

SPECIFICATION SHEET

SPECIFICATION SHEET NO.	P1208- UE227M010HEJTA
DATE	Dec.08, 2022
REVISION	AO
DESCRIPITION	SMD Aluminum Electrolytic Capacitors, Low ESR/Impedance type UE series, 2 pads Capacitance: 220μF, Tolerance ±20%, Voltage 10V, Case size: ØD6.3*L7.70mm, Impedance 0.85Ω, Ripple Current: 240mA Max. @+105°C, 100KHz Lifetime 2000Hours @105°C, Operating Temp. Range -55°C ~+105°C RoHS/RoHS III Compliant & Halogen Free Package in Tape/Reel, 1000pcs/Reel
CUSTOMER	
CUSTOMER PART NUMBER	
CROSS REF. PART NUMBER	
ORIGINAL PART NUMBER	Aillen CAE227M1AHUEEG7TRC
PART CODE	UE227M010HEJTA

VENDOR APPROVE			
Issued/Checked/Approved	So mpone Mandy Zu Zy Argo U	Ruby Zhang	Jack Jack Zhang
DATE: Dec.08, 2022			

CUSTOMER APPROVE
DATE:
12/11/2022

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

MAIN FEATURE

- SMD Aluminum Electrolytic Capacitors
- Wide Temperature
- Low Impedance & ESR
- Designed For SMD On PCB
- Applicable To Automatic Mounting Machine
- RoHS Complaint And Halogen Free

APPLICATION

• High-density Patch Assembly Electronic Circuit, Power Supply, Lighting, Etc.

PART CODE GUIDE

UE	227	м	010	н	E	J	т	Α
1	2	3	4	5	6	7	8	9

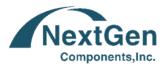
1) UE: SMD Aluminum Electrolytic Capacitors, Low ESR/Impedance type, UE series, 2 pads

2) 227: Rated Capacitance Code, 105: 1.0µF; 225: 2.2µF; 335: 3.3µF; 475: 4.7µF; 106: 10µF; 226: 22µF; 336: 33µF; 476: 47µF

686: 68μF ; 107: 100μF; 157: 150μF; **227: 220μF**; 337: 330μF ; 477: 470μF; 687: 680μF; 108: 1000μF; 158: 1500μF;

228: 2200µF; 338: 3300µF

- 3) M: Capacitance tolerance code, M: ±20%; K: ±10%; V: -10% ~ ±20%,
- 4) 010: Rated Voltage Code, 6V3: 6.3V; 010: 10V; 016:16V; 025: 25V; 035: 35V; 050: 50V; 063: 63V; 100: 100V
- 5) H: Environmental Requirements code, R: RoHS Complaint; H: RoHS III Complaint & Halogen Free
- 6) E: Aluminum Case size code, B: ØD3.0mm; C: ØD4.0mm; D: ØD5.0mm; E: ØD6.3mm; F: ØD8.0mm; G: ØD10.0mm; P: ØD12.5mm
- 7) J: Aluminum case Heigh code, H: L5.4mm; I: L6.5mm; J: L7.7mm; K: L10.2mm; L: L11.5mm; M: L12.5mm; N: L13.5mm
- 8) T: Package in Tape/Reel, 1000pcs/Reel
- 9) A: Internal control or Customer's Special Code (A~Z or 1~9)


NextGen Components, Inc.

2

Halogen

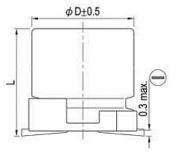
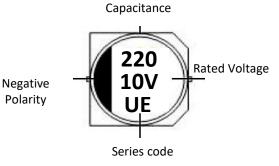
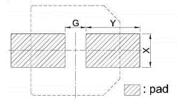

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

Image for reference

UE Series Case Ø6.30*L7.70mm Non explosion Proof Value




-	B±0.2	-
N		0.4 max.
ATU.Z		
	<u>P</u> C±0.2	

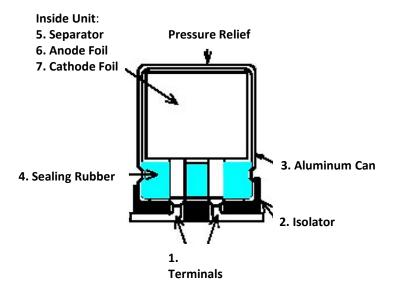
Symbol	Dimension (mm)
Α	6.6
В	6.6
D	Ø6.3
С	7.2 +/-0.2
L	7.7 -0.3/+0.5
р	2.0 +/-0.20
w	0.50~8.0

Marking

Recommended Pad Layout

Symbol	Dimension
G	1.9
х	1.6
Y	3.5

12/11/2022


NextGen Components, Inc.

3



SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

CONSTRUCTION

No.	Parts	Material
1	Terminal	Tinned Copper – Clad Steel Wire (Pb Free)
2	Isolator	Thermo-plastic resin
3	Aluminum Can	Aluminum
4	Sealing Rubber	Synthetic rubber
5	Separator	Manila hemp
6	Anode Foil	High purity aluminum foil
7	Cathode Foil	Aluminum foil

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

CHARACTERISTICS

Standard Atmospheric Conditions

The standard range of atmospheric conditions for making measurements/test as follows:

Ambient temperature: 15°C to 35°C

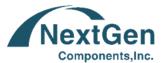
Relative humidity: 45% to 85% ;

Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: 20 $^{\circ}$ C \pm 2 $^{\circ}$ C

Relative humidity: 60% to 70%


Air Pressure: 86kPa to 106kPa

As to the detailed information, please refer to following Table

Operating Temperature Range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

As to the detailed information, please refer to table 1

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

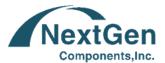
Table 1

ITEM	PERFORMANCE								
Nominal Capacitance	<condition></condition>								
(Tolerance)	Measuring Frequency : 120Hz \pm 12Hz								
	Measuring Vo	oltage : N	lot more	than 0.5	V				
	Measuring Te	emperatu	re : 20 \pm	2°C					
	<criteria></criteria>								
	Shall be with	in the spe	ecified ca	pacitanc	e tolera	ance			
Leakage Current	<condition></condition>								
	After DC Volt	age is ap	plied to c	apacitor	s throu	gh the s	eries	protec	tive resistor
	(1kΩ±10Ω)	so that te	erminal vo	oltage m	ay reac	h the re	acted	d use vo	oltage. The
	leakage curre	ent when	measure	d in 2 m	inutes	shall not	exce	eed the	values of the
	following equ	uation.							
	<criteria></criteria>								
	$I(\mu A) \leq 0.01 \text{ CV or } 3(\mu A)$, Whichever is greater								
	I: Leakage Cu	rrent (μA	()						
	C: Capacitano	ce (µF)							
	V: Rated Working Voltage (V)								
tanδ	<condition></condition>								
	See Normal	Capacitar	nce, for m	neasurin	g frequ	ency, vo	ltage	e and te	mperature.
	<criteria></criteria>								
	The tangent	of the los	s angle (1	Γanδ) of	the cap	acitors	shall	refer to	the following
	table. Measu	rements	shall be r	nade un	der the	same c	ondit	ions as	those given
	for the meas	urement	of the ca	pacitanc	e.				
	W.V.	6.3	10	16	25	3	35	50	63/100
	Tanδ	0.30	0.26	0.22	0.1	6 0.	13	0.12	0.10
Rated Woking Voltage (WV)	+						1	i	1
Surge Voltage (SV)	W.V. (V.DC)	6.3	10		16	25	3	35	50/63/100
	S.V. (V.DC.)	8	13		20	32	4	44	63
							•	I	

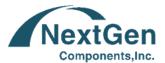
12/11/2022

Components,Inc.

PART CODE: UE227M010HEJTA


SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

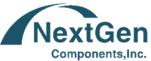
	PERFORMANCE							
<condition< td=""><td colspan="6"><condition>.</condition></td></condition<>	<condition>.</condition>							
Step. Testing Temperature(°C))	Time				
1	20±2		Ti	Time to reach thermal equilibrium				
2	-55(-25)	±3	Ti	Time to reach thermal equilibrium				
3	20±2	2	Ti	me to rea	ach the	rmal equilibrium		
4.	105±	2	Ti	me to rea	ach the	rmal equilibrium		
5	20±2	2	Ti	me to rea	ach the	rmal equilibrium		
a. At + mea valu b. At s shall c. At-5 follo Rated Z-25°(Z+20° (120H	 measured capacitance, Tanδ shall be v value at +105°C shall not more than 8 b. At step 5, Tanδ shall be within the lim shall not more than the specified value 				be within limit of 4.3. The leakage current n 8 times the specified value. limit of 4.3. The leakage current value alue. to shall not exceed the value of the 10 16 25 35/50/63/100 3 2 2 2 2			
Z+20°	C bee	10	8	6	4	3		
	-	l impedar	nce shall	be meası	ured at	120Hz		
 Capacitance rano and impedance shall be measured at 120HZ <!--</td-->								
	Step. 1 2 3 4. 5 <criteria:< td=""> a. At +: mea value b. At s shall c. At-5: follo Rated Z-25°C Z+20°L (120H) Z-55°C Z+20°L Z Z Z Z Z Z Z Z Z Z Z</criteria:<>	Step.Testing Temper1 20 ± 2 2 $-55(-25)$ 3 20 ± 2 4. 105 ± 5 5 20 ± 2 4. 105 ± 5 5 20 ± 2 cCriteria>a.At +105°C, capacitance measured capacitance value at +105°C shall for shall not more than the c.b.At step 5, Tanô shall for shall not more than the c.c.At-55°C (-25°C), imper following table.Rated Voltage (V)Z-25°C/ (120Hz) $\geq \Phi 8$ Z-55°C/ (120Hz) $\geq \Phi 8$ d.Capacitance Tanô and Condition>Peel angle: 165 to 180°C re Peel speed: 300mm per m The peel strength must be	<condition>.Step.Testing Temperature(°C1$20\pm 2$2$-55(-25)\pm 3$3$20\pm 2$4.$105\pm 2$5$20\pm 2$<criteria>a.At +105°C, capacitance shall be measured capacitance, Tanδ shule at +105°C shall not moreb.At step 5, Tanδ shall be within shall not more than the specifiec.At-55°C (-25°C), impedance (Z) following table.Rated Voltage (V)6.3Z-25°C/$<\Phi 8$Z+20°C$2\Phi 8$(120Hz)$\geq \Phi 8$2-55°C/$<\Phi 8$2-55°C/$<\Phi 8$2+20°C$2\Phi 8$(120Hz)$\geq \Phi 8$10d.capacitance Tanδ and impedar<condition>Peel angle: 165 to 180°C referred to Peel speed: 300mm per minutesThe peel strength must be 0.1 ~ 0.7Peel speed: 300mm per minutes</condition></criteria></condition>	<condition>.$\boxed{Step.}$Testing Temperature(°C)1$20\pm 2$1$20\pm 2$1$20\pm 2$3$20\pm 2$4.$105\pm 2$5$20\pm 2$75$20\pm 2$76.At +105°C, capacitance shall be within the secure capacitance, Tanô shall be within the limit shall not more than the specified value.c.At step 5, Tanô shall be within the limit shall not more than the specified value.c.At -55°C (-25°C), impedance (Z) ratio shaft following table.Rated Voltage (V)6.310Z-25°C/ (120Hz)$\geq \Phi 8$54Z-55°C/ (120Hz)$\geq \Phi 8$108108d.Capacitance Tanô and impedance shall the speed: 300mm/minPeel speed: 300mm per minutesThe peel strength must be 0.1 ~ 0.7N under</condition>	Step.Testing Temperature(°C)1 20 ± 2 1 20 ± 2 2 $-55(-25)\pm 3$ 3 20 ± 2 3 20 ± 2 4. 105 ± 2 5 20 ± 2 7Time to react of the second state	<condition>.$\boxed{\text{Step.}}$Testing Temperature(°C)Tim1$20\pm 2$Time to reach the2$-55(-25)\pm 3$Time to reach the3$20\pm 2$Time to reach the4.105 ± 2Time to reach the5$20\pm 2$Time to reach thecCriteria>a.At +105°C, capacitance shall be within $\pm 20\%$ of their ora.At +105°C, capacitance shall be within $\pm 20\%$ of their ormeasured capacitance, Tanõ shall be within limit of 4.3.value at +105°C shall not more than 8 times the specifieb.At step 5, Tanõ shall be within the limit of 4.3. The leakshall not more than the specified value.c.At -55°C (-25°C), impedance (Z) ratio shall not exceed the following table.Rated Voltage (V)6.3101625$2-25°C/$ ($2\Phi 8$43$2.25°C/$ ($2\Phi 8$2854$4.20°C$ ($120H_2$)$2\Phi 8$108d.Capacitance Tanõ and impedance shall be measured at<condition> Peel angle: 165 to 180°C referred to the surface on which the Peel speed: 300mm per minutesThe peel strength must be 0.1 ~ 0.7N under these conditionPeel speed: 300mm/minCover tapDirection of unreeling $165 - 180°$</condition></condition>		


SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

ITEM	PERFORMANCE						
Load Life Test	<condition></condition>						
IEC-60384- 4 4.13	The capacitor is stored at a temperature of 105 °C \pm 2 °C with rated voltage						
	applied continuously for 2000+48/0 hours, Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should						
	meet the following table:						
	-	tic shall meet the following requirements.					
	Capacitance Change	\pm 30% of initial measured value.					
	tanδ	300% or less of the specified value					
	Leakage current	Not more than the specified value.					
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible					
	Inner construction	No corrosion of tab terminals or electrodes					
	Remarks: Prior to the measurement of the leakage current, the D.C. rated voltage shall be applied across the capacitor and its protective resistance ($1k\Omega$) for 30 mines after which it shall be discharged.						
Shelf Life Test							
IEC-60384- 4 4.17	<condition></condition>						
		The capacitors are then stored with no voltage applied at a temperature of 105					
		. Following this period the capacitors shall be removed					
		d be allowed to stabilized at room temperature for 4^{8} connected to a series limiting resistor($1k\pm 100\Omega$) with					
		for 30min. After which the capacitors shall be					
	discharged, and then, test						
	_	tic shall meet the following requirements.					
	Capacitance Change	\pm 30% of initial measured value.					
	tanδ	300% or less of the specified value					
	Leakage current	Not more than 200% of the specified value					
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible					
	Inner construction	No corrosion of tab terminals or electrodes					
	Remark:						
	If the capacitors are stored more than 1 year, the leakage current may inc						
12/11/2022	Please apply voltage throu	igh about 1 Kω resistor, if necessary. 8					

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

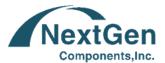
ITEM	PERFORMANCE				
Surge Test IEC-60384- 4 4.9	$\label{eq:condition} $$$ < Condition>$$$ Test temperature:15~35°C$$$ Series resistor: R= \frac{100\pm50}{C}$$ R: protective resistor (K\Omega)$$$ C: nominal capacitance (µF) Test voltage: Surge voltage item 4.4$$$ No. of cycles: 1000cycles Each cycles lasts for 6±0.5min "ON" for 30±5 s "OFF" for 5±0.5min.$$$$$$$$ Capacitance Change Within±15% of initial value.$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$				
Vibration Test IEC-60384- 4 4.8	$< Condition> \\ Fix it at the point 4 mm or less from body. For ones of 12.5 mm or more in diameter or 25 mm or Capacitance; Direction and during of vibration:3 orthogonal directions mutually each for 2 hours(total of 6 hours) Vibration frequency range : 10Hz ~ 55Hz Peak to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute The characteristic shall meet the following requirements. \boxed{Capacitance Change} \qquad Within \pm 10\% of initial value. \\ tan\delta \qquad Not more than the specified value. \\ Leakage current \qquad Not more than the specified value. \\ Appearance \qquad There shall be no leakage of electrolyte. \\ \end{aligned}$				



SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

ITEM		PERFORMANCE			
Solderability Test IEC-60384-4 4.6	<condition></condition>				
120-00384-4 4.0	The capacitor shall be tes	ted under the following conditions:			
	Soldering temperature : 2	45±3 ℃			
	Dipping depth : 2mm				
	Dipping speed : 25 \pm 2.5m	ım/s			
	Dipping time : $3\pm0.5s$				
	<criteria></criteria>				
	The characteristic shall m	eet the following requirements.			
	Coating quality	A minimum of 95% of the surface being immersed			
Resistance To Solder Heat	<condition></condition>				
Test	After reflow soldering . Th	e capacitor shall be left at room temperature for			
	before measurement.				
	<criteria></criteria>				
	The characteristic shall meet the following requirements.				
	Capacitance Change Within \pm 10% of initial value.				
	tanδ	Not more than the specified value.			
	Leakage current	Not more than the specified value.			
	Appearance	There shall be no leakage of electrolyte.			
Damp Heat Test IEC60384-4 4.12	<condition></condition>	to IEC60384-4 No.4.12 methods, capacitor shall be			
		s in an atmosphere of 90~95% R H .at 60 ± 3 °C, the			
		Il meet the following requirement.			
	<pre></pre>				
		eet the following requirements.			
	Capacitance Change	Within \pm 20% of initial value.			
	tanδ	Not more than 120% of the specified value.			
	Leakage current	Not more than the specified value.			
	Appearance	There shall be no leakage of electrolyte.			

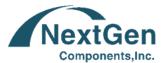
12/11/2022


10

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

ITEM	PERFORMANCE				
Change Of Temperature Test	<condition></condition>				
IEC-60384-4 4.7	Temperature	e cycle: Accord	ing to IEC603	84-4 No.4.7 methods, capacitor shall be	
	placed in an	oven, the con	dition accordir	ng as below	
	No.	Tempera	ature	Time	
	1	+25°	C	≤3 Minutes	
	2	-55°	С	30±2 Minutes	
	3	+25°	C	≤3 Minutes	
	4	+105	°C	30 \pm 2 Minutes	
	5	+25°	C	≤3 Minutes	
		1 to 5 = 1 cycle, Total 5 cycles			
	and then the	e capacitor sha	ll be subjected	t to standard atmospheric conditions fo	
	4 hours, after which measurements shall be made.				
	<criteria></criteria>				
	The characteristic shall meet the following requirements.				
	Capacitan	Capacitance Change		thin \pm 10% of initial value.	
	tanδ Leakage current		Not r	nore than the specified value.	
			Not more than the specified value.		
	Appearance		No broken and undamaged.		
Low Temperature Test	<condition></condition>				
	Capacitors are placed at -55 \pm 3°C for 96 \pm 4 hours. And then the capacitor shall				
	be subjected to standard atmospheric conditions for 4 hours, after which				
	measurements shall be made.				
	<criteria></criteria>				
	The characteristic shall meet the following requirements.				
	Capacitan	Capacitance Change		Within \pm 10% of initial value.	
	ta	nδ	Not r	nore than the specified value.	
	Leakage	current	Not r	nore than the specified value.	
	Appearance		No broken and undamaged.		

12/11/2022



SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

ITEM		PERFORMANCE		
Vant Tast				
Vent Test IEC-60384-4 4.16	<condition></condition>			
	The following test only a	oply to those products with vent products at diameter		
	≥ Ф8 with vent.			
	D.C. test			
	The capacitor is connected	ed with its polarity reversed to a DC power source. Ther	۱	
	a current selected from f	ollowing table is applied.		
	Diameter (mm)	DC Current (A)		
	22.4 or less	1		
	<criteria></criteria>			
	No emission of gas after	30 minutes of the voltage application also meets the		
	_	all operate with no dangerous conditions such as		
		ieces of the capacitor and/or case.		
Mechanical	<condition></condition>	· · ·		
Characteristics Test	Bending Test: Apply pressure in the direction of the arrow at a rate of about			
	0.5 mm / s until bent width reaches 2 mm and hold for 60s. The board shall be			
	the test board "B" as specified in JIS C 0051: 2002. If the land area differs, it shall			
	be specified clearly in the next item.			
	Substrate before test			
		1,6 mm ± 0,20 mm		
		Support		
	Specimen (of SMD)	Radius 2,5 mm		
		²⁰ mm		
	Substrate during test	dius 5		
	Radius 5			
	0			
		Length = actual width of substrate + 5 (minimum)		
	<criteria></criteria>	on both sides		
	Without mechanical damage such as breaks. Electrical characteristics shall be			
	satisfied. If there are electrodes on both surfaces, above requirements shall be			
	satisfied on whichever su	rface it may be fixated on.		

12/11/2022

12

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

CASE SIZE & MAX RIPPLE CURRENT

Rated	Capacitance	Case Size	Dissipation Factor	Leakage	Ripple Current	Impedance/ESR
Voltage	(+/-20%)	ØD*L	@+20°C, 120Hz	Current	@+105°C, 100KHz	@ 20°C,100KHz
V	μF	mm	Tanδ Max.	(µA)max	mA rms .	Ω
10	220	6.3*7.7	0.26	22	240	0.85

FREQUENCY COEFFICIENT OF ALLOWABLE RIPPLE CURRENT

Frequency	50Hz	120Hz	300Hz	1KHz	≥10kHz
Coefficient	0.64	0.70	0.75	0.85	1.00

WELDING METHODS AND APPLICABILITY

Welding Method	Reflow Soldering	Soldering Iron	Wave Soldering
The feasibility of	ОК	ОК	N/A

Conditions for the use of lead-free reflow soldering.:

Time Second

METHODS THE FOLLOWING:

Reflow soldering: please follow the temperature condition during welding. If high temperature is used, please measure and inform the capacitor temperature and reflow soldering condition. The product size is larger and its rising temperature is slower. It is not necessary to adjust the temperature of the reflow solder in accordance with the size of the product. For example, the products of 4 and 10 will be installed in the PCB over tin furnace. 12/11/2022

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

Precautions For Soldering Tin:

Related factors of reflow soldering temperature: Product size: The product size is larger and its temperature rises slowly. Product installation position: The temperature of PCB center is lower than that of PCB. Reflow soldering If possible, avoid reflow soldering twice. If repeated reflux is unavoidable, measure and inform the first and second reflux temperature, and the time of reflow soldering. Please do not 3 times of reflow soldering Please follow the following conditions when soldering tin soldering: Soldering iron maximum temperature: $350\pm5^{\circ}$ C Welding time: 3+1/-0 sec

TEST METHOD AND PEAK TEMPERATURE PERMISSIBLE RANGE


Part Code		UE227M010HEJTA	
Rated Voltage (V)		10 V	
Case Size		ØD6.30*L7.70mm	
Preheating	Temperature Range (T1~T2)	150~180 °C	
	Time (t1) Max.	180 Second	
The Duration Of The	Temperature Range (T3)	230 °C Max.	
	Time (t2) Max.	60 Second	
The Highest Temperature	Temperature Range (T4)	260 °C	
	Time (t3) Max.	5 Second	
Return The Number		≤2 times	

Note

1) Please contact us if the condition of use are higher than the

2) When performing 2nd reflow Soldering, please make sure the temperature of capacitor have cooled to : 5~35°C

3) If the reflow condition is based on IPC/JEDEC(J-STD-020), please contact us.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

ATTENTION FOR OP-CAP SOLDERING

Reflow soldering will reduce the rated electrostatic capacity of the product, and it should be confirmed whether reflow soldering condition meets the specification of recommended reflow soldering.

Although the actual reflow condition change is still based on the reflow soldering method, please note that the highest temperature and the electrode terminal at the bottom of the aluminum shell must not exceed the maximum temperature.

Please note: OP - CAP products during the process of reflow heating temperature should increase to more than 200 °C. If the reflow condition temperature or duration is greater than the above table, the OP-CAP product will be damaged. The electrostatic capacity of the product is reduced by about 50%, the leakage current is large (up to mA), and the outside of the capacitor is damaged.

APPLICATION GUIDELINE

Circuit Design

1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.

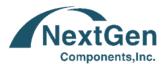
2) Operating temperature and applied ripple shall be within specification.

3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.

4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors cannot be used for AC voltage application.

5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge/ discharge. In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.


6) Do not apply excess voltage.

(1) Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

(2) In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor.

7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:

(1) (a) Capacitors will be exposed to water (including condensation), brine or oil. (b) Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc. (c) Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

(2) Severe vibration and physical shock conditions that exceed specification.

Vibration test condition: 10-55-10Hz

vibration frequency range : 10 $\sim\!55\!\sim\!10\text{Hz}$

sweep rate : $10 \sim 55 \sim 10$ Hz/minute

sweep method : logarithmic

amplitude or acceleration : 1.5mm (max. acceleration is 10G)

direction of vibration : X, Y, Z direction

testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales office.

8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal.

9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.

10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.

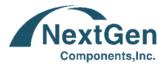
11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.

12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

Mounting

1) Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.

2) Leakage current of the capacitors that have been stored for more than 2 years may increase. When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.


3) Please confirm specifications and polarity before installing capacitors on the PC board.

4) Do not drop capacitors on the floor, nor use a capacitor that was dropped.

5) Do not deform the capacitor during installation.

6) Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

12/11/2022

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

Reflow Soldering

1) Please follow "Reflow Soldering Conditions" when use the part.

2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared will vary due to difference in the color and size of the capacitor.

(1) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.

(2) Do not carry the PC board by grasping the soldered capacitor.

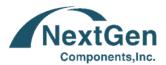
(3) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.

(4) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.

(5) Cleaning:

(a) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales office.

(b) Recommended cleaning method, Applicable : Any type, any ratings


Cleaning conditions: Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.; Avoid using ozone destructive substances as cleaning agents for protecting global environment.

In The PCB After Mounted

1) Do not directly touch terminal by hand.

2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

3) Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

Maintenance and Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc. Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in catalogue or alternate product specification.

In an Emergency

1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.

2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.

3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

Storage

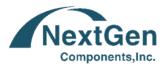
1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

Temperature: 5°C~35°C

Humidity : lower than 75%

Place : Indoor

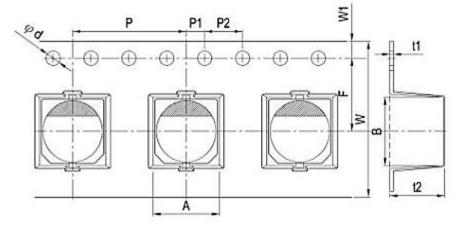
2) Avoid ambient conditions where capacitors are covered with water, brine or oil.

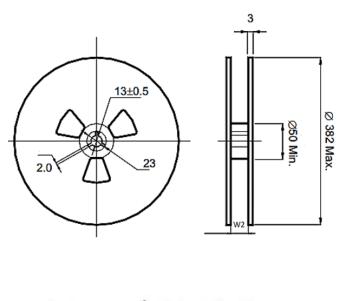

3) Avoid ambient conditions where capacitors are exposed to ozone, ultraviolet ray or radiation.

Disposal

Please take either of the following methods in disposing capacitors.

1) Incinerate them after crushing capacitors or making a hole on the capacitor body.

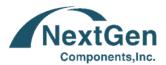

2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.


SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

TAPE (Unit: mm), 1000pcs/Reel

Applicable standard JIS C0806 and IEC 60286.

REEL (Unit: mm)

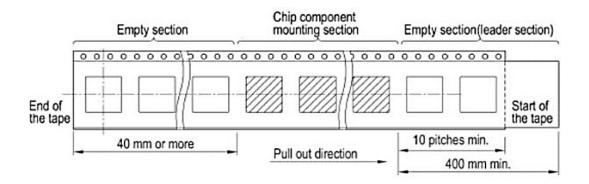


Pull out direction

0 0	0 0	0 0	0 0
-	-	-	-
+	+	+	+

Case size: ØD6.30*L7.7mm			
Symbol	Dimension (mm)		
W	16.0		
Р	12.0		
F	7.5		
А	7.0		
В	7.0		
T 2	8.3		
Ød	1.5		
P 1	2.0		
P 2	4.0		
t 1	0.4		
W 1	1.75		
W 2	18.0 +/-0.3		

12/11/2022


SMD ALUMINUM ELECTROLYTIC CAPACITORS UE SERIES

PACKING METHOD

Polarity: Anode on the opposite side of the feed hole

The leader length of the tape shall not be less than 400mm including 10 or more embossed sections in which no parts are contained.

The winding core is provided with an over 40mm long empty section

DISCLAIMER

NextGen Component, Inc. reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information 20 12/11/2022