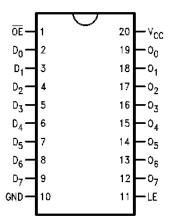


74ACQ573, 74ACTQ573 Quiet Series™ Octal Latch with 3-STATE Outputs

Features

- I_{CC} and I_{OZ} reduced by 50%
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Improved latch-up immunity
- Inputs and outputs on opposite sides of package allow easy interface with microprocessors
- Outputs source/sink 24mA

General Description

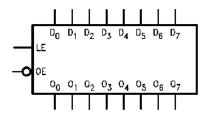

The ACQ/ACTQ573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (OE) inputs. The ACQ/ACTQ573 is functionally identical to the ACQ/ACTQ373 but with inputs and outputs on opposite sides of the package. The ACQ/ACTQ utilizes Fairchild's Quiet Series™ technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Ordering Information

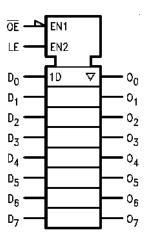
Onder Neverlee	Package	Backers Backinting
Order Number	Number	Package Description
74ACQ573SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACQ573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACQ573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACTQ573SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACTQ573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ573QSC	MQA20	20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
74ACTQ573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

Connection Diagram



Pin Descriptions


Pin Names	Description
D ₀ –D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	3-STATE Output Enable Input
O ₀ -O ₇	3-STATE Latch Outputs

FACT™, Quiet Series™, FACT Quiet Series™, and GTO™ are trademarks of Fairchild Semiconductor Corporation.

Logic Symbol

IEEE/IEC

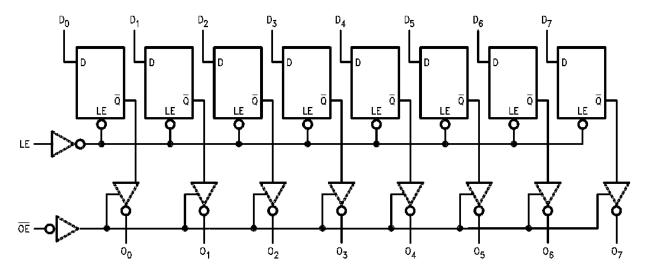
Functional Description

The ACQ/ACTQ573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D-type input changes. When LE is LOW the latches store the information that was present on the D-type inputs at setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

	Outputs		
ŌĒ	LE	D	O _n
L	Н	Н	Н
L	Н	L	L
L	L	Х	O ₀
Н	Х	Х	Z

H = HIGH Voltage


L = LOW Voltage

Z = High Impedance

X = Immaterial

 $\mathrm{O}_0 = \mathrm{Previous} \; \mathrm{O}_0$ before HIGH-to-LOW transition of Latch Enable

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5V$	+20mA
V _I	DC Input Voltage	-0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
Vo	DC Output Voltage	-0.5V to V _{CC} + 0.5V
Io	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	−65°C to +150°C
	DC Latch-Up Source or Sink Current	±300mA
T _J	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	ACQ	2.0V to 6.0V
	ACTQ	4.5V to 5.5V
V _I	Input Voltage	0V to V _{CC}
V _O	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
ΔV / Δt	Minimum Input Edge Rate, ACQ Devices:	125mV/ns
	V_{IN} from 30% to 70% of V_{CC} , V_{CC} @ 3.0V, 4.5V, 5.5V	
ΔV / Δt	Minimum Input Edge Rate, ACTQ Devices:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

DC Electrical Characteristics for ACQ

				T _A = -	+25°C	T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	3.0	$V_{OUT} = 0.1V$ or	1.5	2.1	2.1	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
V _{IL}	Maximum LOW Level	3.0	$V_{OUT} = 0.1V$ or	1.5	0.9	0.9	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V_{OH}	Minimum HIGH Level	3.0	$I_{OUT} = -50\mu A$	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		3.0	$I_{OH} = -12mA$		2.56	2.46	
		4.5	I _{OH} = -24mA		3.86	3.76	
		5.5	$I_{OH} = -24 \text{mA}^{(1)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	3.0		0.002	0.1	0.1	
	Output Voltage	4.5	$I_{OUT} = 50\mu A$	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		3.0	$I_{OL} = 12mA$		0.36	0.44	
		4.5	I _{OL} = 24mA		0.36	0.44	
		5.5	$I_{OL} = 24 \text{mA}^{(1)}$		0.36	0.44	
I _{IN} ⁽³⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		± 0.1	± 1.0	μA
I _{OLD}	Minimum Dynamic	5.5	$V_{OLD} = 1.65 V_{Max}$			75	mA
I _{OHD}	Output Current ⁽²⁾	5.5	$V_{OHD} = 3.85 V_{Min}$			-75	mA
I _{CC} ⁽³⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5	V_{I} (OE) = V_{IL} , V_{IH} ; V_{I} = V_{CC} , GND; V_{O} = V_{CC} , GND		±0.25	±2.5	μА
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	1.1	1.5		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	-0.6	-1.2		V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(5)	3.1	3.5		V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(5)	1.9	1.5		V

Notes

- 1. All outputs loaded; thresholds on input associated with output under test.
- 2. Maximum test duration 2.0ms, one output loaded at a time.
- 3. I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .
- 4. Max number of outputs defined as (n). Data Inputs are driven 0V to 5V. One output @ GND.
- 5. Max number of Data Inputs (n) switching. (n 1) Inputs switching 0V to 5V (ACQ). Input-under-test switching: 5V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) , f = 1MHz.

DC Electrical Characteristics for ACTQ

				T _A = -	+25°C	T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V$ or	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	
V _{IL}	Maximum LOW Level	4.5	$V_{OUT} = 0.1V$ or	1.5	0.8	0.8	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	I _{OUT} = -50μA	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		4.5	$I_{OH} = -24 \text{mA}$		3.86	3.76	
		5.5	$I_{OH} = -24 \text{mA}^{(6)}$		4.86	4.76	
V_{OL}	Maximum LOW Level	4.5	$I_{OUT} = 50\mu A$	0.001	0.1	0.1	V
	Output Voltage	5.5		0.001	0.1	0.1	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		4.5	I _{OL} = 24mA		0.36	0.44	
		5.5	$I_{OL} = 24 \text{mA}^{(6)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5	$V_I = V_{IL}, V_{IH};$ $V_O = V_{CC}, GND$		±0.25	±2.5	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_I = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽⁷⁾	5.5	V _{OHD} = 3.85V Min.			- 75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
V_{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	1.1	1.5		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	-0.6	-1.2		V
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(9)	1.9	2.2		V
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(9)	1.2	0.8		V

Notes:

- 6. All outputs loaded; thresholds on input associated with output under test.
- 7. Maximum test duration 2.0ms, one output loaded at a time.
- 8. Max number of outputs defined as (n). Data Inputs are driven 0V to 3V. One output @ GND.
- 9. Max number of data inputs (n) switching. (n 1) inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1MHz.

AC Electrical Characteristics for ACQ

			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF			
Symbol	Parameter	V _{CC} (V) ⁽¹⁰⁾	Min.	Тур.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay,	3.3	2.5	8.5	10.5	2.5	11.0	ns
	D _n to O _n	5.0	1.5	5.5	7.0	1.5	7.5	
t _{PLH} , t _{PHL}	Propagation Delay,	3.3	2.5	8.5	12.0	2.5	12.5	ns
	LE to O _n	5.0	2.0	6.0	8.0	2.0	8.5	
t _{PZL} , t _{PZH}	Output Enable Time	3.3	2.5	8.5	13.0	2.5	13.5	ns
		5.0	1.5	6.0	8.5	1.5	9.0	
t _{PHZ} , t _{PLZ}	Output Disable Time	3.3	1.0	9.0	14.5	1.0	15.0	ns
		5.0	1.0	6.0	9.5	1.0	10.0	
toshl, toshh	Output to Output Skew, D _n to O _n ⁽¹¹⁾	3.3		1.0	1.5		1.5	ns
	D_n to $O_n^{(11)}$	5.0		0.5	1.0		1.0	

Notes:

- 10. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.
- 11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACQ

			T _A = +	⊦25°C, 50pF	$T_A = -40$ °C to +85°C, $C_L = 50$ pF	
Symbol	Parameter	$V_{CC}(V)^{(12)}$	Тур.	Gu	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW,	3.3	0	3.0	3.0	ns
	D _n to LE	5.0	0	3.0	3.0	
t _H	Hold Time, HIGH or LOW,	3.3	0	1.5	1.5	ns
	D _n to LE	5.0	0	1.5	1.5	
t _W	LE Pulse Width, HIGH	3.3	2.0	4.0	4.0	ns
		5.0	2.0	4.0	4.0	

Note:

12. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.

AC Electrical Characteristics for ACTQ

			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF			
Symbol	Parameter	$V_{CC}(V)^{(13)}$	Min.	Тур.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay, D _n to O _n	5.0	2.0	6.5	7.5	2.0	8.0	ns
t _{PLH} , t _{PHL}	Propagation Delay, LE to O _n	5.0	2.5	7.0	8.5	2.5	9.0	ns
t _{PZL} , t _{PZH}	Output Enable Time	5.0	2.0	7.0	9.0	2.0	9.5	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns
t _{OSHL} , t _{OSLH}	Output to Output Skew, D _n to O _n ⁽¹⁴⁾	5.0		0.5	1.0		1.0	ns

Note:

- 13. Voltage range 5.0 is 5.0V ± 0.5V.
- 14. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACTQ

			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF	
Symbol	Parameter	V _{CC} (V) ⁽¹⁵⁾	Тур.	Guaranteed Minimum		Units
t _S	Setup Time, HIGH or LOW, D _n to LE	5.0	0	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW, D _n to LE	5.0	0	1.5	1.5	ns
t _W	LE Pulse Width, HIGH	5.0	2.0	4.0	4.0	ns

Notes:

15. Voltage range 5.0 is $5.0V \pm 0.5V$.

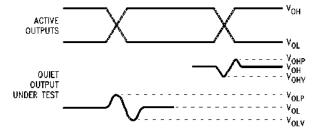
Capacitance

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance	V _{CC} = 5.0V	42.0	pF

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:


Hewlett Packard Model 8180A Word Generator

PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50pF, 500Ω .
- Deskew the HFS generator so that no two channels have greater than 150ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1MHz. Greater frequencies will increase DUT heating and affect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Notes:

- 16. V_{OHV} and V_{OLP} are measured with respect to ground
- 17. Input pulses have the following characteristics: f = 1MHz, $t_r = 3ns$, $t_f = 3ns$, skew < 150ps.

Figure 1. Quiet Output Noise Voltage Waveforms

V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV}:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable.
 Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD}:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

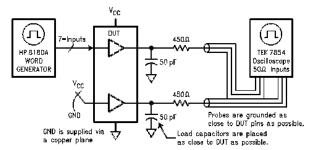
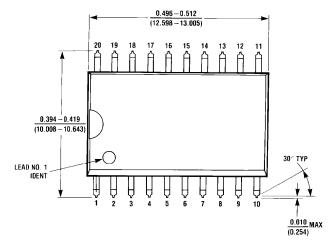
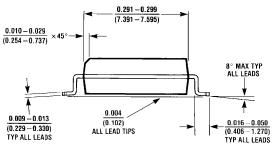




Figure 2. Simultaneous Switching Test Circuit

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

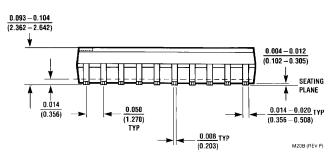


Figure 3. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

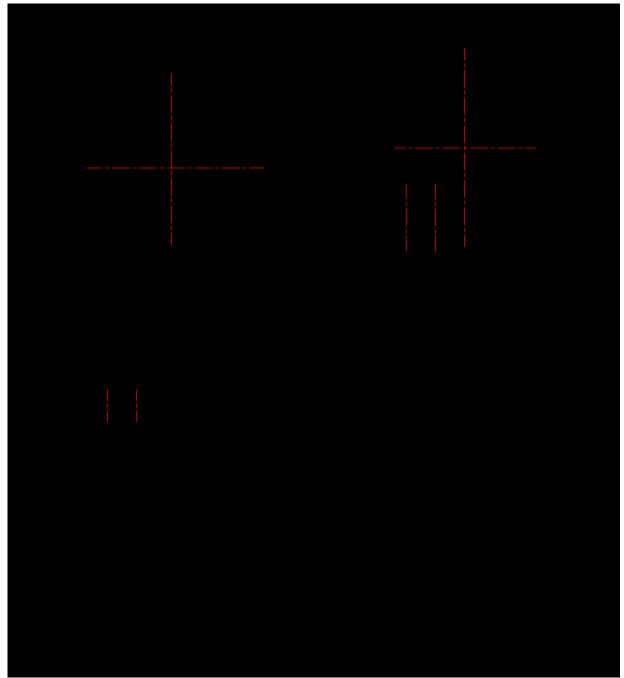


Figure 4. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

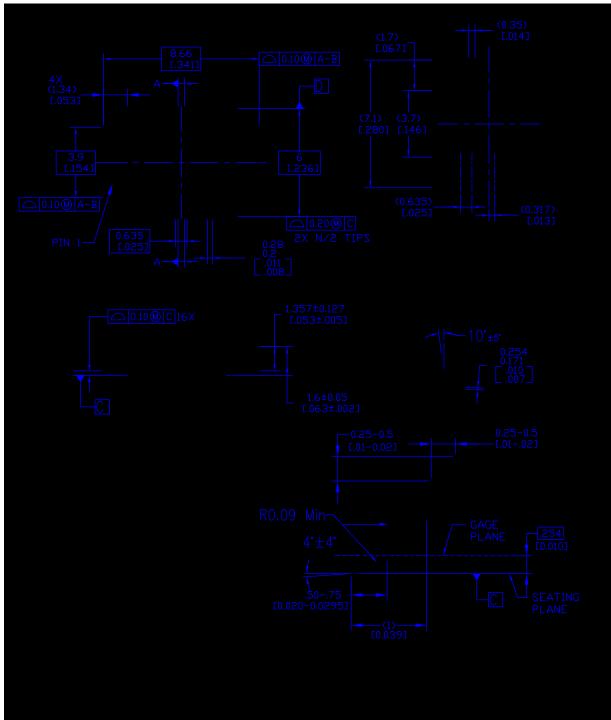
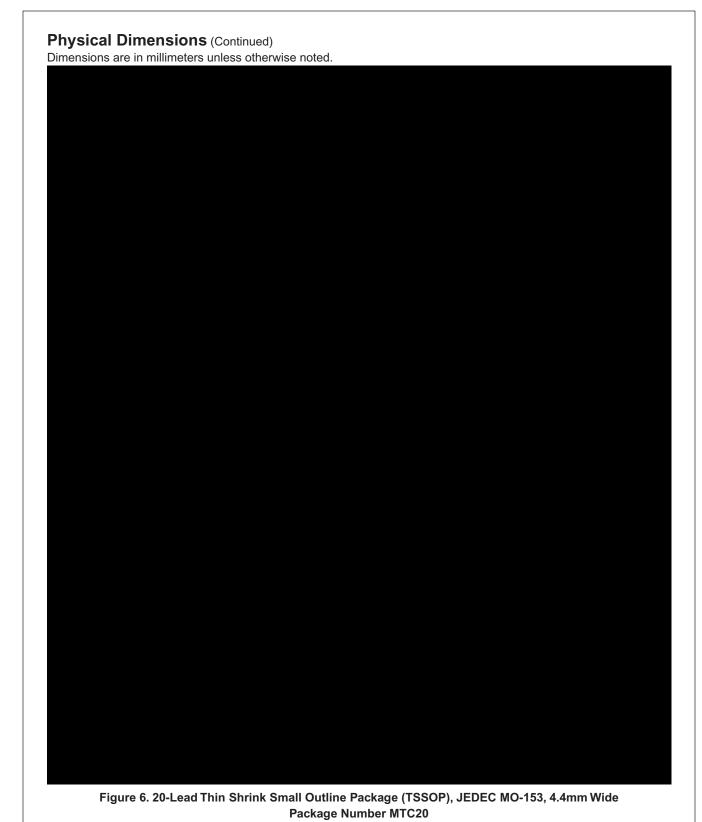
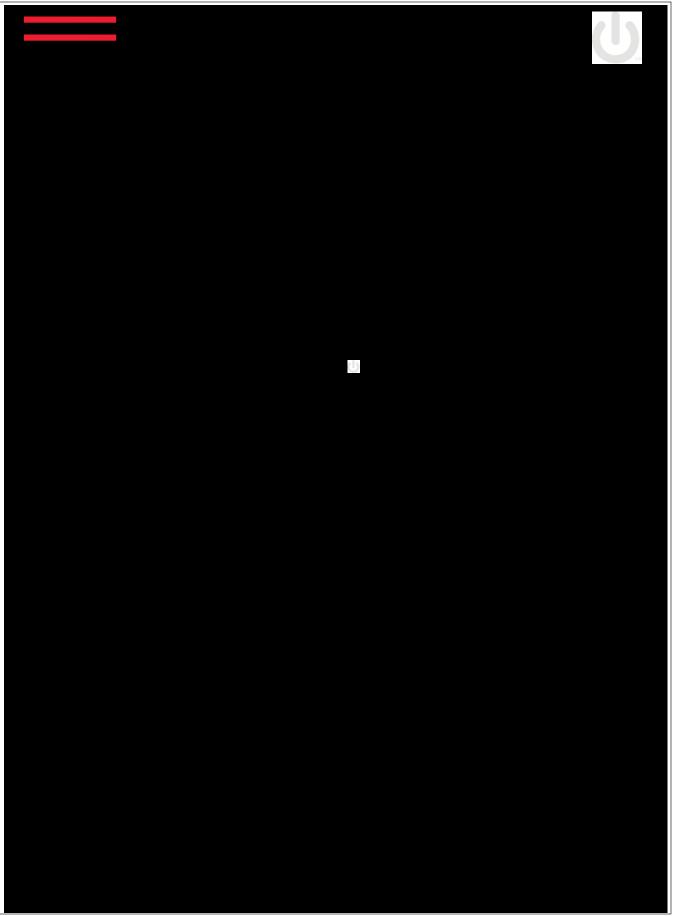




Figure 5. 20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide Package Number MQA20

