC		
E39	VADJ_1V8			F38	NC		
				F40	VADJ_1V8		
G/H Connections to FPGA U1							
G2	FMC_HPC_CLK1_M2C_P	LVDS	E25	H1	NC		
G3	FMC_HPC_CLK1_M2C_N	LVDS	D25	H2	FMC_HPC_PRSNT_M2C_B ⁽⁵⁾	LVCMOS18	U26.4, U44.17
G6	FMC_HPC_LA00_CC_P	LVDS	H11	H4	FMC_HPC_CLK0_M2C_P	LVDS	H12
G7	FMC_HPC_LA00_CC_N	LVDS	G11	H5	FMC_HPC_CLK0_M2C_N	LVDS	G12
G9	FPC_HPC_LA03_P	LVDS	A13	H7	FMC_HPC_LA02_P	LVDS	K10
G10	FPC_HPC_LA03_N	LVDS	A12	H8	FMC_HPC_LA02_N	LVDS	J10
G12	FMC_HPC_LA08_P	LVDS	78	H10	FMC_HPC_LA04_P	LVDS	L12
G13	FMC_HPC_LA08_N	LVDS	H8	H11	FMC_HPC_LA04_N	LVDS	K12
G15	FMC_HPC_LA12_P	LVDS	E10	H13	FMC_HPC_LA07_P	LVDS	F8
G16	FMC_HPC_LA12_N	LVDS	D10	H14	FMC_HPC_LA07_N	LVDS	E8
G18	FMC_HPC_LA16_P	LVDS	B9	H16	FMC_HPC_LA11_P	LVDS	K11
G19	FMC_HPC_LA16_N	LVDS	A9	H17	FMC_HPC_LA11_N	LVDS	J11
G21	FMC_HPC_LA20_P	LVDS	B24	H19	FMC_HPC_LA15_P	LVDS	D8
G22	FMC_HPC_LA20_N	LVDS	A24	H20	FMC_HPC_LA15_N	LVDS	C8
G24	FMC_HPC_LA22_P	LVDS	G24	H22	FMC_HPC_LA19_P	LVDS	C21
G25	FMC_HPC_LA22_N	LVDS	F25	H23	FMC_HPC_LA19_N	LVDS	C22
G27	FMC_HPC_LA25_P	LVDS	D20	H25	FMC_HPC_LA21_P	LVDS	F23
G28	FMC_HPC_LA25_N	LVDS	D21	H26	FMC_HPC_LA21_N	LVDS	F24

Table 1-23: FMC HPC J22 Connections to XCKU040 Device U1 (Cont'd)

J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin
G30	FMC_HPC_LA29_P	LVDS	B20	H28	FMC_HPC_LA24_P	LVDS	E20
G31	FMC_HPC_LA29_N	LVDS	A20	H29	FMC_HPC_LA24_N	LVDS	E21
G33	FMC_HPC_LA31_P	LVDS	B25	H31	FMC_HPC_LA28_P	LVDS	B21
G34	FMC_HPC_LA31_N	LVDS	A25	H32	FMC_HPC_LA28_N	LVDS	B22
G36	FMC_HPC_LA33_P	LVDS	A27	H34	FMC_HPC_LA30_P	LVDS	C26
G37	FMC_HPC_LA33_N	LVDS	A28	H35	FMC_HPC_LA030_N	LVDS	B26
G39	VADJ_1V8			H37	FMC_HPC_LA32_P	LVDS	E26
				H38	FMC_HPC_LA32_N	LVDS	D26
				H40	VADJ_1V8		
		I	J/K Conn	ections t	o FPGA U1		
J2	NC			K1	NC		
J3	NC			K4	NC		
J6	FMC_HPC_HA03_P	LVDS	G15	K5	NC		
J7	FMC_HPC_HA03_N LVDS G14 K7 FMC_HPC_HA02_P		LVDS	H19			
19	FMC_HPC_HA07_P LVDS L19 K8 FMC_HPC_HA02_N		LVDS	H18			
J10	FMC_HPC_HA07_N	C_HA07_N LVDS L18 K10 FMC_HPC_HA06_P		LVDS	L15		
J12	FMC_HPC_HA11_P	LVDS	J19	K11	FMC_HPC_HA06_N	LVDS	K15
J13	FMC_HPC_HA11_N	FMC_HPC_HA11_N LVDS J18 K13 FMC_HPC_HA10_P		FMC_HPC_HA10_P	LVDS	H17	
J15	FMC_HPC_HA14_P	LVDS	F15	K14	FMC_HPC_HA10_N	LVDS	H16
J16	FMC_HPC_HA14_N	LVDS	F14	K16	FMC_HPC_HA17_CC_P	LVDS	E18
J18	FMC_HPC_HA18_P	LVDS	B17	K17	FMC_HPC_HA17_CC_N	LVDS	E17
J19	FMC_HPC_HA18_N	LVDS	B16	K19	FMC_HPC_HA21_P	LVDS	E15
J21	FMC_HPC_HA22_P	LVDS	C18	K20	FMC_HPC_HA21_N	LVDS	D15
J22	FMC_HPC_HA22_N	LVDS	C17	K22	FMC_HPC_HA23_P	LVDS	B15
J24	NC			K23	FMC_HPC_HA23_N	LVDS	A15
J25	NC			K25	NC		
J27	NC			K26	NC		
J28	NC			K28	NC		
J30	NC			K29	NC		
J31	NC			K31	NC		
J33	NC			K32	NC		
J34	NC			K34	NC		
J36	NC			K35	NC		
J37	NC			K37	NC		
J39	NC			K38	NC		

Table 1-23: FMC HPC J22 Connections to XCKU040 Device U1 (Cont'd)

Table 1-23:	FMC HPC J22 Connections to XCKU040 Device U1 (Cont'd)
-------------	---

J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	J22 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin
				K40	NC		

Notes:

- 1. Series capacitor coupled to the XCKU040 U1 pin.
- 2. U30 MAX15301 VADJ_1V8_FPGA voltage regulator power good output signal.
- 3. XCKU040 U1 JTAG TCK, TMS, TDO pins AC9, W9, U9 buffered by U19 SN74AVC8T245.
- 4. J22 HPC TDO-TDI connections to U26 HPC FMC JTAG bypass switch (N.C. normally closes/bypassing J22 until an FMC card is plugged into J22).
- 5. FMC_HPC_PRSNT_M2C_B is the HPC FMC JTAG bypass switch U26.4 OE control signal and is also connected to the XCKU040 U1 pin H24 via level-shifter U44.
- 6. Connected to the XCKU040 U1 LS pins J25/J24 IIC_MAIN_SDA/SCL via I2C MUX U80 and level-shifter U77.
- 7. HPC FMC signal FMC_HPC_PG_M2C is connected to the XCKU040 U1 pin L27 via level-shifter U44.

FMC LPC Connector J2

[Figure 1-2, callout 34]

The 160-pin LPC connector defined by the FMC specification (Figure B-1) provides connectivity for up to:

- 68 single-ended or 34 differential user-defined signals
- 1 GTH transceiver
- 1 GTH clock
- 2 differential clocks
- 61 ground and 9 power connections

The LPC connector at J2 implements the full FMC LPC connectivity:

- 68 single-ended or 34 differential user-defined pairs (34 LA pairs, LA00-LA33)
- 1 GTH transceiver
- 1 GTH clock
- 2 differential clocks
- 61 ground and 9 power connections

The FMC DP[7:0] transmit and receive signal data paths are routed with a differential characteristic impedance of 100Ω (±10%) with an insertion loss of <4 dB up to 8 GHz.

Table 1-24 shows the FMC LPC J2 to the XCKU040 device U1 connections in FMC connector section pairs.

J2 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	J2 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin
			C/D Conn	ections t	o FPGA U1		
C2	FMC_LPC_DP0_C2M_P		AA4	D1	VADJ_1V8_PGOOD (1)	LVCMOS18	U30.32
C3	FMC_LPC_DP0_C2M_N		AA3	D4	FMC_LPC_GBTCLK0_M2C_P	LVDS	Т6
C6	FMC_LPC_DP0_M2C_P		Y2	D5	FMC_LPC_GBTCLK0_M2C_N	LVDS	T5
C7	FMC_LPC_DP0_M2C_N		Y1	D8	FMC_LPC_LA01_CC_P	LVDS	W25
C10	FMC_LPC_LA06_P	LVDS	V29	D9	FMC_LPC_LA01_CC_N	LVDS	Y25
C11	FMC_LPC_LA06_N	LVDS	W29	D11	FMC_LPC_LA05_P	LVDS	V27
C14	FMC_LPC_LA10_P	LVDS	T22	T22 D12 FMC_LPC_LA05_N		LVDS	V28
C15	FMC_LPC_LA10_N	LVDS	T23	D14	FMC_LPC_LA09_P	LVDS	V26
C18	FMC_LPC_LA14_P	LVDS	U21	D15	FMC_LPC_LA09_N	LVDS	W26
C19	FMC_LPC_LA14_N	LVDS	U22	D17	FMC_LPC_LA13_P	LVDS	AA20
C22	FMC_LPC_LA18_CC_P	LVDS	AB30	D18	FMC_LPC_LA13_N	LVDS	AB20
C23	FMC_LPC_LA18_CC_N	LVDS	AB31	D20	FMC_LPC_LA17_CC_P	LVDS	AA32
C26	FMC_LPC_LA27_P	LVDS	AG31	D21	FMC_LPC_LA17_CC_N	LVDS	AB32
C27	FMC_LPC_LA27_N	LVDS	AG32	D23	FMC_LPC_LA23_P	LVDS	AD30
C30	FMC_LPC_IIC_SCL (2)		U80.13	D24 FMC_LPC_LA23_N		LVDS	AD31
C31	FMC_LPC_IIC_SDA ⁽²⁾		U80.12	D.12 D26 FMC_LPC_LA26_P		LVDS	AF33
C34	GND=0=GND			D27 FMC_LPC_LA_26_N		LVDS	AG34
C35	VCC12_P			D29	FMC_LPC_TCK_BUF (3)		U19.16
C37	VCC12_P			D30	FMC_HPC_TDO_LPC_TDI ⁽⁴⁾		U27.2, UG27.1
C39	VCC3V3			D31	FMC_LPC_TDO ⁽³⁾⁽⁵⁾		U26.2, U55.3
				D32	VCC3V3		
				D33	FMC_LPC_TMS_BUF ⁽³⁾		U19.19
				D34	NC		
				D35	GND		
				D36	VCC3V3		
				D38	VCC3V3		
				D40	VCC3V3		
		1	G/H Conn	ections t	o FPGA U1	1	
G2	FMC_LPC_CLK1_M2C_P	LVDS	AC31	H1	NC		
G3	FMC_LPC_CLK1_M2C_N	LVDS	AC32	H2	FMC_LPC_PRSNT_M2C_B ⁽⁶⁾	LVCMOS18	U27.4, U44.16
G6	FMC_LPC_LA00_CC_P	LVCOMS18	W23	H4	FMC_LPC_CLK0_M2C_P	LVDS	AA24
G7	FMC_LPC_LA00_CC_N	LVDS	W24	H5	FMC_LPC_CLK0_M2C_N	LVDS	AA25

Table 1-24: FMC LPC J2 Connections to XCKU040 Device U1

J2 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin	J2 Pin	Schematic Net Name	I/O Standard	XCKU040 (U1) Pin
G9	FPC_LPC_LA03_P	LVDS	W28	H7	FMC_LPC_LA02_P	LVDS	AA22
G10	FPC_LPC_LA03_N	LVDS	Y28	H8	FMC_LPC_LA02_N	LVDS	AB22
G12	FMC_LPC_LA08_P	LVDS	U24	U24 H10 FMC_LPC_LA04_P		LVDS	U26
G13	FMC_LPC_LA08_N	LVDS	U25	U25 H11 FMC_LPC_LA04_N		LVDS	U27
G15	FMC_LPC_LA12_P	LVDS	AC22	22 H13 FMC_LPC_LA07_P		LVDS	V22
G16	FMC_LPC_LA12_N	LVDS	AC23	H14	FMC_LPC_LA07_N	LVDS	V23
G18	FMC_LPC_LA16_P	LVDS	AB21	H16	FMC_LPC_LA11_P	LVDS	V21
G19	FMC_LPC_LA16_N	LVDS	AC21	21 H17 FMC_LPC_LA11_N		LVDS	W21
G21	FMC_LPC_LA20_P	LVDS	AA34	H19 FMC_LPC_LA15_P		LVDS	AB25
G22	FMC_LPC_LA20_N	LVDS	AB34	H20 FMC_LPC_LA15_N		LVDS	AB26
G24	FMC_LPC_LA22_P	LVDS	AC34	H22 FMC_LPC_LA19_P		LVDS	AA29
G25	FMC_LPC_LA22_N	LVDS	AD34	34 H23 FMC_LPC_LA19_		LVDS	AB29
G27	FMC_LPC_LA25_P	LVDS	AE33	H25	FMC_LPC_LA21_P	LVDS	AC33
G28	FMC_LPC_LA25_N	LVDS	AF34	H26	FMC_LPC_LA21_N	LVDS	AD33
G30	FMC_LPC_LA29_P	LVDS	U34	H28	FMC_LPC_LA24_P	LVDS	AE32
G31	FMC_LPC_LA29_N	LVDS	V34	H29	FMC_LPC_LA24_N	LVDS	AF32
G33	FMC_LPC_LA31_P	LVDS	V33	H31	FMC_LPC_LA28_P	LVDS	V31
G34	FMC_LPC_LA31_N	LVDS	W34	H32	FMC_LPC_LA28_N	LVDS	W31
G36	FMC_LPC_LA33_P	LVDS	W33	H34	FMC_LPC_LA30_P	LVDS	Y31
G37	FMC_LPC_LA33_N	LVDS	Y33	H35	FMC_LPC_LA030_N	LVDS	Y32
G39	VADJ_1V8			H37	FMC_LPC_LA32_P	LVDS	W30
				H38	FMC_LPC_LA32_N	LVDS	Y30
				H40	VADJ_1V8		

Table 1-24: FMC LPC J2 Connections to XCKU040 Device U1 (Co

Notes:

- 1. U30 MAX15301 VADJ_1V8_FPGA voltage regulator power good output signal.
- 2. Connected to the XCKU040 U1 LS pins J25/J24 IIC_MAIN_SDA/SCL via I2C MUX U80 and level-shifter U77.
- 3. XCKU040 U1 JTAG TCK, TMS, TDO pins AC9, W9, U9 buffered by U19 SN74AVC8T245.
- 4. J2 LPC TDO-TDI connections to U27 LPC FMC JTAG bypass switch (N.C. normally closes/bypassing J2 until an FMC card is plugged into J2).
- 5. J2 LPC FMC connector TDO is level-shifted by U55, and then connected to system controller U111 pin P9 and Digilent USB JTAG module U115 TDO pin 8 in parallel.
- 6. FMC_LPC_PRSNT_M2C_B is the LPC FMC JTAG bypass switch U27.4 OE control signal and is also connected to the XCKU040 U1 pin J26 via level-shifter U44.

KCU105 Board Power System

The KCU105 board hosts a Maxim PMBus based power system. Each individual Maxim MAX15301 or MAX15303 voltage regulator has a PMBus interface. Figure 1-34 shows the KCU105 board power system block diagram.

X18400-113016

Figure 1-34: KCU105 Board Power System Block Diagram

The KCU105 evaluation board uses power regulators and PMBus compliant PoL controllers from Maxim Integrated Circuits to supply the core and auxiliary voltages listed in Table 1-25.

Device Type	Ref. Des.	PMBus Addr.	Description	Power Rail Net Name	Power Rail Voltage	Schematic Page
MAX15301	U29	0x0A	Maxim InTune digital POL controller	VCCINT_FPGA	0.95V	52
MAX15303	U10	0x0B	Maxim InTune digital POL controller	VCCAUX_FPGA	1.80V	53
MAX15303	U3	0x0F	Maxim InTune digital POL controller	VCCBRAM_FPGA	0.95V	54
MAX15303	U9	0x11	Maxim InTune digital POL controller	VCC1V8_FPGA	1.80V	55
MAX15301	U30	0x12	Maxim InTune digital POL controller	VADJ_1V8_FPGA	1.80V	56
MAX15303	U4	0x14	Maxim InTune digital POL controller	VCC1V2_FPGA	1.20V	57
MAX20751E	U137	0x72	Multiphase master with smart slave VT1697SBFQX	MGTAVCC_FPGA	1.00V	58
MAX20751E	U138	0x73	Multiphase master with smart slave VT1697SBFQX	MGTAVTT_FPGA	1.20V	59
MAX8869E	U134	NA	Maxim adjustable LDO 1A	MGTVCCAUX	1.80V	60
MAX15301	U31	0x1B	Maxim InTune digital POL controller	UTIL_3V3	3.30V	61
MAX17502	U82	NA	Maxim synch. buck switcher 1A	SYS_5V0	5.00V	62
MAX15053	U124	NA	Maxim adj. synch. buck switcher 2A	SYS_1V0	1.00V	63
MAX15027	U125	NA	Maxim adjustable LDO 1A	SYS_1V8	1.80V	63
MAX15027	U126	NA	Maxim adjustable LDO 1A	SYS_2V5	2.50V	63
TPS51200	U24	NA	TI source-sink Vtt regulator 3A	DDR4_VTT	0.60V	64

Table 1-25: Onboard Power System Devices

The Maxim GUI regulator on/off settings are shown in Table 1-26.

Maxim Power Tool (1.08.02) PMBus Regulator Settings								Scher	natic Reference	
Regulator Type	PMBus Address	Vout Set Point (V)	On Delay Time (ms)	On Rise Time (ms)	Off Delay Time (ms)	Off Fall Time (ms)	Current (A)	Ref. Des.	Schematic Net Name	Page Number
MAX15301	0x0A	0.950	4.98	2.02	25.00	2.02	40	U29	VCCINT_FPGA	52
MAX15303	0x0B	1.800	11.81	2.34	14.78	2.34	5	U10	VCCAUX_FPGA	53
MAX15303	0x0F	0.950	7.84	2.02	19.94	2.02	5	U3	VCCBRAM_FPGA	54
MAX15303	0x11	1.800	19.78	2.33	7.97	2.33	2	U9	VCC1V8_FPGA	55
MAX15301	0x12	1.800	24.84	2.34	5.11	2.34	10	U30	VADJ_1V8_FPGA	56
MAX15303	0x14	1.200	24.88	1.89	5.12	1.89	3	U4	VCC1V2_FPGA	57
MAX15301	0x1B	3.300	1.00	2.12	30.13	2.12	10	U31	UTIL_3V3	61
MAX20751E	0x72	1.000	10.00	Not Supported	20.00	Not Supported	5	U137	MGTAVCC_FPGA	58
MAX20751E	0x73	1.200	14.00	Not Supported	14	Not Supported	5	U138	MGTAVTT_FPGA	59

Table 1-26: Maxim Power Tool GUI Regulator Settings

Documentation describing PMBUS programming for the Maxim InTune[™] power controllers is available at the Maxim Integrated website [Ref 29].

The PCB layout and power system design meet the recommended criteria described in the *UltraScale Architecture PCB Design User Guide* (UG583) [Ref 3].

FMC VADJ_1V8 Power Rail

The KCU105 evaluation board implements the ANSI/VITA 57.1 section 5.5.1 IPMI support functionality. The power control of the VADJ_1V8 power rail is significantly different from other Xilinx evaluation boards, and is managed by the U111 system controller. This rail powers both the FMC HPC (J22) and FMC LPC (J2) VADJ pins, as well as the XCKU040 HP banks 47, 48, 66, 67, and 68 (see Table 1-3). The valid values of the VADJ_1V8 rail are 1.2V, 1.5V, and 1.8V.

At power on, the system controller detects if an FMC module is connected to each interface.

- If no cards are attached to the FMC ports, the VADJ voltage is set to 1.8V.
- When one FMC card is attached, its I2C EEPROM is read to find a VADJ voltage supported by both the KCU105 board and the FMC module within the available choices of 1.8V, 1.5V, 1.2V, and 0.0V.
- When two FMC cards are attached with differing VADJ requirements, VADJ_1V8 is set to the lowest value compatible with the KCU105 board and the FMC modules, within the available choices of 1.8V, 1.5V, 1.2V, and 0.0V.
- If no valid information is found in the I2C EEPROM, the VADJ_1V8 rail is set to 0.0V.

The system controller user interface (see FMC Menu Options in Appendix C) allows the FMC IPMI routine to be overridden and an explicit value can be set for the VADJ_1V8_FPGA rail.

Monitoring Voltage and Current

Voltage and current monitoring and control for the Maxim power system is available through either the KCU105 system controller or via the Maxim PowerTool[™] software graphical user interface.

The KCU105 system controller is the simplest and most convenient way to monitor the voltage and current values for the power rails listed in Table 1-25. For details on how to use this built-in feature see PMBus Menu and SYSMON Menu in Appendix C, System Controller.

The Maxim InTune power controllers listed in Table 1-25 can also be accessed through the PMBus connector J39. Using this connector requires the Maxim PowerTool USB cable (Maxim part number MAXPOWERTOOL002#). This cable can be ordered from the Maxim Integrated website [Ref 29]. The associated Maxim PowerTool GUI is also downloadable from the Maxim website.

SYSMON Power System Measurement

UltraScale FPGAs provide an analog converter (SYSMON) block. The SYSMON block contains a single 10-bit 0.2 MSPS ADC. The KCU105 board SYSMON ADC interface includes current measuring capability for all FPGA voltage rails. The rail current measurements are made available to SYSMON via an Analog Devices ADG707BRU multiplexer U75. Each rail has a TI INA333 op amp strapped across a series current sense resistors' Kelvin terminals. This op amp has its gain adjusted to give 0.75V - 1V at the expected full scale current value for the rail.

The SYSMON block can measure the internal VCCINT, VCCAUX, and VCCBRAM rail voltages and the external MGTAVCC and MGTAVTT rail voltages using SYSMON channels AD0 and AD8, respectively.

Figure 1-35 shows the SYSMON external multiplexer U75 circuit block diagram.

X18401-113016

Figure 1-35: SYSMON External Multiplexer Block Diagram

Table 1-27 lists the KCU105 board SYSMON power system voltage and current measurement details for the external U75 MUX.

Table 1-27:	SYSMON Measurements Through MUX U75
-------------	-------------------------------------

		Maaa	Nom	Current	Is	ense Op A	Amp		8-to-1 Mux.		U75	
Controlled Rail Name	Ref. Des.	Type	Vout	Range	Ref. Des.	Gain	Vo Range	Schematic Net Name	Pin Num.	Pin Name	A[2:0]	
		V	0.95V	NA		NA		(SYSMON or MAXIM GUI)		NA		
VCCINT_FPGA	U29	т	NLA	0.404	1174	125	0 11/	VCCINT_SYSMON_CS_P	19	S1A	000	
		1	INA	0-40A	074	12.5	0-10	VCCINT_SYSMON_CS_N	11	S1B	000	
		V	1.80V	NA		NA		(SYSMON or MAXIM GUI)		NA		
VCCAUX_FPGA	U10	т	NIA	0 5 4	1172	20	0 11/	VCCAUX_SYSMON_CS_P	20	S2A	001	
		1	INA	0 - 5A	075	50	0-10	VCCAUX_SYSMON_CS_N	10	S2B	001	
		V	0.95V	NA		NA		(SYSMON or MAXIM GUI)		NA		
VCCBRAM_FPGA	U3	т	NIA	0 5 4	1172	20	0 -	VCCBRAM_SYSMON_CS_P	21	S3A	010	
		I	INA	0- JA	072	30	0.75V	VCCBRAM_SYSMON_CS_N	9	S3B	010	
		V	1.80V	NA	NA			(MAXIM GUI ONLY)		NA		
VCC1V8_FPGA	U9	т	NIA	0 24	11116	100	0 11/	VCC1V8_SYSMON_CS_P	22	S4A	011	
		1	INA	0 - 2A	0110	100	0-10	VCC1V8_SYSMON_CS_N	8	S4B	011	
		V	1.80V	NA		NA		(MAXIM GUI ONLY)		NA		
VADJ_1V8_FPGA	U30	т	NIA	0 - 100	11110	20	0 - 11/	VADJ_1V8_SYSMON_CS_P	23	S5A	100	
		1		0-104	0119	20	0-10	VADJ_1V8_SYSMON_CS_N	7	S5B	100	
		V	1.20V	NA		NA		(MAXIM GUI ONLY)	NA			
VCC1V2_FPGA	U4	т	NIA	0 24	11120	60	0 -	VCC1V2_SYSMON_CS_P	24	S6A	101	
		I	INA	0-3A	0120	00	0.90V	VCC1V2_SYSMON_CS_N	6	S6B	101	
		V	1.00V	NA		NA		(SYSMON AD0 or MAXIM GUI)		NA		
MGTAVCC_FPGA	U137	т	NIA	0 5 4	11110	20	0 -	MGTAVCC_SYSMON_CS_P	25	S7A	110	
		1	INA	0 - 5A	0110	50	0.75V	MGTAVCC_SYSMON_CS_N	5	S7B	110	
		V	1.20V	NA	NA			(SYSMON AD8 or MAXIM GUI)		NA		
MGTAVTT_FPGA	U138	т	NΔ	0 - 54	1117	30	0 -	MGTAVTT_SYSMON_CS_P	26	S8A	111	
		1		0-JA	011/	50	0.75V	MGTAVTT_SYSMON_CS_N	4	S8B	111	

SYSMON Header J75

[Figure 1-2, callout 35]

UltraScale FPGAs provide an analog converter (SYSMON) block. The SYSMON contains a single 10-bit 0.2 MSPS ADC. Consequently, the sequencer for SYSMON does not support simultaneous sampling mode or independent ADC mode. See *UltraScale Architecture System Monitor User Guide* (UG580) [Ref 30] for details on the capabilities of the analog

www.xilinx.com

converter (SYSMON) block. Figure 1-36 shows the KCU105 board SYSMON support features.

X18402-113016

Figure 1-36: KCU105 Board SYSMON and SYSMON Header J75 Voltage Source Options

The KCU105 board supports both the internal FPGA sensor measurements and the external measurement capabilities of the SYSMON. Internal measurements of the die temperature, VCCINT, VCCAUX, and VCCBRAM are available. Header J48 can be used to select either an external differential voltage reference (SYSMON_VREFP) or on-chip voltage reference (jumper J48 2-3) for the analog-to-digital converter.

For external measurements SYSMON header (J75) is provided. This header can be used to provide analog inputs to the FPGA's dedicated VP/VN input channel. The VCCINT_SYSMON_SENSE_P/N signals from the series current sense R86 0.002 Ω VCCINT resistor are also made available at J75. Figure 1-37 shows the header connections.

X18403-113016

Table 1-28 describes the SYSMON header J75 pin functions.

Table 1-28:	SYSMON	Header J75	Pinout
-------------	--------	------------	--------

Schematic Net Name	J75 Pin Number	Description
NC	1,3	No Connect
SYSMON_DXP, SYSMON_DXN	2,4	Access to thermal diode.
SYSMON_AGND	5,6	Analog ground reference.
SYSMON_VREF	7	REF3012 U40 1.25V.
SYSMON_VCC	8	Filtered VCC1V8 or ADP123 U14 1.85V.
SYSMON_VN, SYSMON_VP	9,10	Dedicated analog input channel for SYSMON.
VCCINT_SYSMON_SENSE_P/N	11,12	MAX15301 U29 VCCINT series 0.002 Ω R86 IR-drop taps.

For more information on the UltraScale System Monitor (SYSMON), see *UltraScale Architecture System Monitor User Guide* (UG580) [Ref 30].

Cooling Fan

The XCKU040 device U1 cooling fan connector is shown in Figure 1-38. The fan turns on when the KCU105 board is powered up due to pull-up resistor R422. The SM_FAN_PWM and SM_FAN_TACH signals are wired to the XCKU040 device U1 bank 64 pins AJ9 and AJ8, respectively, which enables the user to implement their own fan speed control IP in the FPGA U1 logic.

Figure 1-38: Cooling Fan Circuit

KCU105 Board Zynq-7000 SoC XC7Z010 System Controller

[Figure 1-2, callout 36]

The KCU105 board Zynq-7000 SoC XC7Z010 system controller sub-system implements interfaces to:

- PMBus power system
- Programmable user clock
- USB UART2
- Five directional user pushbutton switches
- I2C bus MUXes

The system controller is delivered as a black-box design that communicates with onboard programmable devices over an I2C interface. The Zynq-7000 SoC system controller IP is not provided and is not available to end users for modification purposes.

The system controller is an ease-of-use feature that sets up or queries onboard resources available to the XCKU040 UltraScale FPGA U1 on the KCU105 board. Programmable clocks, the internal UltraScale FPGA system monitor block (SYSMON), and the Maxim power controllers are accessible through an I2C interface connected to both the system controller and the FPGA.

A Silicon Labs Si570 programmable low-jitter clock is used to provide a system clock for FPGA designers. Through a UART (115200-8-N-1) text interface, the system clock (Si570) can be set to any frequency between 10 MHz and 810 MHz. The Si570 defaults to a power-on frequency of 156.25 MHz, but then automatically changes to the last saved frequency setting requested by the user. Clock programming does not require FPGA resources and can be set or adjusted prior to configuring the FPGA or after the FPGA has been configured.

Additional functionality provided through the system controller's UART2 is a text display of the internal SYSMON registers for VCCINT, VCCBRAM, VCCAUX, and the UltraScale FPGA U1 device temperature. SYSMON based power measurements are also displayed over the UART2 for the VCCINT, VCCBRAM, VCCAUX, VCC1V8, VADJ_1V8, VCC1V2, MGTAVCC, and MGTAVTT power rails.

Power rail voltages set by the Maxim controllers are also displayed through the UART2 for VCCINT, VCCBRAM, VCCAUX, VCC1V8, VADJ_1V8, VCC1V2, MGTAVCC, MGTAVTT, MGTVCCAUX, and UTIL_3V3.

See Appendix C, System Controller for information on installing and using the system controller text-based UART menu.

Appendix A

Default Switch and Jumper Settings

The default switch and jumper settings for the KCU105 evaluation board are provided in this appendix.

Switches

The default switch settings are listed in Table A-1. The KCU105 board switch locations are shown in Figure 1-2.

Table A-1: Default Switch Settings

Switch	Function	Default	Comments	Figure 1-2 Callout	Schematic 0381556 Page
SW1	SPST SLIDE SWITCH	OFF	BOARD SHIPPED WITH POWER SW. OFF	30	51
SW12	4-POLE GPIO DIP (1)	0000	POS. 1-4 GPIO ACTIVE HIGH	26	41
SW15	6-POLE CONFIGURATION DIP (1)	00000	POS. 1-5 ZYNQ SYSTEM CTLR. U111	28	32
SW15	6-POLE CONFIGURATION DIP (1)	0	POS. 6 FPGA U1 MODE M2	28	32

Notes:

1. DIP switches are active-High (connected net is pulled High when DIP switch is closed).

Jumpers

The default jumper settings are listed in Table A-2. The KCU105 board jumper header locations are shown in Figure A-1.

Table A-2:	Default Jum	per Settings
10010112.	Deradicitation	

Jumper	Function	Default	Comments	Figure A-1 Callout	Schematic 0381556 Page
J5	Power on reset override select	2-3	GND = EXTENDED POWER-ON DELAY	1	3
J6	P5 SFP0 ENABLE	1-2	ENABLE SFP0 P5 CONNECTOR	2	27
J7	P4 SFP1 ENABLE	1 - 2	ENABLE SFP1 P4 CONNECTOR	3	28
J9	U40 1.25V VREF	OFF	AGND-TO-GND FILT. L14 BYPASS	4	43
J10	U40 1.25V VREF	1 - 2	1 - 2 = SYSMON_GND_FILT TO GND	5	43
J11	SYSMON_VCC5V0	OFF	1 - 2 = SYSMON_VCC5V0 = FILT. SYS_5V0	6	43
J12	MAXIM REGULATOR INHIBIT	OFF	USED WHEN PROGRAMMING PWR. SYS.	7	51
J14	U30 VADJ_1V8 ENABLE	OFF	ADDITIONAL TO J12 VADJ_1V8 ENABLE	8	56
J41	P5 SFP0_RS1	2 - 3	ENABLE LOW BANDWIDTH TX	9	27
J42	P5 SFP0_RS0	2 - 3	ENABLE LOW BANDWIDTH RX	10	27
J43	P5 SFP1_RS1	2 - 3	ENABLE LOW BANDWIDTH TX	11	28
J44	P5 SFP1_RS0	2 - 3	ENABLE LOW BANDWIDTH RX	12	28
J45	U58 M88E1111 EPHY	1 - 2	SGMII TO CU, WITH CLOCK ⁽¹⁾	13	38
J47	SYSMON_VCC SELECT	1 - 2	SYSMON_VCC = FILTERED VCCAUX_FPGA	14	43
J48	SYSMON_VREFP SELECT	1 - 2	SYSMON_VREFP = U40 1.25V VREF	15	43
J49	U40 1.25V VREF Vin SELECT	2 - 3	U40 Vin = SYSMON_VCC	16	43
J74	PCIe LANE SIZE SELECT	5 - 6	8-LANE CONFIGURATION	17	26
J80	SYSMON_VP	1 - 2	U1 VP pin V12 PULL DOWN 20.5K TO GND	18	3
J81	SYSMON_VN	1 - 2	U1 VN pin W11 PULL DOWN 20.5K TO GND	19	3

Notes:

1. In KCU105 board Rev. D and later, J45 is deleted, U58 CONFIG4 pin F9 is tied to GND to specify the SGMII to CU with clock functionality.

Figure A-1: KCU105 Board Header Jumper Locations

Appendix B

VITA 57.1 FMC Connector Pinouts

Overview

Figure B-1 shows the pinout of the FPGA mezzanine card (FMC) low pin count (LPC) connector defined by the VITA 57.1 FMC specification. For a description of how the KCU105 evaluation board implements the FMC specification, see FPGA Mezzanine Card Interface and FMC LPC Connector J2.

	K	J	Н	G	F	E	D	С	В	A
1	NC	NC	VREF_A_M2C	GND	NC	NC	PG_C2M	GND	NC	NC
2	NC	NC	PRSNT_M2C_L	CLK1_M2C_P	NC	NC	GND	DP0_C2M_P	NC	NC
3	NC	NC	GND	CLK1_M2C_N	NC	NC	GND	DP0_C2M_N	NC	NC
4	NC	NC	CLK0_M2C_P	GND	NC	NC	GBTCLK0_M2C_F	GND	NC	NC
5	NC	NC	CLK0_M2C_N	GND	NC	NC	GBTCLK0_M2C_N	I GND	NC	NC
6	NC	NC	GND	LA00_P_CC	NC	NC	GND	DP0_M2C_P	NC	NC
7	NC	NC	LA02_P	LA00_N_CC	NC	NC	GND	DP0_M2C_N	NC	NC
8	NC	NC	LA02_N	GND	NC	NC	LA01_P_CC	GND	NC	NC
9	NC	NC	GND	LA03_P	NC	NC	LA01_N_CC	GND	NC	NC
10	NC	NC	LA04_P	LA03_N	NC	NC	GND	LA06_P	NC	NC
11	NC	NC	LA04_N	GND	NC	NC	LA05_P	LA06_N	NC	NC
12	NC	NC	GND	LA08_P	NC	NC	LA05_N	GND	NC	NC
13	NC	NC	LA07_P	LA08_N	NC	NC	GND	GND	NC	NC
14	NC	NC	LA07_N	GND	NC	NC	LA09_P	LA10_P	NC	NC
15	NC	NC	GND	LA12_P	NC	NC	LA09_N	LA10_N	NC	NC
16	NC	NC	LA11_P	LA12_N	NC	NC	GND	GND	NC	NC
17	NC	NC	LA11_N	GND	NC	NC	LA13_P	GND	NC	NC
18	NC	NC	GND	LA16_P	NC	NC	LA13_N	LA14_P	NC	NC
19	NC	NC	LA15_P	LA16_N	NC	NC	GND	LA14_N	NC	NC
20	NC	NC	LA15_N	GND	NC	NC	LA17_P_CC	GND	NC	NC
21	NC	NC	GND	LA20_P	NC	NC	LA17_N_CC	GND	NC	NC
22	NC	NC	LA19_P	LA20_N	NC	NC	GND	LA18_P_CC	NC	NC
23	NC	NC	LA19_N	GND	NC	NC	LA23_P	LA18_N_CC	NC	NC
24	NC	NC	GND	LA22_P	NC	NC	LA23_N	GND	NC	NC
25	NC	NC	LA21_P	LA22_N	NC	NC	GND	GND	NC	NC
26	NC	NC	LA21_N	GND	NC	NC	LA26_P	LA27_P	NC	NC
27	NC	NC	GND	LA25_P	NC	NC	LA26_N	LA27_N	NC	NC
28	NC	NC	LA24_P	LA25_N	NC	NC	GND	GND	NC	NC
29	NC	NC	LA24_N	GND	NC	NC	TCK	GND	NC	NC
30	NC	NC	GND	LA29_P	NC	NC	TDI	SCL	NC	NC
31	NC	NC	LA28_P	LA29_N	NC	NC	TDO	SDA	NC	NC
32	NC	NC	LA28_N	GND	NC	NC	3P3VAUX	GND	NC	NC
33	NC	NC	GND	LA31_P	NC	NC	TMS	GND	NC	NC
34	NC	NC	LA30_P	LA31_N	NC	NC	TRST_L	GA0	NC	NC
35	NC	NC	LA30_N	GND	NC	NC	GA1	12P0V	NC	NC
36	NC	NC	GND	LA33_P	NC	NC	3P3V	GND	NC	NC
37	NC	NC	LA32_P	LA33_N	NC	NC	GND	12P0V	NC	NC
38	NC	NC	LA32_N	GND	NC	NC	3P3V	GND	NC	NC
39	NC	NC	GND	VADJ	NC	NC	GND	3P3V	NC	NC
40	NC	NC	VADJ	GND	NC	NC	3P3V	GND	NC	NC

X18406-113016

Figure B-1: **FMC LPC Connector Pinout**

Figure B-2 shows the pinout of the FMC high pin count (HPC) connector defined by the VITA 57.1 FMC specification. For a description of how the KCU105 evaluation board implements the FMC specification, see FPGA Mezzanine Card Interface and FMC HPC Connector J22.

	К	J	Н	G	F	E	D	С	В	A
1	VREF_B_M2C	GND	VREF_A_M2C	GND	PG_M2C	GND	PG_C2M	GND	RES1	GND
2	GND	CLK3_M2C_P	PRSNT_M2C_L	CLK1_M2C_P	GND	HA01_P_CC	GND	DP0_C2M_P	GND	DP1_M2C_P
3	GND	CLK3_M2C_N	GND	CLK1_M2C_N	GND	HA01_N_CC	GND	DP0_C2M_N	GND	DP1_M2C_N
4	CLK2_M2C_P	GND	CLK0_M2C_P	GND	HA00_P_CC	GND	GBTCLK0_M2C_P	GND	DP9_M2C_P	GND
5	CLK2_M2C_N	GND	CLK0_M2C_N	GND	HA00_N_CC	GND	GBTCLK0_M2C_N	GND	DP9_M2C_N	GND
6	GND	HA03_P	GND	LA00_P_CC	GND	HA05_P	GND	DP0_M2C_P	GND	DP2_M2C_P
7	HA02_P	HA03_N	LA02_P	LA00_N_CC	HA04_P	HA05_N	GND	DP0_M2C_N	GND	DP2_M2C_N
8	HA02_N	GND	LA02_N	GND	HA04_N	GND	LA01_P_CC	GND	DP8_M2C_P	GND
9	GND	HA07_P	GND	LA03_P	GND	HA09_P	LA01_N_CC	GND	DP8_M2C_N	GND
10	HA06_P	HA07_N	LA04_P	LA03_N	HA08_P	HA09_N	GND	LA06_P	GND	DP3_M2C_P
11	HA06_N	GND	LA04_N	GND	HA08_N	GND	LA05_P	LA06_N	GND	DP3_M2C_N
12	GND	HA11_P	GND	LA08_P	GND	HA13_P	LA05_N	GND	DP7_M2C_P	GND
13	HA10_P	HA11_N	LA07_P	LA08_N	HA12_P	HA13_N	GND	GND	DP7_M2C_N	GND
14	HA10_N	GND	LA07_N	GND	HA12_N	GND	LA09_P	LA10_P	GND	DP4_M2C_P
15	GND	HA14 P	GND	LA12 P	GND	HA16 P	LA09 N	LA10 N	GND	DP4 M2C N
16	HA17_P_CC	HA14 N	LA11_P	LA12_N	HA15_P	HA16_N	GND	GND	DP6_M2C_P	GND
17	HA17 N CC	GND	LA11 N	GND	HA15 N	GND	LA13 P	GND	DP6 M2C N	GND
18	GND	HA18 P	GND	LA16 P	GND	HA20 P	LA13 N	LA14 P	GND	DP5 M2C P
19	HA21 P	HA18 N	LA15 P	LA16 N	HA19 P	HA20 N	GND	LA14 N	GND	DP5 M2C N
20	HA21 N	GND	LA15 N	GND	HA19 N	GND	LA17 P CC	GND	GBTCLK1 M2C P	GND
21	GND	HA22 P	GND	LA20 P	GND	HB03 P	LA17 N CC	GND	GBTCLK1 M2C N	GND
22	HA23 P	HA22 N	LA19 P	LA20 N	HB02 P	HB03 N	GND	LA18 P CC	GND	DP1 C2M P
23	HA23_N	GND	LA19_N	GND	HB02_N	GND	LA23_P	LA18_N_CC	GND	DP1_C2M_N
24	GND	HB01 P	GND	LA22 P	GND	HB05 P	LA23 N	GND	DP9 C2M P	GND
25	HB00 P CC	HB01 N	LA21 P	LA22 N	HB04 P	HB05 N	GND	GND	DP9 C2M N	GND
26	HB00_N_CC	GND	LA21_N	GND	HB04_N	GND	LA26_P	LA27_P	GND	DP2_C2M_P
27	GND	HB07 P	GND	LA25 P	GND	HB09 P	LA26 N	LA27 N	GND	DP2 C2M N
28	HB06_P_CC	HB07_N	LA24_P	LA25_N	HB08_P	HB09_N	GND	GND	DP8_C2M_P	GND
29	HB06 N CC	GND	LA24 N	GND	HB08 N	GND	ТСК	GND	DP8 C2M N	GND
30	GND	HB11_P	GND	LA29_P	GND	HB13_P	TDI	SCL	GND	DP3_C2M_P
31	HB10 P	HB11 N	LA28 P	LA29 N	HB12 P	HB13 N	TDO	SDA	GND	DP3 C2M N
32	HB10 N	GND	LA28 N	GND	HB12 N	GND	3P3VAUX	GND	DP7 C2M P	GND
33	GND	HB15 P	GND	LA31 P	GND	HB19 P	TMS	GND	DP7 C2M N	GND
34	HB14 P	HB15 N	LA30 P	LA31 N	HB16 P	HB19 N	TRST L	GA0	GND	DP4 C2M P
35	HB14 N	GND	LA30_N	GND	HB16_N	GND	GA1	12P0V	GND	DP4_C2M_N
36	GND	HB18_P	GND	LA33_P	GND	HB21_P	3P3V	GND	DP6_C2M_P	GND
37	HB17_P_CC	HB18_N	LA32_P	LA33_N	HB20_P	HB21_N	GND	12P0V	DP6_C2M_N	GND
38	HB17_N_CC	GND	LA32_N	GND	HB20_N	GND	3P3V	GND	GND	DP5_C2M_P
39	GND	VIO_B_M2C	GND	VADJ	GND	VADJ	GND	3P3V	GND	DP5_C2M_N
40	VIO_B_M2C	GND	VADJ	GND	VADJ	GND	3P3V	GND	RESO	GND

X18407-113016

Fiaure	B-2:	FMC	HPC	Connector	Pinout

Appendix C

System Controller

Overview

The Xilinx system controller is an ease-of-use application that runs on a Zynq®-7000 SoC at power-up on all UltraScale[™] device evaluation boards. These select board features can be controlled and monitored:

- Programmable clocks
- Power system monitoring (PMBus)
- UltraScale FPGA system monitor (SYSMON)
- Adjustable FMC expansion interface voltage
- GPIO pushbuttons and configuration DIP switch
- UltraScale FPGA Configuration

On power-up, the system controller presents a menu-driven selection of actions invoked by running a terminal program over a UART (115200-8-N-1) connection through the USB-to-UART bridge interface (J4).

X18408-050818

Figure C-1: PC Host (Terminal Window) and UltraScale Evaluation Board

Access the system controller menu as follows:

- 1. Install the Silicon Labs CP2105GM dual USB-to-UART bridge driver by following the instructions in the *Silicon Labs CP210x USB-to-UART Installation Guide* (UG1033) [Ref 31].
- 2. The Tera Term terminal application installation is referenced in the driver installation instructions in step 1, which point to the *Tera Term Terminal Emulator Installation Guide* (UG1036) [Ref 32].
- 3. With the KCU105 evaluation board power turned off, install the USB cable supplied in the KCU105 evaluation board kit (standard type-A end to host computer, type Micro-B end to KCU105 evaluation board connector J4).
- 4. Turn on the KCU105 evaluation board. The PC recognizes that new hardware is connected, and runs the driver installation wizard to complete the installation of the CP2015GM bridge chip drivers. The system controller UART appears in the PC device manager ports (COM &LPT) list as the Silicon Labs Dual CP210x Enhanced COM Port (COMnn).
- 5. Open a Tera Term terminal window on the PC desktop. In the New connection dialog box, click the serial radio button, and then click the drop-down arrow to open the list of ports. Select the COM port with the Enhanced description. Click OK.
- 6. At the top of the Tera Term VT window, select **Setup > Serial port**. In the dialog box that appears, set baud rate to 115200, data to 8 bit, parity to none, stop to 1 bit, and flow control to none. Click OK.
- 7. Power cycle the KCU105 evaluation board. The Tera Term window displays the KCU105 evaluation board system controller main menu.

The main menu lists seven sub-menus that carry out selected actions.

```
KCU105 System Controller

Main Menu-

1. Set Programmable Clocks (see Clock Menu)
2. Get Power System (PMBus) Voltages (see PMBus Menu)
3. Get UltraScale FPGA System Monitor (SYSMON) Data (see SYSMON Menu)
4. Adjust FPGA Mezzanine Card (FMC) Settings (see FMC Menu)
5. Get GPIO Data (see GPIO Menu)
6. Get EEPROM Data (see EEPROM Menu)
7. Configure UltraScale FPGA (see CONFIG Menu)
Select an option
```


The menu system is shown in Figure C-2.

X18409-113016

Figure C-2: System Controller Menu System

Power-On and Reset

Prior to displaying the main menu, the system controller initializes the adjustable voltage (VADJ) on the FPGA FMC expansion port interface within the available choices of 1.8V, 1.5V, 1.2V, and 0.0V.

- If no cards are attached to the FMC ports, the VADJ voltage is set to 1.8V.
- When one FMC card is attached, its I2C EEPROM is read to find a VADJ voltage supported by both the KCU105 board and the FMC module within the available choices of 1.8V, 1.5V, 1.2V, and 0.0V.
- When two FMC cards are attached with differing VADJ requirements, VADJ is set to the lowest value compatible with the KCU105 board and the FMC modules, within the available choices of 1.8V, 1.5V, 1.2V, and 0.0V.

The VADJ voltage is set and then the main menu is displayed. The VADJ settings can be viewed by scrolling back through the terminal window output.

IMPORTANT: If an attached FMC card does not have its I2C EEPROM programmed, the firmware sets VADJ to 0.0V.

The VADJ voltage can be set manually with the FMC menu.

KCU105 On-board Clocks

The KCU105 board hosts two programmable clocks. One is the user programmable system clock (Silicon Labs Si570) that operates in the frequency range between 10 MHz and 810 MHz. The second KCU105 programmable clock source is the Silicon Labs Si5328B, which is typically used as a jitter attenuator for a recovered clock from a serial transceiver. However, the Si5328B can also be used as an independent clock source with a frequency range of 8 kHz to 808 MHz. In addition to the programmable clock sources, the UltraScale FPGA evaluation boards provide a 300 MHz fixed frequency system clock.

Clock Menu

The clock menu is used to set the frequency of the onboard programmable clock sources. At KCU105 board power-up, the onboard programmable clock sources generate their factory default frequencies until the system controller has booted and checked the onboard EEPROM to determine if a frequency value has previously been saved for either onboard clock source. Previously saved values are restored to the onboard clock sources, which then output these frequencies until they are reprogrammed to a different value, or the KCU105 board is turned off.

A KCU105 board power cycle (power off/power on) returns the clock sources to the factory default settings. On the UltraScale FPGA evaluation boards, the factory default for the Si570 is 156.250 MHz, and the factory default for the Si5328 is 0 Hz.

The programmable clock frequencies of the KCU105 board can be set and saved for later restoration. The saved frequencies are maintained in the KCU105 board onboard non-volatile I2C EEPROM. The clock menu is used to manually restore previously saved clock frequencies.

This section includes a description of the clock menu options, presenting arbitrary sample value entries and the system controller responses. The entry value commentary is shown in parentheses.

KCU105 System Controller
Clock MenuSet KCU105 Si570 User Clock Frequency
Set KCU105 Si5328 MGT Clock Frequency
Save KCU105 Clock Frequency to EEPROM
Restore KCU105 Clock Frequency from EEPROM
View KCU105 Saved Clocks in EEPROM
Set KCU105 Clock Restore Options
Read KCU105 Si570 User Clock Frequency
Read KCU105 Si5328 MGT Clock Frequency
Return to Main Menu
Select an option

Clock Menu Options

Option 1: Set KCU105 Si570 User Clock Frequency

```
Enter the Si570 frequency <10-810MHz>:
(enter a value between 10 and 810)
100
RFreq_Cal[0]=0x02,RFreq_Cal[1]=0xBC,RFreq_Cal[2]=0x00,RFreq_Cal[3]=0xE4,
RFreq_Cal[4]=0xED
Freq: 100.000000000 HS_DIV=5 N1=10 DC0=5000.0 RFREQ= 0x02BC00E4ED
```

(The returned values include configuration setting details.)

Option 2: Set KCU105 Si5328 MGT Clock Frequency

```
Enter the Si5328 frequency (0.008-808MHz):
```

200

IMPORTANT: Several seconds might elapse before the result is returned.

Freq:200.000000000 fosc=5600.000MHz f3=5.000KHz LBW=0.200KHz N1=28 N1_HS=7 NC1_LS=4 N2=1120000 N2_HS=4 N2_LS=280000 N31=40000 N32=22857

(The returned values include configuration setting details.)

Option 3: Save KCU105 Clock Frequency to EEPROM

KCU105 System Controller

– Save Menu –

- 1. Save KCU105 Si570 Frequency to EEPROM
- 2. Save KCU105 Si5328 Frequency to EEPROM
- 0. Return to Clock Menu

Select an option

Save KCU105 Si570 Frequency to EEPROM

Saving Si570 Frequency = 200.000 to EEPROM

Save KCU105 Si5328 Frequency to EEPROM

Saving Si5328 Frequency = 150.000 to EEPROM

Return to Clock Menu

This option returns to the menu level above.

Option 4: Restore KCU105 Clock Frequency from EEPROM

If either clock device is reprogrammed and the frequency value is not saved, the previously saved frequency can be restored to the clock source.

E XILINX_®

Restore KCU105 Si570 Frequency from EEPROM

Freq:200.000000000 HS_DIV=7 N1=4 DCO=5600.0 RFREQ=0x030FFF204B
Restored Si570 Frequency = 200.000 from EEPROM

(The returned values include configuration setting details.)

Restore KCU105 Si5328 Frequency from EEPROM

```
Restoring Si5328 Frequency = 150.000 from EEPROM
Freq:150.0000000000 fosc=5400.000MHz f3=15.000KHz LBW=0.600KHz N1=36 N1_HS=6
NC1_LS=6 N2=360000 N2_HS=4 N2_LS=90000 N31=10000 N32=7619
```

(The returned values include configuration setting details.)

Return to Clock Menu

This option returns to the menu level above.

Option 5: View KCU105 Saved Clocks in EEPROM

This option is for verifying that the recently programmed values are in EEPROM.

Saved Clocks in EEPROM Si570 User Clock: 200.0000000 MHz Si5328 MGT Clock: 150.00000000 MHz

Option 6: View KCU105 Clocks Restore Options

٠

• Enable KCU105 Si570 Automatic Restore at Power-Up Reset

There is no menu response to selecting this option. To verify that the enabling function occurred, select option 1 again.

• Enable KCU105 Si5328 Automatic Restore at Power-Up Reset

There is no menu response to selecting this option. To verify that the enabling function occurred, select option 1 again.

• View KCU105 Clock Restore Options

```
Clock Restore Options:
Si570 Automatic Restore at Power-Up Reset = ENABLED
Si5328 Automatic Restore at Power-Up Reset = ENABLED
```

• Return to Clock Menu

This option returns to the menu level above.

Option 7: Read KCU105 Si570 User Clock Frequency

This option displays the current frequency setting of the Si570.

Si570 Current Frequency = 1.562500E+02 MHz

Option 8: Read KCU105 Si5328 MGT Clock Frequency

This option displays the current frequency setting of the Si5328.

Si5328 CKOUT1 Current Frequency = 2.000000E+02 MHz Si5328 CKOUT1 Current Frequency = 2.000000E+02 MHz

Return to Main Menu

This option returns to the menu level above.

E XILINX_®

PMBus Menu

The PMBus is an I2C bus that is used to read the voltage settings of the nine KCU105 power rails controlled by the Maxim power system. Through the PMBus menu these power rails can be read once or scanned continuously until stopped by a key press. Table C-1 lists the voltage rails accessible through the system controller's interface to the Maxim PMBus.

Maxim Power Supply Rail	I2C Address	Nominal Voltage
VCCINT	0x0A	0.95V
VCCBRAM	0x0F	0.95V
VCCAUX and VCCAUX_IO	0x0B	1.80V
VCC1V8	0x11	1.80V
VADJ_1V8	0x12	1.80V
VCC1V2	0 x14	1.20V
MGTAVCC	0x72	1.00V
MGTAVTT	0 x 73	1.20V
UTIL_3V3	0x1B	3.30V

Table C-1: Maxim Power Supply Rail

PMBus Menu Options

KCU105 System Controller

- PMBus Menu-
- 1. Get PMBus Voltages
- 2. Continuous Scan PMBUS Voltages
- 3. Get VCCINT Voltage
- 4. Get VCCAUX Voltage
- 5. Get VCCBRAM Voltage
- 6. Get VCC1V8 Voltage
- 7. Get VADJ1V8 Voltage
- 8. Get VCC1V2 Voltage
- 9. Get MGTAVCC Voltage
- A. Get MGTAVTT Voltage
- B. Get UTIL3V3 Voltage
- 0. Return to Main Menu

Select an option

Option 1: Get PMBus Voltages

VCCINT	=	0.950	v
VCCAUX	=	1.800	v


```
VCCBRAM = 0.950 V
VCC1V8 = 1.800 V
VADJ1V8 = 1.800 V
VCC1V2 = 1.200 V
MGTAVCC = 1.000 V
MGTAVTT = 1.200 V
UTIL3V3 = 3.297 V
```

Option 2: Continuous Scan PMBUS Voltages

The list of voltages shown in option 1 is displayed and updated about once per second. Pressing any key re-displays the PMBus menu.

Option 3: Get VCCINT Voltage

VCCINT = 0.950 V (one-time snapshot of the VCCINT voltage) Unscaled Hex: MSB = 0x0F, LSB = 0x34

(The returned values include configuration setting details.)

Option 4: Get VCCAUX Voltage

VCCAUX = 1.800 V Unscaled Hex: MSB = 0x1C, LSB = 0xCC

(The returned values include configuration setting details.)

Option 5: Get VCCBRAM Voltage

VCCBRAM = 0.950 V Unscaled Hex: MSB = 0x0F, LSB = 0x33

(The returned values include configuration setting details.)

Option 6: Get VCC1V8 Voltage

VCC1V8 = 1.800 V Unscaled Hex: MSB = 0x1C, LSB = 0xCC

(The returned values include configuration setting details.)

Option 7: Get VADJ1V8 Voltage

```
VADJ1V8 = 1.800 V
Unscaled Hex: MSB = 0x1C, LSB = 0xCB
```

(The returned values include configuration setting details.)

www.xilinx.com

E XILINX_®

Option 8: Get VCC1V2 Voltage

VCC1V2 = 1.200 V Unscaled Hex: MSB = 0x13, LSB = 0x33 (The returned values include configuration setting details.)

Option 9: Get MGTAVCC Voltage

MGTAVCC = 1.000 V Unscaled Hex: MSB = 0x10, LSB = 0x00

(The returned values include configuration setting details.)

Option A: Get MGTAVTT Voltage

MGTAVTT = 1.200 V Unscaled Hex: MSB = 0x13, LSB = 0x32

(The returned values include configuration setting details.)

Option B: Get UTIL3V3 Voltage

UTIL3V3 = 3.299 V Unscaled Hex: MSB = 0x34, LSB = 0xC7

(The returned values include configuration setting details.)

Option 0: Return to Main Menu

This option returns to the menu level above.

SYSMON Menu

The Kintex UltraScale FPGA on the KCU105 contains a 200 KSPS analog-to-digital converter known as the system monitor (SYSMON), which is described in *UltraScale Architecture System Monitor User Guide* (UG580) [Ref 30]. Measurements made internal to the UltraScale FPGA are accomplished by the SYSMON block for VCCINT, VCCBRAM, and VCCAUX. In conjunction with an onboard analog multiplexer (Analog Devices ADG707) and inline Kelvin sense resistors, the UltraScale SYSMON ADC measures the current on the eight rails listed in Table C-2.

SYSMON Monitored Power Rail	Nominal Voltage	Maximum Rail Current
VCCINT	0.95V	40A
VCCAUX and VCCAUX_IO	1.80V	5A
VCCBRAM	0.95V	5A
VCC1V8	1.80V	2A
VADJ_1V8	1.80V	10A
VCC1V2	1.20V	3A
MGTAVCC	1.00V	5A
MGTAVTT	1.20V	5A

Table C-2: SYSMON Monitored Power Rail

The system controller reads and displays SYSMON based measurements prior to configuring the UltraScale FPGA. Bank 66 of the Kintex UltraScale device is the default SYSMON bank and is ready to monitor the SYSMON auxiliary channels at power-up. Auxiliary channels VAUX0, VAUX2, and VAUX8 are used to monitor MGTVCC, the ADG707 analog MUX, and MGTAVTT, respectively. At power-up, jumpers J80 and J81 connect SYSMON's VP and VN pins to ground, setting the default SYSMON I2C address to 0x32. This power-up default I2C address is used by the system controller to access SYSMON data.

If the KCU105 system controller SYSMON menu is used after the UltraScale FPGA has been configured with a design, the UltraScale resident design must contain logic to enable I2C access to the UltraScale system monitor and the internal (VCCINT, VCCBRAM, VCCAUX) and auxiliary channels (VAUX0, VAUX2, VAUX8). Designs that access I2C devices through the TCA9548 I2C switch must also deassert the TCA9548 reset pin from logic within the UltraScale FPGA. There is an external pull-up on this reset signal. See *UltraScale Architecture System Monitor User Guide* (UG580) [Ref 30] for more details.

Through the SYSMON menu, single readings or a continuous scan of the voltages, currents, power, and temperature are available. The minimum and maximum current usage for the monitored rails are also displayed and are reset each time the SYSMON menu is entered.

SYSMON Menu Options

KCU105 System Controller

- SYSMON Menu-
- 1. Get Temperature
- 2. Get Internal Channel Voltages
- 3. Get Auxiliary Channel Voltages
- 4. Get Power
- 5. Continuous Scan SYSMON Measurements
- 0. Return to Main Menu
- Select an option

Option 1: Get Temperature

Temperature = 33.31 C Min = 30.65 C Max = 33.54 C

Option 2: Get Internal Channel Voltages

Option 3: Get Auxiliary Channel Voltages

VAUX_0 = 0.503 V VAUX_2 = 0.005 V VAUX 8 = 0.603 V

Option 4: Get Power

```
VCCINT POWER = 0.147 W
VCCBRAM POWER = 0.039 W
VCCAUX POWER = 0.419 W
VCC1V8 POWER = 0.015 W
VADJ1V8 POWER = 0.089 W
VCC1V2 POWER = 0.068 W
MGTAVCC POWER = 0.078 W
```

Option 5: Continuous Scan SYSMON Measurements

Press Any Key to Return to SYSMON Menu Temperature = 33.03 C Min = 30.51 C Max = 33.81 C MIN MAX Power Voltage Current Current Current VCCINT: 0.30 W 0.95 V 0.31 A 0.15 A 0.37 A VCCAUX: 0.41 W 1.80 V 0.22 A 0.24 A 0.23 A VCCBRAM: 0.03 W 0.95 V 0.03 A 0.03 A 0.05 A VCC1V8: 0.02 W 1.80 V 0.01 A 0.01 A 0.01 A VADJ_1V8: 0.06 W 1.80 V 0.03 A 0.02 A 0.06 A

VCC1V2:	0.07 W	1.20 V	0.06 A	0.05 A	0.06 A
MGTAVCC:	0.08 W	1.00 V	0.08 A	0.07 A	0.09 A
MGTAVTT:	0.03 W	1.20 V	0.03 A	0.02 A	0.03 A

Option 0: Return to Main Menu

This option returns to the menu level above.

FMC Menu

The KCU105 board provides two FMC ANSI/VITA 57.1 expansion interfaces that use a common VADJ voltage supply. At power-up, prior to displaying the main menu, the system controller initializes the VADJ on the FMC expansion port interface. If no cards are attached to the FMC ports, the VADJ voltage is set to 1.8V. Otherwise, the FMC module's I2C EEPROM is read to find a VADJ voltage supported by both the KCU105 board and the FMC module within the available choices of 1.8V, 1.5V, 1.2V, and 0.0V. The VADJ voltage is set and then the main menu is displayed. Users can scroll back through their terminal window output and view the settings determined for VADJ. If an attached FMC card does not have its I2C EEPROM programmed, the VADJ voltage can be set manually with the FMC menu.

All FMC mezzanine cards must host an I2C EEPROM, powered from the always on 3P3VAUX rail, which can be read out through the FMC menu. A raw hexadecimal display and a formatted version of the FMC EEPROM data are provided through the FMC menu. The VITA 57.1 standard identifies the data fields of the intelligent platform management interface (IPMI) specification used for the FMC EEPROM. The KCU105 board system controller utilizes the board information area and the multi-record DC load record to query the FMC module for its VADJ requirements. See the VITA FMC Marketing Alliance website [Ref 28] for details on these standards. The KCU105 board system controller is aware of the programmable clock resources on these FMCs:

- FMC XM101 LVDS QSE card
- FMC XM104 MGT serial connectivity card
- FMC XM105 debug card
- FMC XM107 loopback card

These mezzanine cards can be attached to the J22 HPC or J2 LPC expansion ports on the KCU105 board. Table C-3 shows the accessible clock resources on each FMC module.

Table C-3:	FMC Module/Board
------------	------------------

Xilinx FMC Module/Board	Clock Source #1	Clock Source #2
XM101	Si570	Si570
XM104	Si570	Si5638
XM105	Si570	n/a
XM107	Si570	n/a
KCU105 Base Board	Si570	Si5328

FMC Menu Options

KCU105 System Controller

- FMC Menu-
- 1. Set FMC XMxxx CLOCKS
- 2. Read FMC HPC IIC EEPROM
- 3. Read FMC LPC IIC EEPROM
- 4. Set FMC VADJ to 1.8V
- 5. Set FMC VADJ to 1.5V
- 6. Set FMC VADJ to 1.2V
- 7. Set FMC VADJ to 0.0V
- 0. Return to Main Menu
- Select an option

Identify the FMC module types plugged on to the KCU105 board, and which FMC connector is associated - the left J22 HPC or right J2 LPC. The examples shown in this section reflect the particular FMC installed at the KCU105 board J22 HPC FMC connector.
E XILINX_®

Option 1: Set FMC XMxxx CLOCKS

```
KCU105 System Controller

FMC Clock Menu -

1. Set FMC XM101 Clocks
2. Set FMC XM104 Clocks
3. Set FMC XM105 Clocks
4. Set FMC XM107 Clocks
0. Return to FMC Menu
Select an option

Set FMC XM101 Clocks
```

KCU105 System Controller

```
- XM101 Menu -
```

1. Set HPC Si570_0 Frequency

- 2. Set HPC Si570_1 Frequency
- 3. Set LPC Si570_0 Frequency
- 4. Set LPC Si570_1 Frequency
- 0. Return to FMC Clock Menu

Select an option

• Set HPC Si570_0 Frequency

FMC HPC card present

(The returned values include configuration setting details.)

```
board_area_offset = 008
board_area_format_version = 0x01
board_area_length = 056
board_mfg_hdr_offset = 014
board_mfg_length = 010
ReadBuffer index = 026
ReadBuffer[i] = 58
ReadBuffer[i+1] = 4D
ReadBuffer[i+2] = 31
ReadBuffer[i+3] = 30
ReadBuffer[i+4] = 31
Enter the Si570 frequency (10-810MHz):
50
Freq:50.0000000000 HS_DIV=7 N1=14 DC0=4900.0 RFREQ=0x02AE100C27
```

(The returned values include configuration setting details.)

• Set HPC Si570_1 Frequency

FMC HPC card present

(The returned values include configuration setting details.)

```
board_area_offset = 008
board_area_format_version = 0x01
board_area_length = 056
board_mfg_hdr_offset = 014
board_mfg_length = 010
ReadBuffer index = 026
ReadBuffer[i] = 58
ReadBuffer[i+1] = 4D
ReadBuffer[i+2] = 31
ReadBuffer[i+3] = 30
ReadBuffer[i+4] = 31
Enter the Si570 frequency (10-810MHz):
100
Freq:100.000000000 HS_DIV=5 N1=10 DC0=5000.0 RFREQ=0x02BC48225C
```

(The returned values include configuration setting details.)

• Return to FMC Clock Menu

This option returns to the menu level above.

Set FMC XM104 Clocks

KCU105 System Controller

- XM104 Menu -

- 1. Set HPC Si570 Frequency
- 2. Set HPC Si5368 Frequency
- 3. Set LPC Si570 Frequency
- 4. Set LPC Si5368 Frequency
- 0. Return to FMC Clock Menu

Select an option

• Set HPC Si570 Frequency

FMC HPC card present

(The returned values include configuration setting details.)

```
board_area_offset = 008
board_area_format_version = 0x01
board_area_length = 056
board_mfg_hdr_offset = 014
```



```
board_mfg_length = 010
ReadBuffer index = 026
ReadBuffer[i] = 58
ReadBuffer[i+1] = 4D
ReadBuffer[i+2] = 31
ReadBuffer[i+3] = 30
ReadBuffer[i+4] = 34
Enter the Si570 frequency (10-810MHz):
125
Freq:125.0000000000 HS_DIV=4 N1=10 DC0=5000.0 RFREQ=0x02BBEE4A63
```

(The returned values include configuration setting details.)

• Set HPC Si5368 Frequency

FMC HPC card present

(The returned values include configuration setting details.)

```
board_area_offset = 008
board_area_format_version = 0x01
board_area_length = 056
board_mfg_hdr_offset = 014
board_mfg_length = 010
ReadBuffer index = 026
ReadBuffer[i] = 58
ReadBuffer[i+1] = 4D
ReadBuffer[i+2] = 31
ReadBuffer[i+3] = 30
ReadBuffer[i+4] = 34
Enter the Si5368 output frequency (0.002-808MHz):
205
```


IMPORTANT: Several seconds may elapse before the result is returned.

Freq:205.0000000000 fosc=4920.000MHz f3= 5.000KHz LBW=0.200KHz N1=24 N1_HS=6 NC1_LS=4 N2=984000 N2_HS=4 N2_LS=246000 N31=41000 N32=22857

(The returned values include configuration setting details.)

Return to FMC Clock Menu

Set FMC XM105 Clocks

KCU105 System Controller

- XM105 Menu -

- 1. Set HPC Si570 Frequency
- 2. Set LPC Si570 Frequency
- 0. Return to FMC Clock Menu

Select an option

Set HPC Si570 Frequency

FMC HPC card present

(The returned values include configuration setting details.)

```
board_area_offset = 008
board_area_format_version = 0x01
board_area_length = 056
board_mfg_hdr_offset = 014
board_mfg_length = 010
ReadBuffer index = 026
ReadBuffer[i] = 58
ReadBuffer[i+1] = 4D
ReadBuffer[i+2] = 31
ReadBuffer[i+3] = 30
ReadBuffer[i+4] = 35
Enter the Si570 frequency (10-810MHz):
50
Freq:50.000000000 HS_DIV=7 N1=14 DC0=4900.0 RFREQ=0x02AE1505E5
```

(The returned values include configuration setting details.)

• Return to FMC Clock Menu

Set FMC XM107 Clocks

KCU105 System Controller

- XM107 Menu -

- 1. Set HPC Si570 Frequency
- 2. Set LPC Si570 Frequency
- 0. Return to FMC Clock Menu

Select an option

Set HPC Si570 Frequency

FMC HPC card present

(The returned values include configuration setting details.)

```
board_area_offset = 008
board_area_format_version = 0x01
board_area_length = 056
board_mfg_hdr_offset = 014
board_mfg_length = 010
ReadBuffer index = 026
ReadBuffer[i] = 58
ReadBuffer[i+1] = 4D
ReadBuffer[i+2] = 31
ReadBuffer[i+3] = 30
ReadBuffer[i+4] = 37
Enter the Si570 frequency (10-810MHz):
230
Freq:230.0000000000 HS_DIV=11 N1=2 DC0=5060.0 RFREQ=0x02C44FF69F
```

(The returned values include configuration setting details.)

Return to FMC Clock Menu

This option returns to the menu level above.

Return to FMC Menu

This option returns to the menu level above.

Option 2: Read FMC HPC IIC EEPROM

FMC HPC card present

The I2C EEPROM data displayed is too long to include in this appendix. If the FMC I2C EEPROM has been programmed, several data groupings are displayed:

ReadBuffer[000] - ReadBuffer[255] displays various value contents

Common Header Board Area Info MultiRecord Area - OEM FMC Record - DC Load Records (three groups) - DC Output Records (three groups) If the FMC IIC EEPROM has not been programmed, ReadBuffer[000] - ReadBuffer[255] displays buffer contents = 0xFF and the Common Header reports "Invalid Format Version FF" At the end of the displayed data, the system controller again displays the FMC Menu.

Option 3: Read FMC LPC IIC EEPROM

This option displays the FMC I2C EEPROM data, if programmed, in a similar fashion as option 1.

Options 4-7: Set FMC VADJ Voltage

Each of the following options sets the VADJ_1V8 rail to the voltage indicated. The result of choosing an option here may be viewed by returning to the Main Menu, choosing the SYSMON Menu, and selecting option 5: Continuous Scan SYSMON Measurements.

- Option 4: Set FMC VADJ to 1.8V
- Option 5: Set FMC VADJ to 1.5V
- Option 6: Set FMC VADJ to 1.2V
- Option 7: Set FMC VADJ to 0.0V

The result of choosing an option here can be viewed by returning to the Main Menu, choosing the SYSMON Menu, and selecting option 5: Continuous Scan SYSMON Measurements (the results after choosing option 5.Set FMC VADJ to 1.5V are shown here:

```
Press Any Key to Return to SYSMON Menu
```

Temperature = 33.29 C Min = 28.15 C Max = 33.96 C

				MIN	MAX
	Power	Voltage	Current	Current	Current
VCCINT:	0.35 W	0.95 V	0.37 A	0.17 A	0.42 A
VCCAUX:	0.42 W	1.80 V	0.23 A	0.22 A	0.24 A
VCCBRAM:	0.05 W	0.95 V	0.05 A	0.03 A	0.05 A
VCC1V8:	0.02 W	1.80 V	0.01 A	0.01 A	0.01 A
VADJ_1V8:	0.06 W	1.50 V	0.04 A	0.01 A	0.06 A
VCC1V2:	0.06 W	1.20 V	0.05 A	0.05 A	0.06 A
MGTAVCC:	0.07 W	1.00 V	0.07 A	0.07 A	0.09 A
MGTAVTT :	0.03 W	1.20 V	0.02 A	0.02 A	0.03 A

Option 0: Return to Main Menu

This option returns to the menu level above.

GPIO Menu

The system controller continuously scans specific user activated inputs and several onboard status signals. Positions 1 – 4 (M3, M2, M1, M0) of MODE DIP switch SW15 are monitored, as well as the five directional user pushbuttons (N, S, E, W, C). The 4-position GPIO DIP switch SW12 is not monitored. The monitored onboard status signals include: FMC1_PRSNT, FMC2_PRSNT, PMBUS_CABLE_B, FPGA_IIC_BUSY, and PMBUS_ALERT.

GPIO Menu Options

KCU105 System Controller

- GPIO Menu-

1. Get GPIO PL Data

2. Continuous Scan GPIO Readings

0. Return to Main Menu

Select an option

Option 1: Get GPIO PL Data

FMC1_PRSNT = NO FMC2_PRSNT = YES PMBUS_CABLE_B = NO FPGA_IIC_BUSY = NO PMBUS_ALERT = NO

Option 2: Continuous Scan GPIO Readings

Press any Key to Return to GPIO Menu

When any of the mode DIP SW15 poles 1-4 are changed, or a pushbutton pressed, the value beneath the switch position changes accordingly (showing a 0 or a 1).

www.xilinx.com


```
PMBUS_CABLE_B = NO
FPGA_IIC_BUSY = NO
PMBUS_ALERT = NO
```

Option 0: Return to Main Menu

This option returns to the menu level above.

EEPROM Menu

The system controller EEPROM menu is used to read the contents of the KCU105 on-board EEPROM.

EEPROM Menu Options

```
KCU105 System Controller
   - EEPROM Menu -
1. Read Board EEPROM Data
0. Return to Main Menu
Select an option
```

Option 1: Read Board EEPROM Data

EEPROM DATA Board Name:KCU105 Board Revision:1.0 Serial Number:RTK13497603 MAC ID:11:22:33:AA:BB:CC

Option 0: Return to Main Menu

E XILINX_®

CONFIG Menu

The system controller CONFIG menu is used to configure the KCU105 UltraScale FPGA from a micro-SD card. One of sixteen bitstreams can be selected for use by the configuration engine by setting a binary encoded value on the system controller mode DIP switch SW15 positions 1 - 4 (M3, M2, M1, M0) prior to board power up. See FPGA Configuration. Once the board is powered up or when the system controller POR pushbutton (SW14) is pressed, the system controller CONFIG Menu can also be used to select the micro-SD card bitstream.

CONFIG Menu Options

KCU105 System Controller

- CONFIG Menu1. Configure UltraScale FPGA from microSD Card
 0. Return to Main Menu
- Select an option

Option 1: Configure UltraScale FPGA from microSD Card

```
Enter a Bitstream number (0-15):

0

Info: Xilinx.sys opened

Info Configuration definition file "kcu105d/set0/config.def" opened

Info: Clock divider is set to 2

Info: Total 1 device(s) in the chain

Info: Total 1 configuration target(s) in the chain

Info: Target device ID code: 0x3822093

Info: Target device DNA code: 0xD4B3A5820E041

Info: Configuring target(s)...

Info: Bitfile "kcu105d/set0/ipi_app.bit" opened

...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

Info: Target Init_b is high
```

Configuration completed successfully!

Option 0: Return to Main Menu

UltraScale FPGA User Design Considerations

The KCU105 system controller provides simplified access to the programmable features on the KCU105 over an I2C interface. This I2C interface is shared with the UltraScale FPGA and can be driven by an I2C master within a design.

Access to the I2C devices from either the UltraScale FPGA or the system controller takes place over the same shared I2C topology. All I2C accesses go through either the TCA9548 8-port I2C switch or the PCA9544 4-port I2C switch. Designs must deassert the TCA9548 reset (signal IIC_MUX_RESET_B) to access any I2C device attached to one of its eight ports. The PCA9544 4-port I2C switch does not have a reset function.

IMPORTANT: The TCA9548 U28 RESET_B pin 3 is connected to FPGA U1 bank 64 pin AP10 via level-shifter U44. The PCA9544 U80 does not have a reset pin. FPGA pin AP10 LVCMOS18 net IIC_MUX_RESET_B_LS must be driven High to enable I2C bus transactions with the devices connected to U28.

Designs that access the SYSMON block over I2C must enable the SYSMON I2C interface and the desired SYSMON channels. See *UltraScale Architecture System Monitor User Guide* (UG580) [Ref 30] for designing with the SYSMON block.

Appendix D

Xilinx Design Constraints

Overview

The Xilinx design constraints (XDC) file template for the KCU105 board provides for designs targeting the KCU105 evaluation board. Net names correlate with net names on the latest KCU105 evaluation board schematic. Users must identify the appropriate pins and replace the net names with net names in the user RTL. See the *Vivado Design Suite User Guide: Using Constraints* (UG903) [Ref 33] for more information.

The FMC connectors J2 (LPC) and J22 (HPC) are connected to 1.8V VADJ banks. Because different FMC cards implement different circuitry, the FMC bank I/O standards must be uniquely defined by each customer.

IMPORTANT: The XDC file can be accessed on the KCU105 Evaluation Kit website.

Appendix E

Board Setup

Installing the KCU105 Board in a PC Chassis

Installation of the KCU105 board inside a computer chassis is required when developing or testing PCI Express® functionality.

When the KCU105 board is used inside a computer chassis (that is, plugged in to the PCIe® slot), power is provided from the ATX power supply 4-pin peripheral connector through the ATX adapter cable (Figure E-1) to J22 on the KCU105 board. The Xilinx part number for this cable is 2600304. See [Ref 26] for ordering information.

Figure E-1: ATX Power Supply Adapter Cable

To install the KCU105 board in a PC chassis:

- 1. On the KCU105 board, remove the six screws retaining the six rubber feet with their standoffs, and the PCIe bracket. Reinstall the PCIe bracket using two of the previously removed screws.
- 2. Power down the host computer and remove the power cord from the PC.
- 3. Open the PC chassis following the instructions provided with the PC.
- 4. Select a vacant PCIe expansion slot and remove the expansion cover (at the back of the chassis) by removing the screws on the top and bottom of the cover.
- 5. Plug the KCU105 board into the PCIe connector at this slot.

6. Install the top mounting bracket screw into the PC expansion cover retainer bracket to secure the KCU105 board in its slot.

IMPORTANT: The KCU105 board is taller than standard PCIe cards. Ensure that the height of the card is free of obstructions.

- 7. Connect the ATX power supply to the KCU105 board using the ATX power supply adapter cable as shown in Figure E-1.
 - a. Plug the 6-pin 2 x 3 Molex connector on the adapter cable into J15 on the KCU105 board.
 - b. Plug the 4-pin 1 x 4 peripheral power connector from the ATX power supply into the 4-pin adapter cable connector.

CAUTION! Do NOT plug a PC ATX power supply 6-pin connector into J15 on the KCU105 evaluation board. The ATX 6-pin connector has a different pin out than J15. Connecting an ATX 6-pin connector into J15 damages the KCU105 evaluation board and voids the board warranty.

8. Slide the KCU105 board power switch SW1 to the ON position. The PC can now be powered on.

Appendix F

Board Specifications

Dimensions

Height: 5.5 inch (14.0 cm)

Thickness (±5%): 0.062 inch (0.1575 cm)

Length: 10.5 inch (26.7 cm)

IMPORTANT: The KCU105 board height exceeds the standard 4.376 inch (11.15 cm) height of a PCI Express[®] card.

Environmental

Temperature

Operating: 0°C to +45°C

Storage: -25°C to +60°C

Humidity

10% to 90% non-condensing

Operating Voltage

+12 V_{DC}

Appendix G

Regulatory and Compliance Information

Overview

This product is designed and tested to conform to the European Union directives and standards described in this section.

Refer to the KCU105 board Master Answer Record concerning the CE requirements for the PC Test Environment:

KCU105 Evaluation Kit - Master Answer Record (AR 63175)

The Kintex UltraScale KCU105 Declaration of Conformity is online.

CE Directives

2006/95/EC, Low Voltage Directive (LVD)

2004/108/EC, Electromagnetic Compatibility (EMC) Directive

CE Standards

EN standards are maintained by the European Committee for Electrotechnical Standardization (CENELEC). IEC standards are maintained by the International Electrotechnical Commission (IEC).

Electromagnetic Compatibility

EN 55022:2010, Information Technology Equipment Radio Disturbance Characteristics – Limits and Methods of Measurement

EN 55024:2010, Information Technology Equipment Immunity Characteristics – Limits and Methods of Measurement

www.xilinx.com

IMPORTANT: This is a Class A product. In a domestic environment, this product can cause radio interference, in which case the user might be required to take adequate measures.

Safety

IEC 60950-1:2005, Information technology equipment – Safety, Part 1: General requirements EN 60950-1:2006, Information technology equipment – Safety, Part 1: General requirements

Markings

In August of 2005, the European Union (EU) implemented the EU WEEE Directive 2002/96/EC and later the WEEE Recast Directive 2012/19/EU requiring Producers of electronic and electrical equipment (EEE) to manage and finance the collection, reuse, recycling and to appropriately treat WEEE that the Producer places on the EU market after August 13, 2005. The goal of this directive is to minimize the volume of electrical and electronic waste disposal and to encourage re-use and recycling at the end of life.

Xilinx has met its national obligations to the EU WEEE Directive by registering in those countries to which Xilinx is an importer. Xilinx has also elected to join WEEE Compliance Schemes in some countries to help manage customer returns at end-of-life.

If you have purchased Xilinx-branded electrical or electronic products in the EU and are intending to discard these products at the end of their useful life, please do not dispose of them with your other household or municipal waste. Xilinx has labeled its branded electronic products with the WEEE Symbol to alert our customers that products bearing this label should not be disposed of in a landfill or with municipal or household waste in the EU.

This product complies with Directive 2002/95/EC on the restriction of hazardous substances (RoHS) in electrical and electronic equipment.

This product complies with CE Directives 2006/95/EC, *Low Voltage Directive (LVD)* and 2004/108/EC, *Electromagnetic Compatibility (EMC) Directive*.

Appendix H

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado® IDE, select **Help > Documentation and Tutorials**.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

www.xilinx.com

References

The most up to date information related to the KCU105 board and its documentation is available on the following websites.

KCU105 Evaluation Kit

KCU105 Evaluation Kit – Master Answer Record 63175

For additional documents associated with Xilinx devices, design tools, intellectual property, boards, and kits see the Xilinx documentation website.

These documents and sites provide supplemental material useful with this guide:

- 1. *Kintex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics* (DS892)
- 2. UltraScale Architecture Configuration User Guide (UG570)
- 3. UltraScale Architecture PCB Design User Guide (UG583)
- 4. UltraScale Architecture-Based FPGAs Memory IP LogiCORE IP Product Guide (Vivado Design Suite) (PG150)
- 5. Micron Technology: www.micron.com

(MT40A256M16GE-083E, N25Q256A11ESF40F)

6. Fairchild Semiconductor: www.fairchildsemi.com

(FSSD07)

7. STMicroelectronics: www.st.com

(STG3220)

- 8. SanDisk Corporation: www.sandisk.com
- 9. SD Association: www.sdcard.org
- 10. Digilent: www.digilentinc.com

(USB JTAG Module, Pmod Peripheral Modules)

11. Silicon Labs: www.silabs.com

(Si5335A, Si570, Si53340, Si5328B)

- 12. UltraScale Architecture Clocking Resources User Guide (UG572)
- 13. UltraScale Architecture GTH Transceivers User Guide (UG576)
- 14. UltraScale FPGAs Transceivers Wizard Product Guide for Vivado Design Suite (PG182)

- 15. UltraScale Architecture Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156)
- 16. PCI Express[®] standard: www.pcisig.com/specifications
- 17. SFF-8431 specification: ftp.seagate.com/sff
- 18. Tri-Mode Ethernet MAC LogiCORE IP Product Guide (PG051)
- 19. Marvell Semiconductor: www.marvell.com

www.marvell.com/transceivers/alaska-gbe

(M88E1111)

- 20. LogiCORE IP AXI UART Lite v2.0 Product Guide (PG142)
- 21. Analog Devices: www.analog.com/en/index.html

(ADV7511KSTZ-P, ADP123, ADG707)

- 22. DisplayPort LogiCORE Product Guide (PG064)
- 23. Texas Instruments: www.ti.com

(TCA9548, PCA9544)

- 24. Zynq-7000 SoC Overview Data Sheet (DS190)
- 25. Zynq-7000 SoC Technical Reference Manual (UG585)
- 26. The Xilinx ATX cable part number 2600304 is manufactured by Sourcegate Technologies and is equivalent to the Sourcegate Technologies part number AZCBL-WH-11009. Sourcegate only manufactures the latest revision, which is currently A4. To order, contact Aries Ang, aries.ang@sourcegate.net, +65 6483 2878 for price and availability. This is a custom cable and cannot be ordered from the Sourcegate website.
- 27. Samtec, Inc.: www.samtec.com

(SEAF series connectors)

28. VITA FMC Marketing Alliance: www.vita.com

(FPGA Mezzanine Card (FMC) VITA 57.1 specification)

29. Maxim Integrated: http://www.maximintegrated.com/products/power/intune/ and http://www.maxim-ic.com/xilinx

(Maxim power system devices, InTune™ Digital Power Solutions)

InTune[™] Digital PowerTool Software Version 1.08.02 is available. You need to create a Maxim account and login before you can see the link to download the GUI.

30. UltraScale Architecture System Monitor User Guide (UG580)

- 31. Silicon Labs CP210x USB-to-UART Installation Guide (UG1033)
- 32. Tera Term Terminal Emulator Installation Guide (UG1036)
- 33. Vivado Design Suite User Guide: Using Constraints (UG903)

The following sources might also be useful with this guide:

- 34. Zynq-7000 SoC Packaging and Pinout Product Specification (UG865)
- 35. Zynq-7000 SoC PCB Design (UG933)
- 36. Xilinx, Inc: www.xilinx.com

(XCKU040-2FFVA1156E)

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2014–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.