MLX92213

MicroPower & Low-Voltage

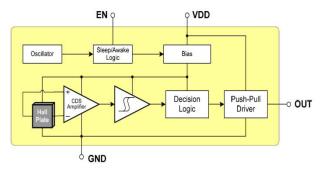
Hall Effect Latch with Enable

Features and Benefits

- Operating Voltage from 1.6 to 3.6V
- Latching Output Behaviour
- Micro power Consumption 48uA@3V ; 36uA@1.8V
- Advanced Power Manageability through dedicated "Enable" pin
- Ultra High Sensitivity Hall Sensor
- Push-Pull Output
- Miniature & Ultra-Thin QFN package (2mm x 1.5mm; 0.4mm thickness)
- "Green" and "Pb-Free" Compliant Package

Applications

- Battery-operated / Handheld Appliances
- Rotary or Linear Contact-Less Encoders
- Scroll/Jog Wheel, Trackball (Mobile Phones, Portable Media Players, Notebooks, Computer Mice, Camcorders, Cameras,...)
- Home/Industrial Metering Equipment (Wafer Flow Meter)


-			
Ord	lering	infor	mation

Part No.	Temperature Code	Package Code	Comment
MLX92213ELD-AAA-000-RE	E (-40°C to 85°C)	LD (UTQFN-6L)	$B_{OP}/B_{RP}=\pm 2mT$

Legend:

Temperature Code:	E for Temperature Range -40°C to 85°C
Package Code:	LD for UTQFN
Packing Form:	RE for Reel
Ordering example:	MLX92213ELD-AAA-000-RE

1. Functional Diagram

2. General Description

The MLX92213 Micropower Low-Voltage Latch Hall effect sensor IC is fabricated in mixed signal CMOS technology. It incorporates advanced Correlated Double Sampling (CDS) techniques to provide accurate and stable magnetic switching points. In order to save power, the internal Timing Logic alternates Awake and Sleep modes, thus significantly reducing the power consumption. The magnetic flux density is periodically evaluated against predefined thresholds. If the flux density is above/below the B_{OP}/B_{RP} thresholds, then the Output changes its state accordingly. During the Sleep mode the Output is latched in its previous state. The design has been optimized for applications requiring extended operating lifetime in battery-powered systems. The EN pin adds flexibility by enabling external control of the Micropower Period and Duty Cycle. The Push-Pull Output of the MLX92213 will be latched in Low state in the presence of a sufficiently strong South magnetic field (B > B _{OP}) facing the marked side of the package. The Output will be latched in High state in the presence of a sufficiently strong South magnetic field (B > B _{OP}) strong North magnetic field (B < B_{RP}).

Contents

1. Functional Diagram1
2. General Description1
3. Glossary of Terms
4. Absolute Maximum Ratings
5. Pinout
6. Output Behavior vs. Magnetic Pole
7. General Electrical Specifications
8. Magnetic Specifications
9. Application Section
9.1. Application Schematics
9.2. Recommendation / Comments
10. Principle of Operation
11. Performance Graphs7
11.1. Magnetic Threshold vs. Temperature7
11.2. Magnetic Threshold vs. Supply Voltage7
11.3. Average Supply Current vs. Temperature7
11.4. Average Supply Current vs. Supply Voltage7
11.5. Supply Current vs. Temperature7
11.6. Supply Current vs. Supply Voltage7
12. Standard information regarding manufacturability of Melexis products with different soldering processes
13. ESD Precautions
14. LD Package (UTQFN-6L)9
15. Contact10
16. Disclaimer

MLX92213

MicroPower & Low-Voltage Hall Effect Latch with Enable

3. Glossary of Terms

Gauss, milliTesla (mT),

Units of magnetic flux density: 10 Gauss = 1mT

4. Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply Voltage	V_{DD}	5	V
Supply Current	I _{DD}	±10	mA
EN Input Voltage	V _{IN}	5	V
EN Input Current	I _{IN}	±10	mA
Output Voltage	V _{OUT}	5	V
Output Current	I _{OUT}	±10	mA
Operating Temperature Range	T _A	-40 to 85	°C
Storage Temperature Range	Ts	-50 to 150	°C

Table 1: Absolute maximum ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5. Pinout

Pin Name	Function	Pin №
VDD	Power Supply	3
GND	Ground	4, E-pad ⁽¹⁾
OUT	Push-Pull Output	1
EN	Enable ⁽²⁾	6
NC	Not Connected	2, 5

Table 2: Pin definitions and descriptions

6. Output Behavior vs. Magnetic Pole

DC Operating Parameters $T_A = -40^{\circ}$ C to 85° C, $V_{DD} = 1.6$ V to 3.6V

Parameter	Test Conditions	ουτ
South pole	$B > B_{OP}$	Low
North pole	$B < B_{RP}$	High

Table 3: Output behavior versus magnetic pole ⁽³⁾

LD Package

³ The magnetic pole is applied facing the package top REVISION 004 - JAN 17, 2018

¹ Exposed Pad on LD package is connected to Ground.

 $^{^{2}}$ EN has to be connected to V_{DD} when external Micropower control is not used.

7. General Electrical Specifications

Operating Parameters: $T_A = -40$ to 85° C, $V_{DD} = 1.6$ V to 3.6V, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	V _{DD}	Operating	1.6	-	3.6	V
Average Supply Current		$EN = V_{DD}, V_{DD} = 3V$	-	48	86	μΑ
Average Supply Current	I _{DDav}	$EN = V_{DD}, V_{DD} = 1.8V$	-	36	70	μΑ
Awake Supply Current	I _{DDaw}	$EN = V_{DD}$, $I_{OUT} = 0mA$	-	-	4	mA
Sleep Supply Current	I _{DDsl}	$EN = V_{DD}$, $I_{OUT} = 0mA$	-	-	4.5	μΑ
Standby Supply Current	I _{DDsb}	EN = 0	-	-	1	μΑ
		Output Characteristics				
High Level Output Voltage	V _{OH}	$B < B_{RP}$, $I_{OUT} = -1mA$	V _{DD} -0.4	V _{DD} -0.2	-	V
Low Level Output Voltage	V _{OL}	$B > B_{OP}$, $I_{OUT} = 1mA$	-	0.2	0.4	V
Power-On Output State ⁽¹⁾	V _{PO}			High		
		Enable Pin Characteristics				
EN Input High Voltage	V _{IH}		0.1*V _{DD} +1	-	-	V
EN Input Low Voltage	VIL		-	-	$0.1*V_{DD}+0.1$	V
EN Input Current	I _{IN}		-1	-	1	μΑ
EN Input Delay	t _{ID}		-	-	5	μs
EN Pulse Width	T _{E1}		5	-	-	μs
EN Period	T _{E2}		$T_{AW} + 0.1$	-	-	μs
Timing Characteristics						
Enable Transition Time ⁽²⁾	t _{ET}	Disabled -> Enabled	-	-	$t_{ID} + T_{AW}$	μs
Disable Transition Time ⁽³⁾	t _{DT}	Enabled -> Disabled	-	-	t _{ID} + T _{AW}	μs
Power-On Time ⁽⁴⁾	+	$EN = V_{DD}$	-	31	80	μs
Fower-on time	t _{on}	$EN = V_{DD}, T_A = 25^{\circ}C, V_{DD} = 3V$	-	31	52	μs
		$EN = V_{DD}$	-	-	60	μs
Awake Time	T _{AW}	$EN = V_{DD}, T_A = 25^{\circ}C, V_{DD} = 3V$	-	27	40	μs
		$EN = V_{DD}, T_A = 25^{\circ}C, V_{DD} = 1.8V$	-	30	45	μs
Period	T _{PER}	$EN = V_{DD}$	0.70	1.30	1.90	ms
Response Time ⁽⁵⁾	t _{RES}	$EN = V_{DD}$	-	-	T _{PER}	ms
Magnetic Signal Frequency	f _в	$EN = V_{DD}$	1 /	/[2 * T _{PE}	ER]	Hz

Table 4: Electrical specification

¹ Defined output state after Power-On Time is high until the first B_{OP} threshold is reached (B>B_{OP})

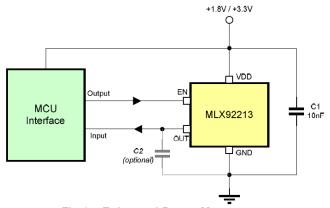
² Enable transition time defined from EN command to the update of the Output driver state (ref. to Diagrams, p.6)

³ Disable transition time defined from EN command to entering Standby (ref. to Diagrams, p. 6)

⁴ Power-On Time represents the time from reaching $V_{DD} = 1.6V$ to the update of the Output driver state

⁵ Response Time is the time from the magnetic field change to the according update of the Output driver state, guaranteed by design

8. Magnetic Specifications


DC Operating Parameters: $V_{DD} = 1.6V$ to 3.6V

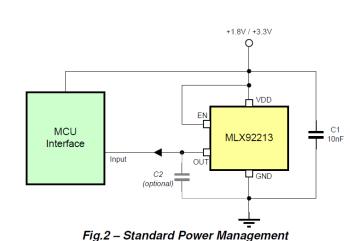
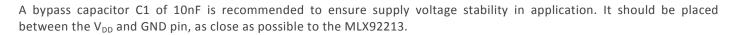

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Operating Point	B _{OP}		0.5	2	4	mT
Release Point	B _{RP}	T _A = 25°C	-4	-2	-0.5	mT
Hysteresis	B _{HYST}		1.5	4	7	mT
Operating Point	B _{OP}		0.1	2	5	mT
Release Point	B _{RP}	$T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	-5	-2	-0.1	mT
Hysteresis	B _{HYST}]	1.5	4	7	mT

Table 5: Magnetic specifications

9. Application Section

9.1. Application Schematics



1.8V or 3.3V application with MCU interface

reading the OUT signal with default "Micropower"

Fig.1 – Enhanced Power Management Typical 1.8V or 3.3V application with MCU interface reading the OUT signal and driving the EN signal

9.2. Recommendation / Comments

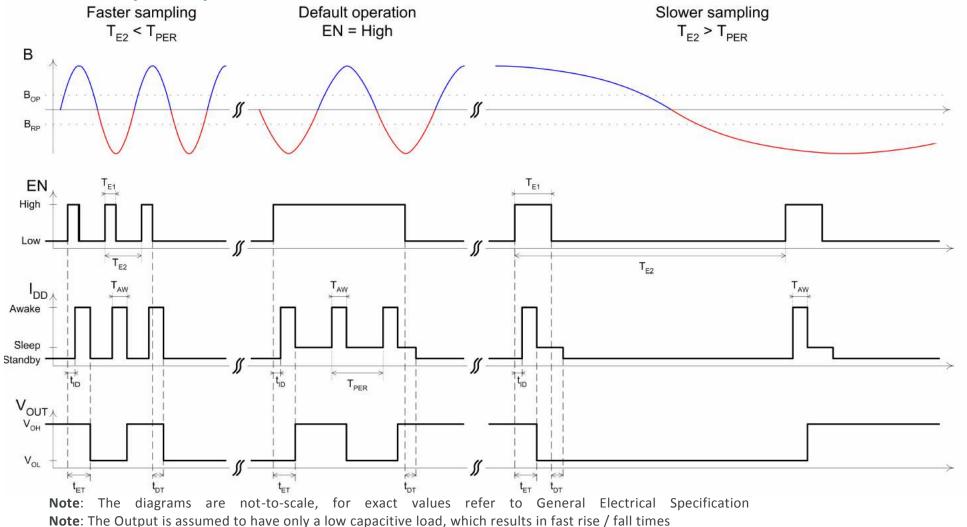
The MLX92213 provides a direct push-pull output, hence aiming to reduce external component count like output pull-up resistor or capacitor. The use of the output capacitor C2 connected in parallel to the output is optional. If connected between OUT and GND in such a push-pull configuration, the current sinked by the charge of the capacitor when the output switches from "0" to "1" leads to an small increase of the average current consumption of the whole module (IC + capacitor).

Using small capacitor value C2 (less than 50pF) would avoid having such small increase of the module average current consumption.

For enhanced power management, the EN (Enable) signal can be driven by an external MCU. It basically allows controlling the state IC and therefore its current consumption according the application requirements:

- Standby mode for minimal current consumption (EN = "0")
- Default Micropower (EN = "1")
- Faster or slower sampling rate through EN signal

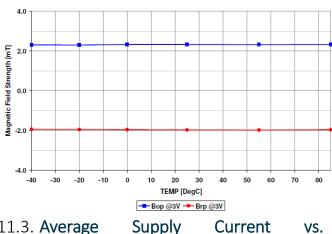
For more details on the different mode, please refer to the Principle of Operation section.


For application where standard power management is enough (default "Micropower" mode, Standby unused), the EN pin should be tied to VDD

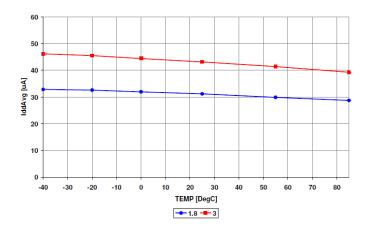
MLX92213

MicroPower & Low-Voltage Hall Effect Latch with Enable

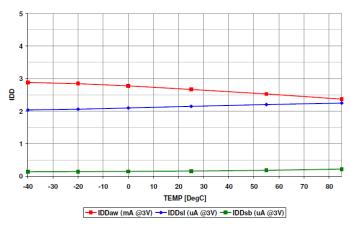
10. Principle of Operation


REVISION 004 - JAN 17, 2018

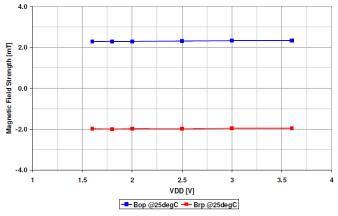
MLX92213 MicroPower & Low-Voltage Hall Effect Latch with Enable

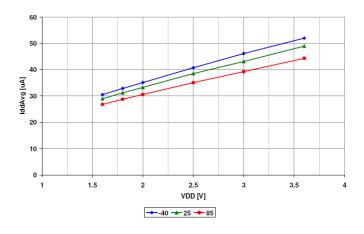

11. Performance Graphs

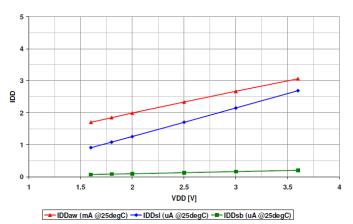
11.1. Magnetic Threshold vs. Temperature



11.3. Average Temperature


Supply Current




11.2. Magnetic Threshold vs. Supply Voltage

11.4. Average Supply Current vs. Supply *Voltage*

12. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20 Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (<u>Through Hole Devices</u>)

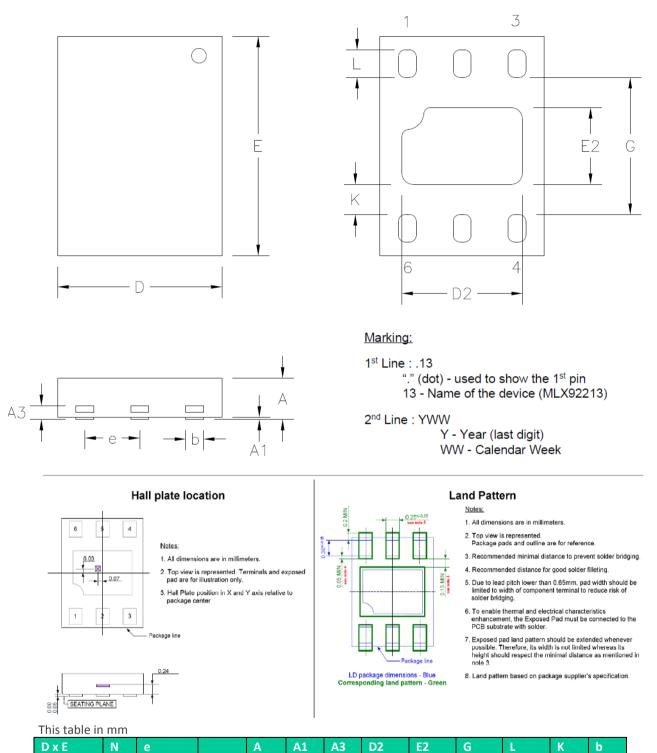
 EN60749-15 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

• EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.


Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: <u>http://www.melexis.com/quality.aspx</u>

13. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

14. LD Package (UTQFN-6L)

0.00

0.05

0.13

REF

0.31

0.40

min

max

0.95

1.20

0.55

0.90

0.22

0.43

0.20

_

0.18

0.30

1.20

1.30

NC	ote:

1. General tolerance of D and E is ± 0.1 mm.

6

1.5 x 2

2. Bottom pin1 identification is may vary depends on the suppliers.

0.50

15. Contact

For the latest version of this document, go to our website at <u>www.melexis.com</u>.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email : sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

16. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-andconditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified