

# **3-Terminal 100mA Positive Voltage Regulator**

#### DESCRIPTION

The TS78L00 Series of positive voltage Regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100mA. Like their higher power TS7800 and TS78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the TS78L00 devices in manv applications. These devices offer а substantial performance advantage over the traditional zener dioderesistor combination, as output impedance and quiescent current are substantially reduced.

### FEATURES

- Output Voltage Range 3.3V, 5V, 9V, 12V, 15V, 24V
- Output current up to 100mA
- No external components required
- Internal thermal overload protection
- Internal short-circuit current limiting
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance
- RoHS compliant
- Halogen-free according to IEC 61249-2-21

#### APPLICATION

- Switching power supply
- Home appliance

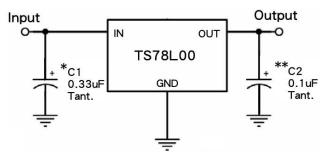




Pin Definition: 1. Output 2. Ground 3. Input



Pin Definition: 1. Output 2. Input 3. Ground




- Pin Definition
- 1. Output 2. Ground
- 3. Ground
- 4. N/C
- 5. N/A
- 6. Ground 7. Ground
- 8. Input

#### Notes:

SOT-23: MSL 1 (Moisture Sensitivity Level) per J-STD-020 SOT-89, SOP-8: MSL 3 (Moisture Sensitivity Level) per J-STD-020

# **TYPICAL APPLICATION CIRCUIT**



A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.

XX = these two digits of the type number indicate voltage.

\* = Cin is required if regulator is located an appreciable distance from power supply filter.

\*\* = Co is not needed for stability; however, it does improve transient response.



| ABSOLUTE MAXIMUM RATINGS            |         |                  |                    |      |  |  |  |  |
|-------------------------------------|---------|------------------|--------------------|------|--|--|--|--|
| PARAMETER                           |         | SYMBOL           | LIMIT              | UNIT |  |  |  |  |
|                                     | TS78L03 |                  | 30                 |      |  |  |  |  |
|                                     | TS78L05 |                  | 35                 | V    |  |  |  |  |
|                                     | TS78L09 | Ň                | 35                 |      |  |  |  |  |
| DC Input Voltage                    | TS78L12 | V <sub>IN</sub>  | 35                 |      |  |  |  |  |
|                                     | TS78L15 |                  | 35                 |      |  |  |  |  |
|                                     | TS78L24 |                  | 40                 |      |  |  |  |  |
| Power Dissipation                   |         | PD               | Internally Limited | W    |  |  |  |  |
| Operating Junction Temperature      | TJ      | +150             | °C                 |      |  |  |  |  |
| Recommended Operating Junction Terr | TJ      | -40 ~ +125       | °C                 |      |  |  |  |  |
| Operating Ambient Temperature Range |         | TA               | -40 ~ +85          | °C   |  |  |  |  |
| Storage Temperature Range           |         | T <sub>STG</sub> | -65~+150           | ٥C   |  |  |  |  |

| PARAMETER                              | SYMBOL           |        | UNIT   |       |      |  |  |
|----------------------------------------|------------------|--------|--------|-------|------|--|--|
| PARAMETER                              | SIMBOL           | SOT-23 | SOT-89 | SOP-8 | UNIT |  |  |
| Junction to Case Thermal Resistance    | Rejc             | 120    | 15     | 20    | °C/W |  |  |
| Junction to Ambient Thermal Resistance | R <sub>eja</sub> | 330    | 55     | 55    | °C/W |  |  |

Notes: ReJA is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins.  $R_{\Theta JA}$  is guaranteed by design while  $R_{\Theta CA}$  is determined by the user's board design.  $R_{\Theta JA}$  shown below for single device operation on FR-4 PCB in still air.



Taiwan Semiconductor

| ELECTRICAL SPECIFICATIONS TS78L03                    |                                     |                                                           |                             |           |      |       |        |  |
|------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|-----------------------------|-----------|------|-------|--------|--|
| $(V_{IN}=8.3V, I_{OUT}=40mA, 0^{\circ}C \le 10^{-1}$ | ΓJ≤125⁰C, C                         | CIN=0.33μF, Cout=0.1μ                                     | F, unless othe              | rwise not | ed)  |       |        |  |
| PARAMETER                                            | C                                   | CONDITIONS                                                |                             | MIN       | ТҮР  | MAX   | UNIT   |  |
|                                                      | TJ=25°C                             | TJ=25°C                                                   |                             | 3.173     | 3.3  | 3.432 | V      |  |
| Output voltage                                       |                                     | 5.8V≤V <sub>IN</sub> ≤20V,<br>5mA≤I <sub>0UT</sub> ≤100mA |                             | 3.142     | 3.3  | 3.465 | V      |  |
| Line Regulation                                      | TJ=25°C                             | 5.8V≤Vin≤20V<br>Iouт=40mA                                 | REGLINE                     |           | 50   | 150   | mV     |  |
| Lood Degulation                                      | т обоо                              | 5mA≤ I <sub>OUT</sub> ≤100mA                              | REGLOAD                     |           | 15   | 60    | mV     |  |
| Load Regulation                                      | TJ=25°C                             | 5mA≤I <sub>OUT</sub> ≤40mA                                |                             |           | 5    | 30    |        |  |
| Quiescent Current                                    | I <sub>OUT</sub> =0, T <sub>J</sub> | I <sub>OUT</sub> =0, T <sub>J</sub> =25°C                 |                             |           | 3    | 6     | mA     |  |
|                                                      | 5.8V≤Vin≤                           | ≤20V                                                      |                             |           |      | 1.5   | mA     |  |
| Quiescent Current Change                             | 5mA≤l <sub>OUT</sub>                | ≤40mA                                                     | ΔΙQ                         |           |      | 0.1   |        |  |
| Output Noise Voltage                                 | 10Hz≤f≤1                            | 00kHz, TJ=25ºC                                            | V <sub>N</sub>              |           | 40   |       | μV     |  |
| Ripple Rejection Ratio                               | F=120Hz,                            | F=120Hz, 5.8V≤Vin≤20V                                     |                             | 41        | 49   |       | dB     |  |
| Voltage Drop                                         | lou⊤=100mA, Tյ=25°C                 |                                                           | VDROP                       |           | 2    |       | V      |  |
| Peak Output Current                                  | TJ=25°C                             | TJ=22₀C                                                   |                             |           | 0.15 |       | А      |  |
| Temperature Coefficient of<br>Output Voltage         | I <sub>OUT</sub> =5mA               | , 0ºC≤Tյ≤150ºC                                            | $\Delta V_{OUT}/\Delta T_J$ |           | -0.2 |       | mV/ °C |  |

| PARAMETER                                    | CONDITIONS             |                                                                         | SYMBOL         | MIN  | ТҮР   | MAX  | UNIT   |
|----------------------------------------------|------------------------|-------------------------------------------------------------------------|----------------|------|-------|------|--------|
|                                              | TJ=25°C                | $T_{J}=25^{\circ}C$ $7.5V \le Vin \le 20V,$ $5mA \le I_{OUT} \le 100mA$ |                | 4.80 | 5     | 5.20 | V      |
| Output voltage                               |                        |                                                                         |                | 4.75 | 5     | 5.25 | V      |
| Line Regulation                              | TJ=25°C                | 7.5V≤Vin≤20V<br>Iou⊤=100mA                                              | REGLINE        | 50   | 150   | 150  | mV     |
| Land Damilation                              | т огоо                 | T 0500 5mA≤lout≤100mA                                                   | 20             | 60   | 60    |      |        |
| Load Regulation                              | TJ=25°C                | 5mA≤louт≤40mA                                                           | REGLOAD        | 10   | 30    | 30   | mV     |
| Quiescent Current                            | Iout=0, TJ             | louт=0, Тј=25°С                                                         |                |      | 3     | 6    | mA     |
|                                              | 7.5V≤Vin≤              | ≤20V                                                                    |                |      |       | 1.5  |        |
| Quiescent Current Change                     | 5mA≤lout≤40mA          |                                                                         | ΔΙα            |      |       | 0.1  | mA     |
| Output Noise Voltage                         | 10Hz≤f≤1               | 00kHz, Tյ=25ºC                                                          | V <sub>N</sub> |      | 40    |      | μV     |
| Ripple Rejection Ratio                       | F=120Hz,               | F=120Hz, 7.5V≤Vin≤20V                                                   |                | 41   | 49    |      | dB     |
| Voltage Drop                                 | I <sub>OUT</sub> =100n | I <sub>OUT</sub> =100mA, T <sub>J</sub> =25°C                           |                |      | 1.7   |      | V      |
| Peak Output Current                          | TJ=25°C                |                                                                         | lo peak        |      | 0.15  |      | А      |
| Temperature Coefficient of<br>Output Voltage | I <sub>OUT</sub> =5mA  | I <sub>OUT</sub> =5mA, 0°C≤TJ≤150°C                                     |                |      | -0.65 |      | mV/ °C |

Note:

1. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately

2. This specification applies only for DC power dissipation permitted by absolute maximum ratings.



| ELECTRICAL SPEC                              | FICATIO                 | ONS TS78L09                      |                               |           |      |      |        |
|----------------------------------------------|-------------------------|----------------------------------|-------------------------------|-----------|------|------|--------|
| (VIN=15V, IOUT=40mA, 0°C $\leq$ T            | J≤125ºC, C              | и»=0.33μF, Couт=0.1μ             | F, unless other               | wise note | ed)  |      |        |
| PARAMETER                                    | C                       | CONDITIONS                       |                               | MIN       | ТҮР  | MAX  | UNIT   |
|                                              | TJ=25°C                 | TJ=25°C                          |                               | 8.65      | 9    | 9.36 | V      |
| Output voltage                               |                         | 11.5V≤Vin≤23V,<br>5mA≤louт≤100mA |                               | 8.57      | 9    | 9.45 | V      |
| Line Regulation                              | TJ=25°C                 | 11.5V≤Vin≤23V<br>Iouт=40mA       | REGLINE                       |           | 90   | 180  | mV     |
| Lood Desulation                              | TJ=25⁰C                 | 5mA≤louт≤100mA                   | REGLOAD                       |           | 30   | 90   | mV     |
| Load Regulation                              | 1J=25°C                 | 5mA≤I <sub>OUT</sub> ≤40mA       |                               |           | 15   | 45   |        |
| Quiescent Current                            | I <sub>OUT</sub> =0, TJ | I <sub>ОUT</sub> =0, Тј=25°С     |                               |           | 3    | 6    | mA     |
|                                              | 11.5V≤Vir               | า≤23V                            |                               |           |      | 1.5  | mA     |
| Quiescent Current Change                     | 5mA≤I <sub>OUT</sub>    | ≤40mA                            | Δlq                           |           |      | 0.1  |        |
| Output Noise Voltage                         | 10Hz≤f≤1                | 00kHz, TJ=25ºC                   | V <sub>N</sub>                |           | 60   |      | μV     |
| Ripple Rejection Ratio                       | F=120Hz,                | F=120Hz, 11.5V≤Vin≤23V           |                               | 37        | 57   |      | dB     |
| Voltage Drop                                 | lout=100r               | Ιουτ=100mA, ΤJ=25°C              |                               |           | 1.7  |      | V      |
| Peak Output Current                          | TJ=25°C                 |                                  |                               |           | 0.15 |      | А      |
| Temperature Coefficient of<br>Output Voltage | I <sub>оυт</sub> =5mA   | , 0ºC≤TJ≤150ºC                   | $\Delta V_{OUT}/\Delta T_{J}$ |           | -0.9 |      | mV/ ∘C |

| PARAMETER                                    | CONDITIONS                 |                                     | SYMBOL         | MIN   | ТҮР  | MAX   | UNIT   |
|----------------------------------------------|----------------------------|-------------------------------------|----------------|-------|------|-------|--------|
|                                              | TJ=25°C                    |                                     |                | 11.53 | 12   | 12.48 | V      |
| Output voltage                               |                            | 14.5V≤Vin≤27V,<br>5mA≤louт≤100mA    |                | 11.42 | 12   | 12.60 | V      |
| Line Regulation                              | TJ=25°C                    | 14.5V≤Vin≤27V<br>Iouт=40mA          | REGLINE        |       | 120  | 240   | mV     |
| Land Damilation                              | T. 0500                    | $5mA \le I_{OUT} \le 100mA$         | REGLOAD        |       | 40   | 120   |        |
| Load Regulation                              | TJ=25°C                    | 5mA≤I <sub>OUT</sub> ≤40mA          |                |       | 20   | 60    | mV     |
| Quiescent Current                            | Iout=0, TJ                 | louт=0, ТJ=25°С                     |                |       | 3    | 6.5   | mA     |
|                                              | 14.5V≤Vin≤27V              |                                     |                |       | 1.5  |       |        |
| Quiescent Current Change                     | 5mA≤I <sub>OUT</sub> ≤40mA |                                     | ΔΙα            |       |      | 0.1   | mA     |
| Output Noise Voltage                         | 10Hz≤f≤1                   | 00kHz, TJ=25⁰C                      | V <sub>N</sub> |       | 80   |       | μV     |
| Ripple Rejection Ratio                       | F=120Hz,                   | 14.5V≤Vin≤27V                       | RR             | 37    | 42   |       | dB     |
| Voltage Drop                                 | lout=100n                  | lо∪т=100mA, ТJ=25°С                 |                |       | 1.7  |       | V      |
| Peak Output Current                          | TJ=25°C                    | TJ=25°C                             |                |       | 0.15 |       | А      |
| Temperature Coefficient of<br>Output Voltage | I <sub>OUT</sub> =5mA      | I <sub>OUT</sub> =5mA, 0°C≤TJ≤150°C |                |       | -1.0 |       | mV/ °C |

Note:

1. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately

2. This specification applies only for DC power dissipation permitted by absolute maximum ratings.



Taiwan Semiconductor

| ELECTRICAL SPECI                             | FICATIO                          | DNS TS78L15                      |                               |           |      |       |        |
|----------------------------------------------|----------------------------------|----------------------------------|-------------------------------|-----------|------|-------|--------|
| (VIN=23V, IOUT=40mA, 0°C $\leq$ T            | j≤125°C, C                       | ν=0.33μF, Cout=0.1μl             | F, unless other               | wise note | ed)  | 1     |        |
| PARAMETER                                    | CONDITIONS                       |                                  | SYMBOL                        | MIN       | ТҮР  | MAX   | UNIT   |
|                                              | TJ=25°C                          | TJ=25°C                          |                               | 14.42     | 15   | 15.60 | V      |
| Output voltage                               |                                  | 17.5V≤Vin≤30V,<br>5mA≤louт≤100mA |                               | 14.28     | 15   | 15.75 | V      |
| Line Regulation                              | TJ=25°C                          | 17.5V≤Vin≤30V<br>Io∪т=40mA       | REGLINE                       |           | 150  | 300   | mV     |
| Land Desulation                              | T. 0500                          | 5mA≤I <sub>OUT</sub> ≤100mA      | REGLOAD                       |           | 50   | 150   |        |
| Load Regulation                              | TJ=25°C                          | 5mA≤I <sub>OUT</sub> ≤40mA       |                               |           | 25   | 75    | mV     |
| Quiescent Current                            | Iout=0, TJ                       | lо∪т=0, ТJ=25°С                  |                               |           | 3    | 6.6   | mA     |
|                                              | 17.5V≤Vir                        | ו≤30V                            |                               |           |      | 1.5   | mA     |
| Quiescent Current Change                     | 5mA≤lout                         | ≤40mA                            | ΔΙα                           |           |      | 0.1   |        |
| Output Noise Voltage                         | 10Hz≤f≤1                         | 00kHz, TJ=25⁰C                   | V <sub>N</sub>                |           | 90   |       | μV     |
| Ripple Rejection Ratio                       | F=120Hz,                         | 17.5V≤Vin≤30V                    | RR                            | 34        | 39   |       | dB     |
| Voltage Drop                                 | I <sub>OUT</sub> =100mA, TJ=25°C |                                  | VDROP                         |           | 1.7  |       | V      |
| Peak Output Current                          | TJ=25°C                          |                                  | lo peak                       |           | 0.15 |       | А      |
| Temperature Coefficient of<br>Output Voltage | I <sub>OUT</sub> =5mA            | , 0°C≤TJ≤150°C                   | $\Delta V_{OUT}/\Delta T_{J}$ |           | -1.3 |       | mV/ °C |

| PARAMETER                                    | C                          | CONDITIONS                           |                | MIN   | ТҮР  | MAX   | UNIT   |
|----------------------------------------------|----------------------------|--------------------------------------|----------------|-------|------|-------|--------|
|                                              | TJ=25°C                    | TJ=25°C                              |                | 23.07 | 24   | 24.96 | V      |
| Output voltage                               |                            | 27V≤Vin≤38V,<br>5mA≤I₀uт≤100mA       |                | 22.85 | 24   | 25.20 | V      |
| Line Regulation                              | TJ=25°C                    | 27≤Vin≤38V<br>I <sub>o∪T</sub> =40mA | REGLINE        |       | 200  | 400   | mV     |
| Lead Devulation                              | T. 0500                    | 5mA≤I <sub>OUT</sub> ≤100mA          | REGLOAD        |       | 80   | 240   |        |
| Load Regulation                              | TJ=25⁰C                    | 5mA≤I <sub>OUT</sub> ≤40mA           |                |       | 40   | 120   | mV     |
| Quiescent Current                            | Ιουτ=0, TJ                 | lоuт=0, Тj=25°С                      |                |       | 4    | 7     | mA     |
|                                              | 27V≤Vin≤                   | 38V                                  |                |       |      | 1.5   |        |
| Quiescent Current Change                     | 5mA≤I <sub>OUT</sub> ≤40mA |                                      | Δlq            |       |      | 0.1   | mA     |
| Output Noise Voltage                         | 10Hz≤f≤1                   | 00kHz, TJ=25⁰C                       | V <sub>N</sub> |       | 200  |       | μV     |
| Ripple Rejection Ratio                       | F=120Hz,                   | 27V≤Vin≤38V                          | RR             | 31    | 45   |       | dB     |
| Voltage Drop                                 | lout=100n                  | Iout=100mA, TJ=25°C                  |                |       | 1.7  |       | V      |
| Peak Output Current                          | TJ=25°C                    | TJ=25°C                              |                |       | 0.15 |       | А      |
| Temperature Coefficient of<br>Output Voltage | I <sub>OUT</sub> =5mA      | I <sub>OUT</sub> =5mA, 0°C≤TJ≤150°C  |                |       | -2.0 |       | mV/ ∘C |

Note:

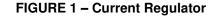
1. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately

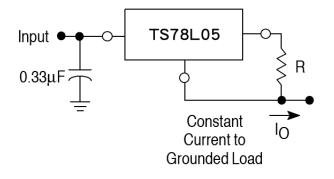
2. This specification applies only for DC power dissipation permitted by absolute maximum ratings.



### **ORDERING INFORMATION**

| OUTPUT VOLTAGE | PART NO.       | PACKAGE | PACKING             |
|----------------|----------------|---------|---------------------|
|                | TS78L03ACY RMG | SOT-89  | 1,000pcs / 7" Reel  |
| 3.3V           | TS78L03CX RFG  | SOT-23  | 3,000pcs / 7"Reel   |
|                | TS78L03CS RLG  | SOP-8   | 2,500pcs / 13" Reel |
|                | TS78L05ACY RMG | SOT-89  | 1,000pcs / 7" Reel  |
| 5V             | TS78L05CX RFG  | SOT-23  | 3,000pcs / 7"Reel   |
|                | TS78L05CS RLG  | SOP-8   | 2,500pcs / 13" Reel |
|                | TS78L09ACY RMG | SOT-89  | 1,000pcs / 7" Reel  |
| 9V             | TS78L09CX RFG  | SOT-23  | 3,000pcs / 7"Reel   |
|                | TS78L09CS RLG  | SOP-8   | 2,500pcs / 13" Reel |
| 10)/           | TS78L12ACY RMG | SOT-89  | 1,000pcs / 7" Reel  |
| 12V            | TS78L12CS RLG  | SOP-8   | 2,500pcs / 13" Reel |
| 15)/           | TS78L15ACY RMG | SOT-89  | 1,000pcs / 7" Reel  |
| 15V            | TS78L15CS RLG  | SOP-8   | 2,500pcs / 13" Reel |
| 24V            | TS78L24CS RLG  | SOP-8   | 2,500pcs / 13" Reel |





# **APPLICATION INFORMATION**

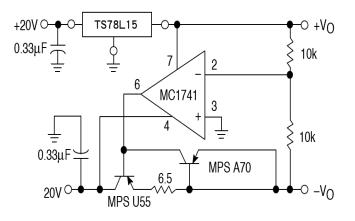
#### **Design Considerations**

The TS78L00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit protection limits the maximum current the circuit will pass.

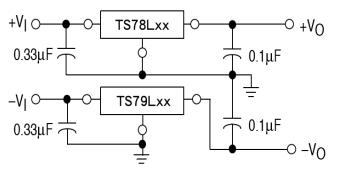
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A  $0.33\mu$ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.






The TS78L00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the TS78L05 is chosen in this application. Resistor R determines the current as follows:

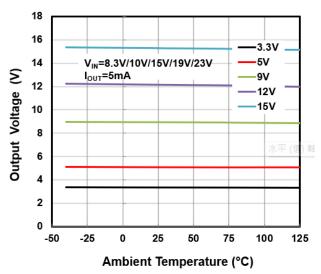
$$lo = \frac{5.0V}{R} + l_B$$


 $I_{\text{IB}}{=}3.8\text{mA}$  over lined and load changes

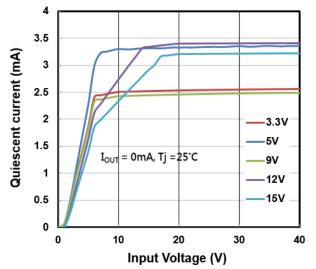
For example, a 100mA current source would require R to be a  $50\Omega$ . 1/2W resistor and the output voltage compliance would be the input voltage less 7V.

#### FIGURE 2 – ±15V Tracking Voltage Regulator




#### FIGURE 3 – ±15V Tracking Voltage Regulator






# TS78L00 Series Taiwan Semiconductor

# **ELECTRICAL CHARACTERISTICS CURVE**









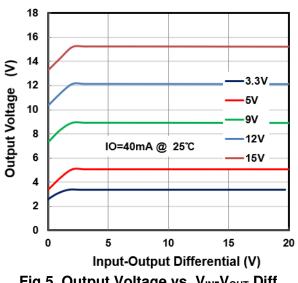



Fig 5. Output Voltage vs. VIN-VOUT Diff.

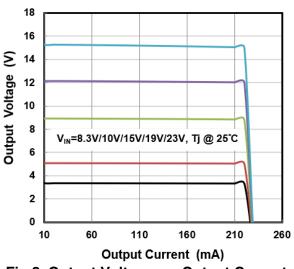
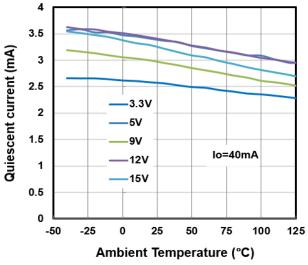
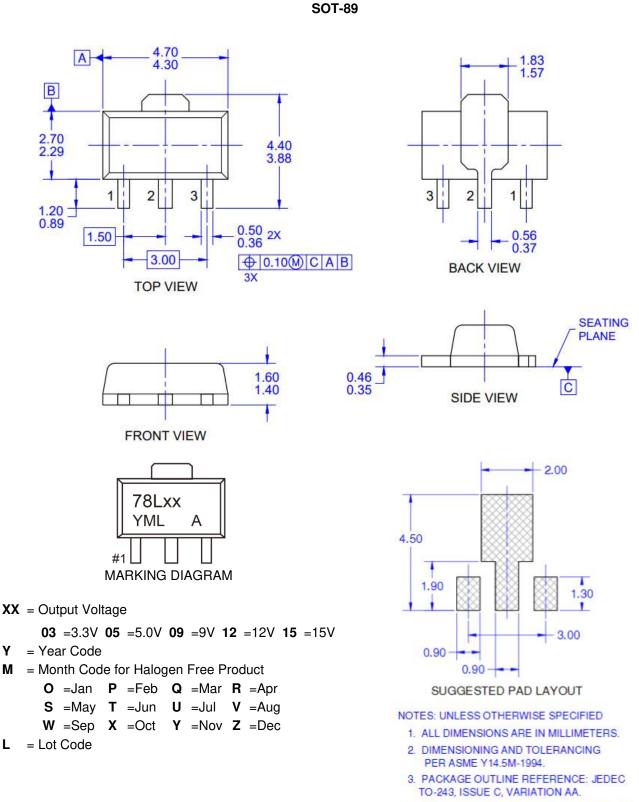



Fig 2. Output Voltage vs. Output Current

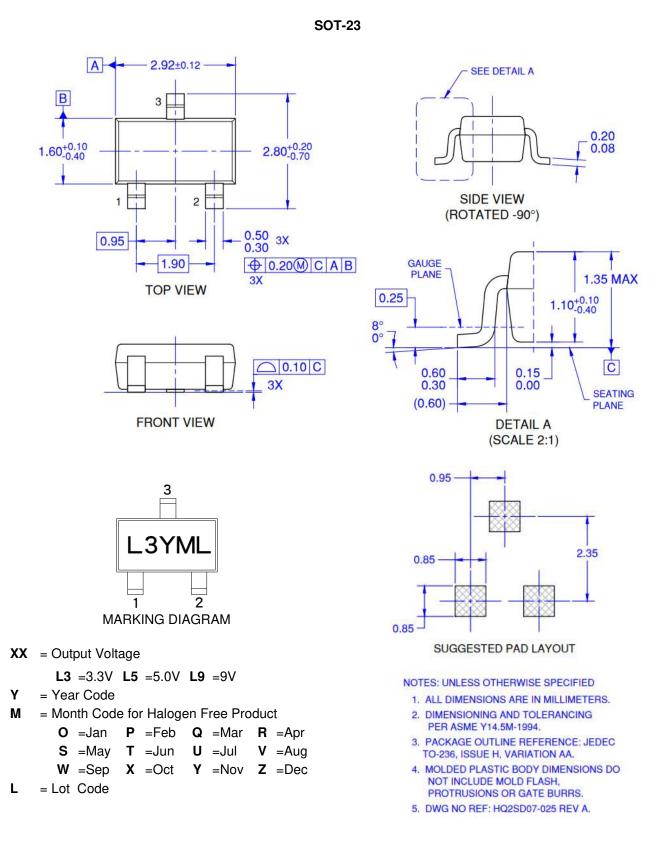




Fig 4. Quiescent Current vs. Temperature



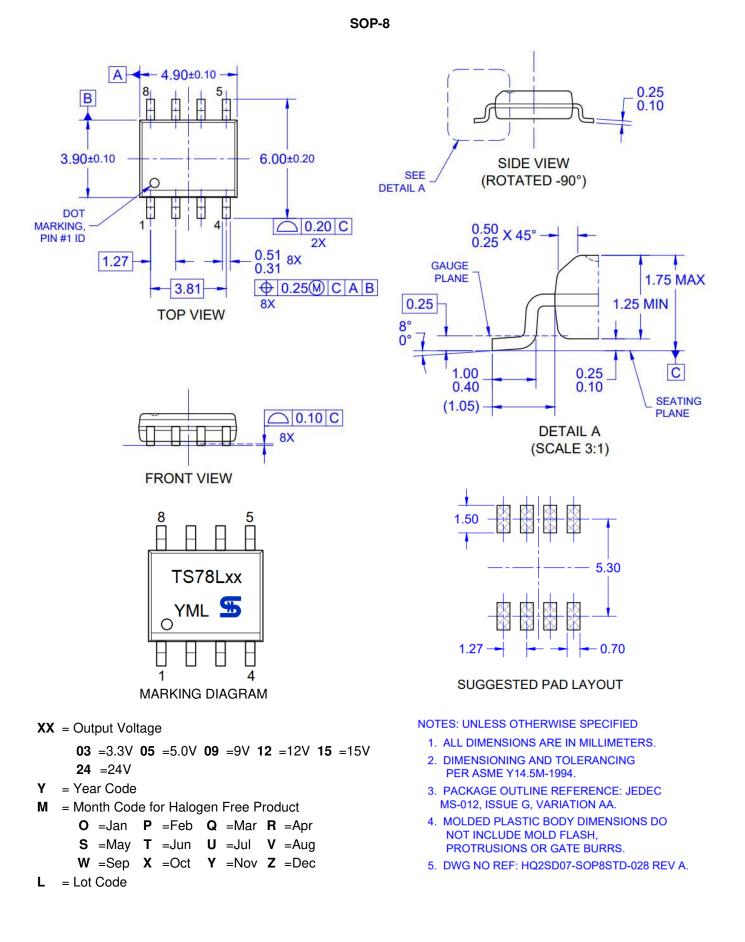
Υ

L


# **PACKAGE OUTLINE DIMENSIONS**



- 4. MOLDED PLASTIC BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS.
- 5. DWG NO REF: HQ2SD07-024 REV A.




# PACKAGE OUTLINE DIMENSIONS





# **PACKAGE OUTLINE DIMENSIONS**





Taiwan Semiconductor

# Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.