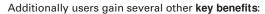
MPPS™ Miniature Package Power Solutions


DUAL 60V, 1.65A SCHOTTKY DIODE COMBINATION

SUMMARY

Schottky Diode - $V_R = 60V$; $V_F = 600mV(@1A)$; IC=1.65A

DESCRIPTION

Packaged in the new innovative 3x2 MLP (Micro Leaded Package) outline, this combination dual comprises two 60V 0.9A Schottky barrier diodes. This excellent combination provides users with highly efficient performance in applications including DC-DC converters and charging circuits.

Performance capability equivalent to much larger packages Improved circuit efficiency & power levels PCB area and device placement savings Lower Package Height (0.9mm nom) Reduced component count

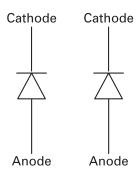
FEATURES

- Extremely Low V_F, fast switching Schottky
- I_F= 1.65A Continuous Forward Current
- 3mm x 2mm MLP

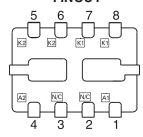
APPLICATIONS

- DC-DC Converters
- DC-DC Modules
- Mosfet gate drive circuits
- · Charging circuits
- Mobile Phones
- Motor Control

ORDERING INFORMATION


DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXSDS2M832TA	7″	8mm	3000 units
ZXSDS2M832TC	13"	8mm	10000 units

DEVICE MARKING


DS2

MLP832

PINOUT

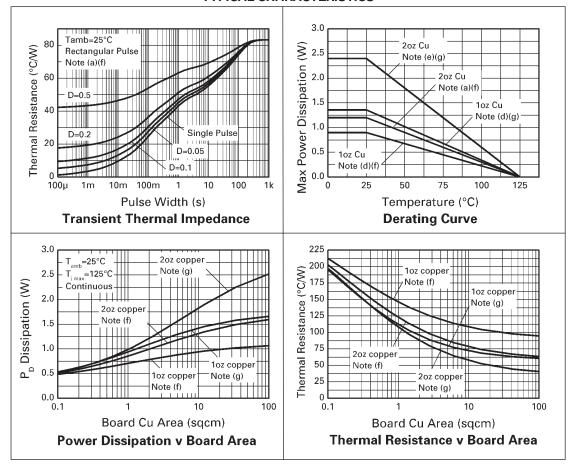
Bottom View

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Reverse Voltage	V _R	60	V
Forward Voltage @ I _F = 1000mA	V _F	600	mV
Forward Current	I _F	1.65	А
Average Forward Current D=50%, t<=300us	I _{FAV}	1.24	А
Non Repetitive Forward Current t<=100us	I _{FSM}	16.8	А
Non Repetitive Forward Current t<=10ms		5.63	Α
Power Dissipation at TA=25°C (a)(f)	P _D	1.2	W
Linear Derating Factor		12	mW/°C
Power Dissipation at TA=25°C (b)(f)	P _D	2	W
Linear Derating Factor		20	mW/°C
Power Dissipation at TA=25°C (c)(f)	P _D	0.8	W
Linear Derating Factor		8	mW/°C
Power Dissipation at TA=25°C (d)(f)	P _D	0.9	W
Linear Derating Factor		9	mW/°C
Power Dissipation at TA=25°C (d)(g)	P _D	1.36	
Linear Derating Factor		13.6	mW/°C
Power Dissipation at TA=25°C (e)(g)	P_{D}	2.4	W
Linear Derating Factor		24	mW/°C
Storage Temp, Range	Tstg	-55 to+150	°C
Operating & Storage Temp, Range	Tj	-55 to+125	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	RθJA	83.3	°C/W
Junction to Ambient (b)(f)	RθJA	51	°C/W
Junction to Ambient (c)(f)	RθJA	125	°C/W
Junction to Ambient (d)(f)	RθJA	111	°C/W
Junction to Ambient (d)(g)	RθJA	73.5	°C/W
Junction to Ambient ^{(e)(g)}	RθJA	41.7	°C/W

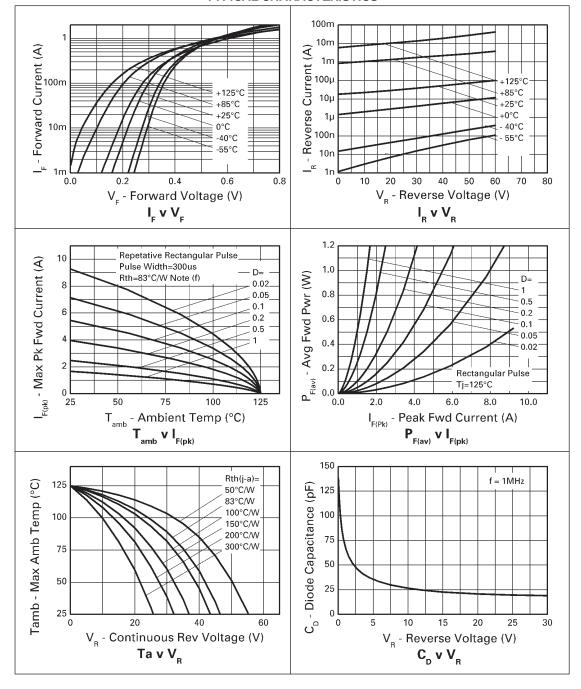

NOTES

- (a) For a dual device surface mounted on 8 sq. cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the center line into two separate areas with one half connected to each half of the dual device.
- (b) Measured at t-5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centerline into two separate areas with one half connected to each half of the dual device.
- (c) For a dual device surface mounted on 8 sq cm single sided 2oz copper FR4 PCB, in still air conditions with minimal lead connections only.
- (d) For a dual device surface mounted on 10 sq cm single sided 1oz copper FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centerline into two separate areas with one half connected to each half of the dual device.
- (e) For a dual device surface mounted on 85 sq cm single sided 2oz copper FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centerline into two separate areas with one half connected to each half of the dual device.
- (f) For dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (h) Repetitive rating pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper of 1 oz weight, 1mm wide tracks and one half of the device active is Rth= 250°C/W giving a power rating of Ptot=400mW.

ISSUE 2 June 2003

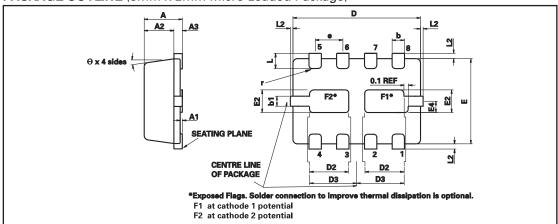
TYPICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^{\circ}C$ unless otherwise stated)


PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
STATIC				1		
Reverse Breakdown Voltage	V(BR)R	60	80		V	IR = 300μA*
Forward Voltage	V _F		245	280	mV	I _F = 50mA*
			275	320	mV	I _F = 100mA*
			330	390	mV	I _F = 250mA*
			395	470	mV	I _F = 500mA*
			455	530	mV	I _F = 750mA*
			510	600	mV	I _F = 1000mA*
			620	740	mV	I _F = 1500mA*
			500	-	mV	I _F = 1000mA*, T _A = 100°C
Reverse Current	I _R		50	100	μΑ	V _R = 45V
Diode Capacitance	C _D		17		pF	f = 1MHz, V _R = 25V
Reverse Recovery Time	t _{rr}		12		ns	Switched from $I_F = 500 \text{mA}$ to $I_R = 500 \text{mA}$ Measured at $I_R = 50 \text{mA}$

NOTES

^{*} Measured under pulsed conditions


TYPICAL CHARACTERISTICS

ISSUE 2 June 2003

PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

Controlling dimensions are in millimetres. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	Millin	netres	Inc	hes	DIM	Millimetres		Inches	
DIW	Min	Max	Min	Max	DIIVI	Min	Max	Min	Max
А	0.80	1.00	0.031	0.039	е	0.65 REF		0.0256 BSC	
A1	0.00	0.05	0.00	0.002	Е	2.00 BSC		0.0787 BSC	
A2	0.65	0.75	0.0255	0.0295	E2	0.43	0.63	0.017	0.0249
А3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2	-	0.125	0.00	0.005
D	3.00	BSC	0.118	BSC	r	0.075 BSC		0.0029 BSC	
D2	0.82	1.02	0.032	0.040	θ	0°	12°	0°	12°
D3	1.01	1.21	0.0397	0.0476	-	-	-	-	-

© Zetex plc 2003

Europe		Americas	Asia Pacific
Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1
Chadderton	D-81673 München	Hauppauge, NY 11788	Hing Fong Road
Oldham, OL9 8NP			Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 161 622 4444	Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611
Fax: (44) 161 622 4446	Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494
hq@zetex.com	europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to $\boldsymbol{w}\,\boldsymbol{w}\,\boldsymbol{w}\,.\boldsymbol{zetex.com}$

