Passion to Exceed					bea ed Precision
DWG No.	External product specification	Rev.	D	Page	1 / 16

Product Specification

CLSD-020-PRG-G2

10W-20W LED Dimmable Driver

			Minebea Passion to Exceed Precision		
DWG No.	External product specification	Rev.	D	Page	2 / 16

Table of Contents:

1	(Gene	ral	3
2	E	Electr	ical Characteristics	3
3	Ι	Dimm	ing	5
4	1	NMB'	s LED Driver Set-Up Application Software	6
	4.1	Pro	gramming	7
	4.2	Briç	ghtness Compensation	8
	4.3	Dia	gnostics	9
	4.4	Din	nming Selector	9
5	F	Prote	ction Functions	11
6	ę	Safety	y/ EMI/ Environmental/ Reliability Standards	12
	6.1	Saf	ety Standards	12
	6.2	EM	C Requirements	12
	6.3	Rel	iability/ Quality Requirements	12
	6.4	Env	vironmental Requirements	13
	6	5.4.1	Climate specification	13
	6	6.4.2	Vibration specification	13
	6	6.4.3	Green specification	13
7	(Conne	ections	14
8	ſ	Mech	anical Dimensions	15
9	۱	Neigł	nt	15
10	L	abel		16
Re	evis	ion H	listory	16

	Passion to Exceed Precis				
DWG No.	External product specification	Rev.	D	Page	3 / 16

1 General

CLSD-020-PRG-G2 is a 10-20W programmable and dimmable LED driver with a wide output current range. The driver can be dimmed either by a PWM (Pulse Width Modulation) signal or by a 0-10V dimmer. Also an Off-State is implemented which can be entered by PWM dimming control. Due to its digital control various settings can be programmed by the user. Programming requires the use of the CLSD-PRG-BOX-G2 Programming Box plus NMB's LED Driver Set-up Application Software. Figure 1 shows the topology of the LED driver.

Fig.1: Block diagram of LED driver

2 Electrical Characteristics

The Figure 2 shows the operating area of the LED driver.

Fig. 2: Operating area

Confidential All rights reserved

		Passion to Exceed Precision			
DWG No.	External product specification	Rev.	D	Page	4 / 16

Parameters are given for maximum rated power and 25°C unless otherwise specified. Stresses exceeding the absolute maximum ratings may damage the device.

Parameter	Condition		Spec			
i urumeter	Condition	Min.	Тур.	Max.		
	Maximal range	90	-	305	V	
Input RMS Voltage	Operating range	100	-	240	V	
	Operating range for North America only	100	-	277	V	
Mains Frequency	-	-	60/50	-	Hz	
Maximum Total Harmonic Distortion of the Input Voltage	-	-	-	5	%	
Input RMS Power	-	-	-	26	W	
Off-State Power Consumption	-	-	-	0.5	W	
Input RMS Current	-	-	-	0.3	A	
Inrush Peak Current	V _{in} =277V	-	-	36	A	
Power Factor	-	0.90	-	-	-	
	Programmable	0.35	-	2.0	Α	
	With Dimming	0.10	-	2.0	A	
Output Current Tolerance	-	-	±5	-	%	
Output Voltage Ripple ¹	-	-	-	0.45	V	
Output DC Voltage	-	5	-	42	V	
Output Power	Without Dimming	10	-	20	W	
Efficiency		-	90	-	%	
Start Time		-	-	1	S	

 $^{^1}$ Ripple voltage is measured at 20MHz of bandwidth and terminating the output with a 0.1 μF ceramic capacitor and a 10 μF Al-capacitor in parallel.

	Passion to Exceed Precis				
DWG No.	External product specification	Rev.	D	Page	5 / 16

3 Dimming

The dimming interface can be used for 0-10V and for PWM signals. It is compliant to IEC60929 as well as to ANSI E1.3. The LED driver is set to Off-State if a PWM-signal with duty cycle >95% is applied to the dimming interface.

The dimming characteristic for 0-10V dimming can be programmed by the user (see Section 4.4). The default characteristic is shown in Fig. 3. The dimming curve for PWM dimming is shown in Fig. 4. The dimmed output current is limited to 100mA (see Section 2).

Fig.3: Typical 0-10V dimming graph

Fig.4: Typical PWM dimming characteristic

Confidential All rights reserved

			Passion to Exceed Precision			
DWG No.	External product specification	Rev.	D	Page	6 / 16	

Parameter	Condition		Unit		
		Min.	Тур.	Max.	
Min. Dimming Ratio	0-10V	-	10	-	%
	PWM dimming	-	0	-	%
0-10V Voltage Level Range	0-10V	0	-	10	V
0-10V Input Current	0-10V	10	-	2000	μΑ
PWM Voltage	PWM Low Level	0	-	1.5	V
	PWM High Level	10	-	25	V
PWM Frequency	PWM dimming	100	-	1000	Hz

4 NMB's LED Driver Set-Up Application Software

Programming the LED driver requires the use of the programming box CLSD-PRG-BOX-G2 and NMB's LED Driver Set-Up Application Software. Driver installation, Programming instructions, and support are available at: <u>http://www.nmbtc.com/lighting/support</u>.

System requirements:

- Windows XP (32 bit)
- Windows Vista
- Windows 7
- Windows 8
- Microsoft.NET Framework 4.0

The programming utility contains four tabs for various LED driver settings:

- Programming
- Brightness Compensation
- Diagnostics
- Dimming Selector

The LED driver must not be connected to mains while programming. Programming will also not work if the dimming interface is not open circuited.

		Minebea Passion to Exceed Precision			
DWG No.	External product specification	Rev.	D	Page	7 / 16

4.1 Programming

Figure 5 shows programming tab. After connecting the LED Driver via the programming box to the PC, the LED Driver is automatically detected and displayed in the 'Driver specification' block. Also the actual settings are read and shown in the 'Driver Settings' block.

The desired output current value can be entered by using the text field or the slider in the 'Current Configuration'. The corresponding admissible LED voltage range is shown below automatically.

Besides the output current setting also the dimming methods and protection settings can be set in the block 'Advanced Configuration'. The dimming control method can be chosen (0-10V / PWM) or be de-activated. The default values of 'Over Temperature' and 'Overvoltage' limitation can be reduced.

The File menu allows to save the current settings to a file and to load previous settings. The Help menu provides a help file with brief descriptions of all fields.

🗮 Performance Line Programming Utility		×
File Help		
Programming Brightness Compe	nsation	Diagnostics Dimming Selector
CLSD-020-PRG-G2		
		NMB Minebea
Driver Specification		Current Configuration
Current Range: 0.35 - 2.0	0 A	
Voltage Range: 5.0 - 42.	0 V	
Power Rating: 10 - 2	0 W	Voltage Range: 28.6 - 42.0 V
Driver Settings		Advanced Configuration
Output Current Level: 35	0 mA	Dimming Control
Voltage Range: 28.6 - 42.	0 V	C None
Dimming Control Mode: Non	е	Mode Analog (0V - 10V) <u>Dimmer: Default</u>
Max. ambient temperature: 6	o °C	C PWM
Max operating voltage: 4	2 V	System Protection
max. operating relation		Max. ambient temperature 60 °C -
		Max. operating voltage 42 V
Ready to program!		Program Driver
Caution: Do no	t connect	t AC power and Dimmer while programming.

Fig. 5: LED Driver Programming Utility - Programming Tab

			Minebea Passion to Exceed Precision		
DWG No.	External product specification	Rev.	D	Page	8 / 16

4.2 Brightness Compensation

In order to compensate the reducing LED brightness over its operating time the output current of the driver can be increased over its operating time. Figure 6 shows the curve editor of the Brightness Compensation tab.

- <u>Adding a point</u>: A point can be added simply by clicking on the desired location in the diagram.
- <u>Modifying a point</u>: A point can be modified by clicking the left mouse button on it, holding the left mouse button and then moving the point to the desired location.
- <u>Deleting a point</u>: A point can be deleted by using the context menu when clicking the right mouse button it.
- <u>Deleting all points</u>: All points can be deleted by using the "Edit" menu

In the initial setting the output current ratio is set to 100% for all operating hours.

Fig. 6: Brightness Compensation curve editor

	Passion to Exceed		bea ed Precision		
DWG No.	External product specification	Rev.	D	Page	9 / 16

4.3 Diagnostics

The driver also stores its operating hours and the number of error occurrences as shown in Fig. 7. The LED operating time and the error occurrences can be reset – e.g. when a new LED module is connected to the driver. But the driver operating hours are of course not resettable.

📰 Performance Line Programming) Utility		×
File Help			
Programming Brightnes	s Compensation	Diagnostics Dimming S	elector
Driver operating hours Short Circuit	00:00 h	Overtemperature LED operating hours	0 00:00 h
Mains failure	0	Output overvoltage Reset o	0 diagnostics
			operating hours
Ready to program!			Program Driver
Cauti	on: Do not connect A	C power and Dimmer while pr	ogramming.

Fig. 7: LED Driver Programming Utility - Diagnostic tab

4.4 Dimming Selector

When using a 0-10V dimmer, the dimming characteristic can be modified according to the used dimmer. Commercial dimmers are usually consisting of a variable resistor and additional protection functions. Unfortunately the resistance ranges are not standardized. Thus each dimmer has its own resistance range. In order to match the dimming interface of the driver to the used dimmer, the dimming characteristic of the CLSD-020-PRG-G2 can be programmed by the user. The Dimming Selector tab allows the user to choose between several commercial dimmers (see Fig. 8). Alternatively the default characteristic (Fig. 3) can be chosen. If the used dimmer is not listed on this tab a user-defined curve can be entered.

Confidential All rights reserved

			Minebea Passion to Exceed Precision		bea ed Precision
DWG No.	External product specification	Rev.	D	Page	10 / 16

E Performance Line	Programming Utility			×
File Help				
Programming	Brightness Compensation	Diagnostics	Dimming Selector	
Dimmer man Default User defined. Leviton Lutron hager GIRA Berker Merten Siemens LUMEO legrand Philips Part number DVTV-WH	ufacturer			
Ready to progra	m!			Program Driver
	Caution: Do not connect.	AC power and Dir	nmer while programming.	

Fig. 8: LED Driver Programming Utility – Dimming Selector tab

The minimum and/or maximum resistance value of most commercial dimmers can be set by an internal potentiometer (the user can set it by either using a screw driver or by a trimpot wheel). In order to make best use of the dimmer these should always be set such that the resistance range is maximized (minimize "Min" value and maximize "Max" value – please see the manual of the corresponding dimmer). The dimming characteristics implemented in the programming utility always require that this is done.

			Minebea Passion to Exceed Precision		bea ed Precision
DWG No.	External product specification	Rev.	D	Page	11 / 16

5 Protection Functions

CLSD-020-PRG-G2 provides protection functions in order to prevent itself and its application from damage. In case of any abnormal operation is detected the driver shuts down and restarts after 5s.

Ingress protection	IP20
Short circuit protection (Resistor<0.3 Ohm)	The driver is turned off and restarts after 5s automatically.
No load operation	The driver is turned off and restarts after 5s automatically. Thereby the maximum output voltage is limited to below 50V.
Over temperature protection	Over temperature is detected by a thermistor on board. The over temperature shutdown value can be reduced by the user. If this value is exceeded driver is turned off and restarts after 5s automatically.
Over voltage protection	Over voltage protection is triggered when the output voltage exceeds 110% of the maximal admissible output voltage (see Fig. 2). This value can be reduced by the user. If its exceeded the driver is turned off and restarts after 5s automatically.
Over load protection	The output power is limited to 25W. If its exceeded the driver is turned off and restarts after 5s automatically.

6 Safety/ EMI/ Environmental/ Reliability Standards

6.1 Safety Standards

Protection class	II
Safety requirements	UL8750, UL60950, UL1310 Class 2 Output (NEC Class 2), CSA C22.2 No 107 , CSA C22.2 N0.223, EN 60335-1, EN61347-1, EN61347-2-13
Test Reports	UL Report, CB-Report/CE-Report
Safety Marks (on the product)	CE-Mark, UL, cUL, ENEC

6.2 EMC Requirements

EMC Standard	FCC Part 15 Class B, EN 55015 Class B	
Harmonic current	EN 61000-3-2:2006 Class C	
Flicker	EN 61000-3-3: 2000	
Immunity	EN 61547: 2009	
Surge voltageEN 61000-4-52kV AC input lines		
Fast transients	EN 61000-4-4 2kV AC input lines	

6.3 Reliability/ Quality Requirements

MTBF	> 100.000 h according to MIL 217f at 25°C ambient temperature
Product Life	48 000h at 60°C ambient temperature 130 000h at 45°C ambient temperature

			Minebea Passion to Exceed Precision		
DWG No.	External product specification	Rev.	D	Page	13 / 16

6.4 Environmental Requirements

6.4.1 Climate specification

Parameter	Condition	Spec		Unit
i arameter	Condition	Min.	Max.	
Storage Temperature	Storage Humidity: 95 %RH	-40	85	°C
Storage Humidity	Storage Temperature: -40 to 85 °C	5	95	%RH
Operating Temperature	-	-25	60	°C
Case Temperature	-		90	°C

6.4.2 Vibration specification

The power supply will survive without any damage if the SSL converter is submitted to the following test conditions:

Shock	Pulse shape : half sine Acceleration: 300 m/s ² Duration: 11 ms Direction: Three axes The number of times: 3 times each (total 18 times) Time between pulse: 3s
Vibration	Frequency: $5 \sim 55$ Hz ($5 \sim 10$ Hz: 1.5 mm), ($10 \sim 55$ Hz: 29.4 m/s ²) Sweep rate : 1 Oct/min Direction: X, Y, Z 10 sweep for each axis (2 sweeps=1 cycle)

6.4.3 Green specification

Green SSL driver - RoHS conform (Restriction of hazardous substances)	The power supply meets RoHS (EU Directive 2002/95/EC). This means, the following material have to meet their threshold values in homogenous material:		
	 Lead, mercury, hexavalent chromium, PBB and PBDE≤ 0.1% by weight cadmium≤ 0.01% by weight 		
WEEE	Confirm EU Directive 2002/96/EC		

	Passion to Exceed			bea ed Precision	
DWG No.	External product specification	Rev.	D	Page	14 / 16

7 Connections

The LED driver is equipped with wire-leads for input and output connection.

Connections without dimming

Passion			n to Excee	bea ed Precision	
DWG No.	External product specification	Rev.	D	Page	15 / 16

8 Mechanical Dimensions

The LED driver has a plastic enclosure.

Length	105.4 mm
Width	70.4 mm
Heigth	28 mm

9 Weight

Weight 220 gr

Pas			Passio	n to Exce	bea ed Precision
DWG No.	External product specification	Rev.	D	Page	16 / 16

10 Label

Revision History

Rev. Level	Date	Major Changes	Responsible
-	19.7.2013	Initial version	Oehmen
A	29.7.2013	Windows 8 support 305VAC max. input voltage -25°C min. ambient operating temperature Lifetime	Oehmen
В	23.8.2013	Dimming Selector Brightness Compensation	Oehmen
С	22.11.2013	EN60335 277VAC input voltage for North America Label	Oehmen
D	18.2.2014	Fig updated	Sherman