

STPS360

Power Schottky rectifier

Datasheet - production data

Description

This high voltage Schottky barrier rectifier device is packaged in SOD128Flat and designed for high frequency miniature switched mode power supplies and on board DC to DC converters.

Value				
3 A				
60 V				
175 °C				
0.49 V				

Features

- Negligible switching losses
- High junction temperature capability
- Low leakage current
- Good trade-off between leakage current and forward voltage drop

This is information on a product in full production.

- Avalanche specification
- ECOPACK[®] compliant component

1/8

1 **Characteristics**

Table 2: Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Pa	Value	Unit	
VRRM	Repetitive peak reverse voltag	Repetitive peak reverse voltage		
IF(AV)	Average forward current T_{L} = 140 °C, δ = 0.5, square pulse		3	А
IFSM	$\begin{array}{l} Surge \ non \ repetitive \ forward \\ current \end{array} t_p = 10 \ ms \ sinusoidal \end{array}$		65	А
Рагм	Repetitive peak avalanche power $t_p = 10 \ \mu s, \ T_j = 125 \ ^\circ C$		140	w
T _{stg}	Storage temperature range	-65 to +175	°C	
Tj	Operating junction temperature	-40 to +175	°C	

Notes:

 $\label{eq:constraint} {}^{(1)}(dP_{tot}/dT_j) < (1/R_{th(j-a)}) \mbox{ condition to avoid thermal runaway for a diode on its own heatsink.}$

Table 3: Thermal parameters					
Symbol	ol Parameter Max. value Unit				
Rth(j-I)	Junction to lead	16	°C/W		

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _B ⁽¹⁾	Poveras laskago ourrant	T _j = 25 °C	V _R = 60 V	-		150	μA
IR('	Reverse leakage current	T _j = 125 °C	$v_{\rm R} = 00 v$	-	20	30	mA
		$T_j = 25 \ ^{\circ}C$	IF = 3 A	-		0.61	
V _F ⁽²⁾	Forward voltage drop	T _j = 125 °C		-	0.49	0.58	v
		T _j = 25 °C		-		0.80	v
		T _j = 125 °C	I⊧ = 6 A	-	0.62	0.72	

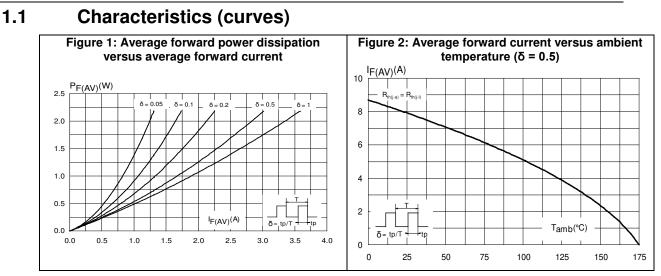
Table 4. Static electrical characteristics

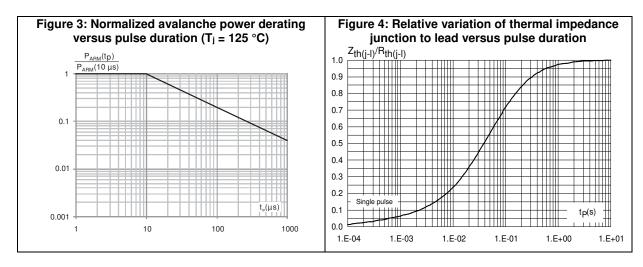
Notes:

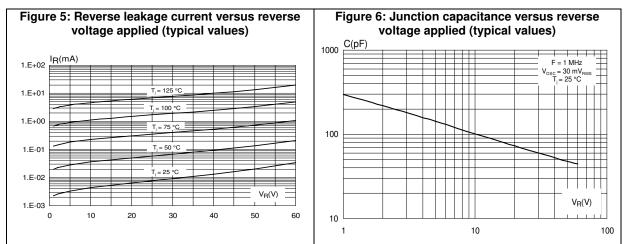
 $^{(1)}$ Pulse test: t_p = 5 ms, δ < 2% $^{(2)}$ Pulse test: t_p = 380 µs, δ < 2%

To evaluate the conduction losses use the following equation:

 $P = 0.44 \text{ x } I_{F(AV)} + 0.047 \text{ x } I_{F}^{2}_{(RMS)}$

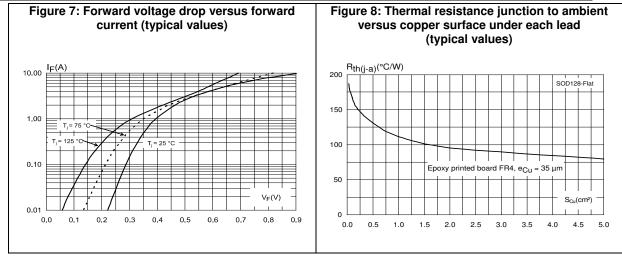

For more information, please refer to the following application notes related to the power losses.


- AN604 (Calculation of conduction losses in a power rectifier)
- AN4021 (Calculation of reverse losses in a power diode)



STPS360

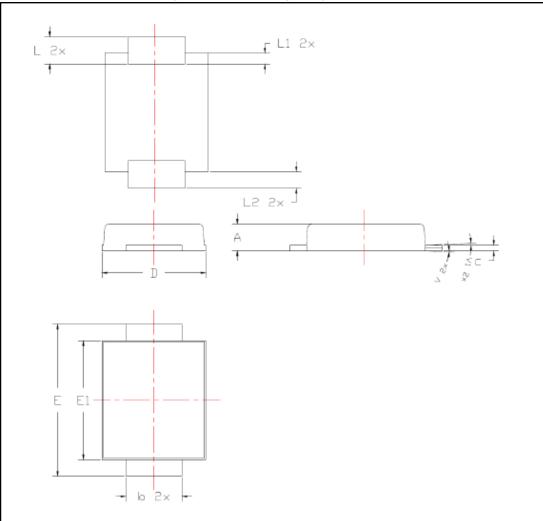
57



DocID029486 Rev 1

Characteristics

STPS360

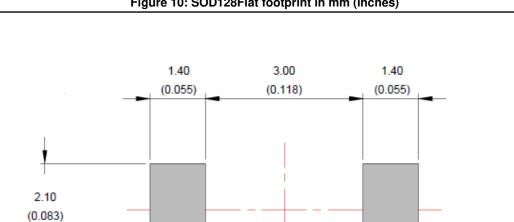


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

- Epoxy meets UL94, V0
- Lead-free package

2.1 SOD128Flat package information


Figure 9: SOD128Flat package outline

Package information

STPS360

	Table 5: SOD128Flat package mechanical data					
		Dimensions				
Ref.	Millin	Millimeters		hes		
	Min.	Max.	Min.	Max.		
А	0.93	1.03	0.037	0.041		
b	1.69	1.81	0.067	0.071		
С	0.10	0.22	0.004	0.009		
D	2.30	2.50	0.091	0.098		
E	4.60	4.80	0.181	0.189		
E1	3.70	3.90	0.146	0.154		
L	0.55	0.85	0.026	0.033		
L1	0.30	0.30 typ.		2 typ.		
L2	0.45	0.45 typ.		8 typ.		

Figure 10: SOD128Flat footprint in mm (inches)

3 Ordering information

Table 6: Ordering information					
Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS360AF	360F	SOD128Flat	26.4 mg	3000	Tape and reel

4 Revision history

Table	7٠	Document	revision	history
Table		Document	164131011	matory

Date	Revision	Changes
01-Jul-2016	1	Initial release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

